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Supporting Information Text

Markov operators

Infinitesimal generator. Given a stochastic dynamical system, such as an MD simulation, the operator P can be understood as
a propagator of the probability density f(x, t), where x is on the phase space of the dynamical system. We can define P using
the infinitesimal generator L (1)

∂tf = Lf. [1]

This equation is a generalization to non-deterministic systems of the Liouville equation of statistical mechanics, which describes
the time evolution of a density of an ensemble of systems. Its solution, given an initial density f(t = 0) = f0, is

f(·, t) = exp(tL)f0 = P (t)f0, [2]

where P (t) is the Perron-Frobenius operator. It can be understood as the propagator of the probability density f0. In its
decomposed form for two systems A and B, the operator is written as

f(x, t) = (PA(t)⊗ PB(t)) f0(x) = P (t)f0(x). [3]

MSM transition matrix decomposition. The Perron-Frobenius operator P can be approximated by a Markov model. The Markov
model formulation propagates probability densities between discrete states; therefore, the problem requires performing a
Galerkin discretization of P using a discrete basis set. This can be done by partitioning the phase space completely or into the
metastable regions, say {A1, ..., Ak}. The most common basis set are indicator functions on these regions,

1Ai(x) =
{

1 if x ∈ Ai
0 else.

[4]

The Galerkin discretization will yield a low rank approximations of the operator P . When using indicator functions, the
output will usually be in the form of a discrete-time MSM (2). Assume that the dynamics of interest can be separated into two
independent disjoint regions in phase space. The Galerkin discretization of Eq. 2 in each region yields two MSMs,

fA(t+ τ) = TAfA(t), fB(t+ τ) = TBfB(t), [5]

where τ is the lagtime; fA and fB are the probability vectors of the corresponding MSMs; and TA, and TB are the corresponding
transition probability matrices. In this case, the matrices TA and TB approximate Perron-Frobenius operators, so following Eq.
3, the solution of the whole systems is given by

f(t+ τ) = (TA ⊗ TB) f0(t), [6]

with f0 = f0A⊗ f0B . The individual transition probability matrices are linear maps given by TA : Rk → Rk and TB : Rk
′
→ Rk

′
,

where k and k′ are the number of discretized states in A and B, respectively. The joint space A ⊗ B will then have kk′
discretized states that are defined analogously to Eq. 4 by indicator functions 1(A⊗B)(i,j)(x) = 1 iff x ∈ Ai ∩Bj , so

TA ⊗ TB : Rkk
′
→ Rkk

′
. [7]

In particular, the product TA ⊗ TB is the Kronecker product (3). An analogous expression can be derived for continuous-time
MSMs (see below).

In summary, we need the operator P to model the full system, and approximate it by the Kronecker product between the
transition probability matrices of the MSMs of independent sub-systems.

Observable operator decomposition. To score dependency of subsystems in feature space, it is most natural to directly work
with the operator that propagates these features. This operator is called the Koopman operator K; it propagates observable
functions f ,

Kf(x) = E[f(Φ(x))], [8]

i.e., is described by the expectation value of the observable of a particular configuration, x, after the dynamics Φ has been
applied. It is a infinite-dimensional linear operator (4). It is particularly interesting for the current application because the
variational approach for Markov processes (VAMP) and the related VAMP scores are derived from the Koopman operator (5).

As the Koopman formulation is a more general framework to deal with Markov processes, we only refer to the estimator of
the Koopman operator which reads (5)

K = C
−1/2

00 C0tC
−1/2

tt [9]

with time-lagged covariance matrix C0t, “instantaneous” covariance matrices at times 0 and t C00 and Ctt, respectively. The
lag time is t.

We define the common space of observables of two processes as a stacked vector ΨAB = [ΨA,ΨA]. For example, if
ΨA = (ψ1

A, ψ
2
A, . . .) and ΨB = (ψ1

B , ψ
2
B , . . .) are the one-dimensional time series of features ψ ∈ R of two systems A and B,

the joint space would be spanned by ΨAB = ((ψ1
A, ψ

1
B), (ψ2

A, ψ
2
B), . . .). Note that this means that the separation of processes
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happens a priori by the choice of ΨA,ΨB , a situation which comes closest to applied modeling situations. Given the above
definition of the full system observable ΨAB , the full system Koopman operator is the direct sum of Koopman sub-operators
KA,KB , KAB = KA ⊕KB or, more generally,

K


Ψ1
Ψ2
...

