Supplementary Material

Penetrance of Breast Cancer Susceptibility Genes from the eMERGE III Network

Xiao Fan, PhD^{1, 2}, Julia Wynn, MS¹, Ning Shang, PhD³, Cong Liu, PhD³, Alexander Fedotov, PhD⁴, Miranda L.G. Hallquist, MS¹⁴, Adam H. Buchanan, MS¹⁴, Marc S. Williams, MD¹⁴, Maureen E. Smith, MS⁵, Christin Hoell, MS⁶, Laura J. Rasmussen-Torvik, PhD⁷, Josh F. Peterson, MD⁸, Georgia L. Wiesner, MD⁹, Andrea M. Murad, MS¹⁰, Gail P. Jarvik, MD, PhD¹¹, Adam S. Gordon, PhD⁶, Elisabeth A. Rosenthal, PhD¹¹, Ian B. Stanaway, PhD¹¹, David R. Crosslin, PhD¹², Eric B. Larson, MD¹³, Kathleen A. Leppig, MD¹³, Nora B. Henrikson, PhD¹³, Janet L. Williams, MS¹⁴, Rongling Li, PhD¹⁵, Scott Hebbring, PhD¹⁶, Chunhua Weng, PhD³, Yufeng Shen, PhD^{2, 3}, Katherine D. Crew, MD^{17,18}, Wendy K. Chung, MD, PhD^{1, 17,18*}

¹ Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032 ² Department of Systems Biology, Columbia University Irving Medical Center, New York, NY

10032

³Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032

⁴ Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY 10032

⁵ Department of Medicine, Northwestern University, Chicago Feinberg School of Medicine, IL 60657

⁶Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611

⁷ Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611

⁸ Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville TN 37203

⁹ Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203

¹⁰ Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109

¹¹ Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA, 98105

¹² Department of Biomedical Informatics and Medical Education, University of Washington Medical Center, Seattle, WA, 98105

¹³ Kaiser Permanente of Washington, Seattle, WA 98112

¹⁴ Genomic Medicine Institute, Geisinger, Danville, PA 17822

¹⁵ Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD 21224

¹⁶ Center for Precision Medicine Research, Marshfield Clinic, Marshfield, WI 54449

¹⁷ Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032

¹⁸ Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032

* Corresponding author, email: <u>wkc15@cumc.columbia.edu</u>

Sex ^a	Ancestry ^b	Count	Current age (SD), y
Female (n=13,458)	African American	1758	38.6 (23.5)
Male (n=11,498)	East Asian	952	52.3 (14.2)
	European American	9122	54.1 (21.3)
	Hispanic	960	49.5 (18)
	South Asian	65	63.1 (13.9)
	unknown	601	48.8 (23.1)
	African American	1994	31.5 (21.8)
	East Asian	588	53.9 (16)
	European American	7892	54.1 (23.8)
	Hispanic	546	46 (20.6)
	South Asian	34	51.3 (20.1)
	unknown	444	41.3 (24.7)

Supplementary Table 1. Clinical characteristics of 24,947 eMERGE III participants.

^aSex was genetically inferred. ^bAncestry was self-reported.

cDNA	Gene	Function	ClinVar	Allele count
c.470T>C	CHEK2	missense	Conflicting interpretations of pathogenicity	26
c.1100delC	CHEK2	frameshift	Conflicting interpretations of pathogenicity	7
c.2638+2T>C	ATM	splice-donor	Pathogenic/Likely pathogenic by multiple submitters	4
c.5946del	BRCA2	frameshift	Pathogenic reviewed by expert panel	3
c.1427C>T	CHEK2	missense	Conflicting interpretations of pathogenicity	3
c.1283C>T	CHEK2	missense	Conflicting interpretations of pathogenicity	3
c.7271T>G	ATM	missense	Pathogenic/Likely pathogenic by multiple submitters	2
c.3049C>T	ATM	stop-gain	Pathogenic by multiple submitters	2
c.4876_4877del AA	BRCA2	frameshift	Pathogenic reviewed by expert panel	2
c.5217_5223del TTTAAGT	BRCA2	frameshift	Pathogenic reviewed by expert panel	2
c.9253dupA	BRCA2	frameshift	Pathogenic reviewed by expert panel	2
c.2808_2811del ACAA	BRCA2	frameshift	Pathogenic reviewed by expert panel	2
c.7558C>T	BRCA2	stop-gain	Pathogenic reviewed by expert panel	2
c.2257C>T	PALB2	stop-gain	Pathogenic by multiple submitters	2

Supplementary Table 2. Recurrent P/LP variants in the breast cancer susceptibility genes, sorted by allele count in the eMERGE penetrance cohort.

Gene	missense	splice	stop-gain	frameshift	CNV	ClinVar ^a
No. of carriers						
ATM	3	6	7	5	0	18 (86%)
BRCA1	3	2	4	8	0	15 (88%)
BRCA2	0	5	8	26	0	37 (95%)
CHEK2	33	2	1	10	2	7 (15%)
PALB2	0	4	6	5	0	14 (93%)
PTEN	1	0	1	1	0	3 (100%)
TP53	3	0	2	0	0	4 (80%)
No. of unique va	riants					
ATM	2	3	6	5	0	13 (81%)
BRCA1	3	2	4	8	0	15 (88%)
BRCA2	0	5	7	20	0	30 (94%)
CHEK2	4	2	1	4	2	7 (54%)
PALB2	0	4	5	5	0	13 (93%)
PTEN	1	0	1	1	0	3 (100%)
TP53	3	0	2	0	0	4 (80%)

Supplementary Table 3. Number of carriers and unique P/LP variants for each gene and variant type.