Ψn

 (x) =


K1 0 . . . 0

0 K2
. . .

...
...

. . . . . . 0
0 . . . 0 Kn




Ψ1
Ψ2
...

Ψn

 (x) [10]

as all off-diagonal blocks must vanish by definition and each subsystem operator only acts on the features of its space. Therefore,
the decomposition can be written as the direct sum

K =
⊕
i

Ki. [11]

In particular, this means that the Koopman operator has the shape of a block diagonal matrix. It can be seen from the Koopman
estimator (Eq. 9) that the above structure of the joint operator implies that independent processes are also uncorrelated.

VAMP score decomposition of independent systems

The VAMP-p score Rp can be interpreted as the Schatten-p norm ‖ · ‖p of the estimated Koopman operator to the p-th power
(5), i.e.

Rp(K) = ‖K‖pp. [12]
This general form is valid for both MSMs as well as Koopman models, but note that the estimator for K is different in these
cases (see below). To simplify this expression, on the one hand, we can exploit the property of the Schatten-p norm to be
invariant under unitary transformations for unitarian matrices U and V ,

‖A‖p = ‖UAV ‖p. [13]

On the other hand, we can write the Koopman operator in a singular value decomposition with its singular value diagonal
matrix Λ as K = UΛV such that, using Eq. 13, we find

‖K‖p = ‖Λ‖p =

(∑
i

λpi

) 1
p

[14]

with the real valued singular values of the Koopman matrix λi.

Sum space decomposition. Given a joint space that is spanned by the direct sum of subspaces, such as described with molecular
observable vectors, and a decomposable Koopman operator KAB = KA ⊕KB of two systems A and B, we can thus write

KAB = UABΛABVAB [15]
= (UA ⊕ UB)(ΛA ⊕ ΛB)(VA ⊕ VB) [16]
= (UAΛAVA)⊕ (UBΛBVB) [17]
= KA ⊕KB [18]

and hence

‖KAB‖pp = ‖ΛAB‖pp [19]
= ‖ΛA ⊕ ΛB‖pp. [20]

Further, the singular values of the direct sum joint operator are the set of subsystem operator singular values. In detail, writing
the p-th power of the p-Schatten norm of a real valued diagonal matrix (Eq. 14) reads∥∥∥∥∥∥∥∥∥∥∥


λA,1 0 · · · 0

0
. . .

...
... λB,1 0

0 · · · 0
. . .



∥∥∥∥∥∥∥∥∥∥∥

p

p

= Tr


λpA,1 0 · · · 0

0
. . .

...
... λpB,1 0

0 · · · 0
. . .


such that it follows that we can further simplify Eq. 20 to

= ‖ΛA‖pp + ‖ΛB‖pp [21]
= ‖KA‖pp + ‖KB‖pp [22]
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which is the VAMP-p score of two independent systems in this particular basis. We can see that the decomposability depends
on the block diagonal shape of the joint Koopman operator, which is also inherent to the covariance matrix itself. I.e., a
decomposition of the covariance matrix would be possible in the same way, however its trace and Frobenius norm do not
represent VAMP scores.

Product space decomposition. When operating in a joint space that is spanned by the tensor product, as shown above, the
joint operator is formed by the Kronecker product TAB = TA ⊗ TB . However, the VAMP-score of a transition matrix T is not
directly computed from T but from the associated Koopman operator. We first show that a decomposition of TAB = TA ⊗ TB
also implies a decomposition of KAB in the same way. We note that that the instantaneous correlation matrices are diagonal for
MSMs. In the following, we make use of the transition matrix estimator T = C−1

00 C0t and the mixed product rule of Kronecker
products.

KAB = ABC
1/2
00 TAB

ABC
−1/2
tt [23]

=
(
AC

1/2
00 ⊗

BC
1/2
00

)
(TA ⊗ TB)

(
AC
−1/2
tt ⊗ BC

−1/2
tt

)
[24]

=
(
AC

1/2
00 TA

AC
−1/2
tt

)
⊗
(
BC

1/2
00 TB

BC
−1/2
tt

)
[25]

= KA ⊗KB [26]

Please note that this simple proof is only valid for indicator function basis sets such as for classical MSMs.
We can further make use of a simple rule that applies to the singular value decomposition of the Kronecker product. If the

subsystem operators have n and m singular values λA,i ∈ R and λB,i ∈ R, respectively, the singular values of its Kronecker
product are {λA,i · λB,j : 0 < i < n, 0 < j < m}. It thus follows that

‖KAB‖pp =
∑
i

λpAB,i [27]

=
∑
i,j

(λA,i · λB,j)p [28]

=
∑
i

λpA,i ·
∑
j

λpB,j [29]

= ‖KA‖pp · ‖KB‖pp. [30]

This is the decomposition for the VAMP-p score of two independent systems in a product basis such as the one applied for
MSM transition matrices.

Continuous-time MSM decomposition

Discretizations of the operator P can also yield continuous-time MSMs (6, 7). Analogously to the analysis done with discrete
time MSMs, assume two independent regions in phase space that are discretized into two continuous-time MSMs. Their
solution is

fA(t) = exp(tRA)f0A, fB(t) = exp(tRB)f0B , [31]

where RA and RB are the transition rate matrices; fA and fB the probability densities in the corresponding regions; and f0A
and f0B the initial conditions. The operator P is approximated by the exponential functions, so the solution of the whole
system is given by the tensor product of exponentials,

f(t) = exp(t(RA ⊕RB))f0, [32]

which yields a Kronecker sum ⊕ for the matrices in the exponent.
In summary, in order to approximate the operator P of the full system, we need to either use the Kronecker sum on rate

matrices of continuous-time MSMs, or the Kronecker product on transition probability matrices of discrete-time MSMs. In
general, the full system Perron-Frobenius operator can be reassembled by using the tensor product on all the subsystems
operators.

Weakly coupled systems

Practical situations – for example, an ion channel with quasi-independent subunits – might often involve weak coupling. The
transition matrix T̃ of a weakly coupled system can be expressed as a perturbation of the transition matrix T of the non-coupled
system,

T̃T = (1− ε)TT + εPT, ε ∈ [0, 1] [33]

where P is another Markov transition matrix defined on the same state space as T , and ε � 1 corresponds to small
perturbations/weak coupling. Note this definition enforces the required MSM condition that columns sum to one.
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As the eigenvalues of T̃ are continuous functions of ε, the eigenvalues of the coupled system will be arbitrarily close to those
of the uncoupled one as ε→ 0. Further analysis on the convergence speed of the eigenvalues as ε→ 0 is system dependent and
not easy to assess in general. However, upper error bounds for the stationary distribution error exist and can be assessed in
multiple ways (8, 9). We focus on one formulation framed in terms of mean first passage times mij , since it provides physical
intuition on the sensitivity of the MSM (8, 10). Assume T and P define finite, irreducible and homogeneous MSMs, as the
MSMs of interest within the scope of this work, then

‖π − π̃‖∞ ≤
1
2 max

j

[
maxi 6=jmij

mjj

]
‖(T − T̃ )T‖∞, [34]

where π denotes the stationary distribution; the tilde denotes quantities of the perturbed system; the ∞-norm is the maximum
absolute row sum, and mjj is the mean return time of state j, i.e. the time to return to j for the first time, starting from j.

In terms of our application, if the coupling is sufficiently weak (ε� 1), the eigenvalues of the uncoupled system will be close
to those of the weakly coupled system, providing a good approximation of the implied timescales. Furthermore, an upper
bound for the stationary distribution error can be easily calculated using software like PyEMMA (11). The bound is very
effective for MSMs consisting of a dominant central state with strong connections to and from all other states (8).

Effective counts and sampling

For comparing classical MSMs and IMD models, one can assess the total number of transition counts (going into and out of a
particular state) in a global state space. It is either estimated directly based on state definitions in the global system (MSM) or
computed from the Kronecker product of subsystem transition matrices (IMD model).