^a Number of variants with at least 2-star review status in ClinVar is given with percentage in the parentheses. CNV = copy number variation.

Ancestry	Prevalence	No. of individuals	Reference	
CHEK2:c.470T>C				
Byelorussian	1.3%	307	[1]	
German	0.6%	486	[1]	
German	1.6%	500	[2]	
Polish	4.8%	4000	[3]	
Finnish	4.9%	12,551	gnomAD (non-cancer)	
non-Finish European	1.0%	59,069	gnomAD (non-cancer)	
European American	0.2%	17,014	eMERGE III	
CHEK2: c.1100delC				
Byelorussian	0.0%	307	[1]	
German	0.2%	486	[1]	
Czech	0.3%	730	[4]	
German	0.5%	1315	[2]	
European	0.6%	40063	[5]	
non-Finish European	1.7%	12,554	gnomAD (non-cancer)	
European American	0.5%	58,451	gnomAD (non-cancer)	
European American	0.1%	17,014	eMERGE III	

Supplementary Table 4. Prevalence of individuals with two CHEK2 variants estimated in various European populations^a

^aThe prevalence in gnomAD was calculated based on the allele frequency.

Supplementary Table 5. Summary of recent penetrance studies that were used to compare with these population-based penetrance estimates for the six breast cancer genes.

Genes	No. of women with P/LP variants	Source of the study populations	Ancestry	Reference
ATM	NA	Meta case-control studies	multiple	Marabelli et al. 2016 [6]
BRCA1/2	211	General population	Ashkenazi Jewish	Gabai-Kapara et al. 2014 [7]
CHEK2	533	Cancer clinic	European	Gronwald et al. 2009 [8]
PALB2	311	Cancer clinic	European	Antoniou et al. 2014 [9]
PTEN	368	Breast Cancer Association Consortium	Asian	Han et al. 2017 [10]
TP53	189	Cancer history	multiple	Mai et al. 2016 [11]

Supplementary Figure 1. Breast cancer (BC) status by the last review including not developed breast cancer (blue), developed breast cancer (orange) and prophylactic mastectomy (red). The average age and standard deviation were shown in the secondary y axis.

Supplementary Figure 2. Penetrance (orange) of six breast cancer genes compared with penetrance (blue) in the literature from Table 2. The sample size of the entire eMERGE III including those who were aware of their breast cancer genetic results prior to enrollment in eMERGE. Error bars indicate 95% confidence intervals (CI). CI of penetrance for *CHEK2* and *TP53* are not available from the literatures. Genes are sorted alphabetically.

References:

- 1. Bogdanova, N., et al., *Association of two mutations in the CHEK2 gene with breast cancer*. Int J Cancer, 2005. **116**(2): p. 263-6.
- 2. Dufault, M.R., et al., *Limited relevance of the CHEK2 gene in hereditary breast cancer*. Int J Cancer, 2004. **110**(3): p. 320-5.
- 3. Szymanska-Pasternak, J., et al., *CHEK2 variants predispose to benign, borderline and low-grade invasive ovarian tumors.* Gynecol Oncol, 2006. **102**(3): p. 429-31.
- 4. Kleibl, Z., et al., *The CHEK2 c.1100delC germline mutation rarely contributes to breast cancer development in the Czech Republic.* Breast Cancer Res Treat, 2005. **90**(2): p. 165-7.
- 5. Muranen, T.A., et al., *Genetic modifiers of CHEK2*1100delC-associated breast cancer risk*. Genet Med, 2017. **19**(5): p. 599-603.
- Marabelli, M., S.C. Cheng, and G. Parmigiani, *Penetrance of ATM Gene Mutations in* Breast Cancer: A Meta-Analysis of Different Measures of Risk. Genet Epidemiol, 2016. 40(5): p. 425-31.
- 7. Gabai-Kapara, E., et al., *Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2*. Proc Natl Acad Sci U S A, 2014. **111**(39): p. 14205-10.
- 8. Gronwald, J., et al., *Cancer risks in first-degree relatives of CHEK2 mutation carriers: effects of mutation type and cancer site in proband*. Br J Cancer, 2009. **100**(9): p. 1508-12.
- 9. Antoniou, A.C., et al., *Breast-cancer risk in families with mutations in PALB2*. N Engl J Med, 2014. **371**(6): p. 497-506.
- 10. Han, M.R., et al., *Evaluating genetic variants associated with breast cancer risk in high and moderate-penetrance genes in Asians*. Carcinogenesis, 2017. **38**(5): p. 511-518.
- 11. Mai, P.L., et al., *Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort.* Cancer, 2016. **122**(23): p. 3673-3681.