Let us consider two independent systems with transition matrices Ti, count matrices Ci, and total counts Ni. The latter is
a diagonal matrix for classical MSMs that describes the total number of counts for each state. One can write Ti = N−1

i Ci
(maximum likelihood estimator of the transition matrix). We can compute the total transition matrix from the Kronecker
product as follows

TAB = TA ⊗ TB = N−1
A CA ⊗N−1

B CB = (NA ⊗NB)−1(CA ⊗ CB). [35]
We write the global count matrix as NAB = NA ⊗NB . It can be interpreted as the effective number of counts for each state

in the global system when estimated from the Kronecker product, i.e., each diagonal element is the product of the sub-system
total counts of a particular state. These numbers, which could be interpreted as the number of “effective transitions” in global
state space, will necessarily be greater than the ones from a classical MSM in the same space.

Toy models

Scaling behavior: uncoupled 3 state sub-systems. A system consisting of n independent sub-systems with 3 states each was
set up to exemplify scaling with number of sub-systems. The transition matrix of each sub-system is given by

Ti =

(1− p p/2 p/2
p/2 1− p p/2
p/2 p/2 1− p

)
[36]

with p = 0.1, i.e., the probability to stay in a particular state is 1− p = 0.9. The full system is described with a Kronecker
product Tfull =

⊗n

i
Ti. Markov chains of length N are sampled from this transition matrix using PyEMMA / msmtools

(11) until the desired set of states is connected. To quantify the confidence, 30 trial runs are conducted for each number of
sub-systems.

Approximation quality: 2 weakly coupled 2 state sub-systems. In the following, we utilize a system comprised of 2 sub-systems
with 2 states each in order to exemplify the IMD framework. We further analyze its behavior with regard to limited sampling
and weak couplings. The toy model consists of two sub-systems with transition matrices T1, T2 that each have a probability to
transition to another state of ε = 0.1.

These sub-systems are coupled in a tunable fashion. A parameter λ is introduced which results in two independent
sub-systems for λ = 0 and weakly coupled sub-systems for λ > 0. The full system is represented by a reversible transition
matrix T for any given λ ∈]0, ε(1− ε)[. The transition matrix of the applied toy model can explicitly be written as

T =

(1− ε)2 − λ ε(1− ε)− λ ε(1− ε) + λ ε2 + λ
ε(1− ε)− λ (1− ε)2 − λ ε2 + λ ε(1− ε) + λ
ε(1− ε) + λ ε2 + λ (1− ε)2 − λ ε(1− ε)− λ
ε2 + λ ε(1− ε) + λ ε(1− ε)− λ (1− ε)2 − λ

 [37]

λ=0= T1 ⊗ T2. [38]

In the un-coupled case, T reduces to the Kronecker product of the two sub-system transition matrices. The sub-system
transition matrices are given by

T1, T2 =
(

1− ε ε
ε 1− ε

)
. [39]
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We sample discrete trajectories from T , de-compose into sub-system trajectories and estimate the models presented in Fig.
S1.

As expected, all properties of the Markov model can be easily retained in the uncoupled case (Fig. S1). Stronger coupling
yields less accurate results; especially transition probabilities are over or underestimated (Fig. S1a) while the error on the
implied timescales is comparably small, possibly yielding underestimated implied timescales (Fig. S1b). We note that the
stationary probabilities are not affected by the coupling, i.e. that p1 · p2 = p1,2 holds in any case (Fig. S1c). We find that
indeed, the dependency d in both its forms, trace and Frobenius norms, is a fast converging and significant indicator for the
approximation quality (Fig. S1d).

Due to its small size, this particular example is not suitable to demonstrate that convergence is reached faster with the
decomposed model.
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Dimer model

The following model system serves the purpose to demonstrate that the presented dependency scores can bisect coupled from
weakly coupled systems. Our example models a dimer of protein channels. Each of those channels resembles a Hodgkin-Huxley
potassium channel but possesses an additional deactivation switch. This switch alters the dynamics completely, i.e. upon
activation each gate will close or stay closed with a high probability. The deactivation switch is a Markov process itself and
switches state with a probability of pswitch = 0.01. Thus, each channel has strongly coupled sub-units and cannot be described
by individual gate MSMs as in the previous example.

Our test system consists of two such channels. They possess some weak cooperativity which we model by a slight shift in
gate opening probability if both deactivation switches are disabled at the same time.

In the following, we define a block matrix that describes the whole system dynamics. For the sake of simplicity, we present
it in multiple layers. The highest layer describing the full system is given by

Tdimer =



T

(
S1 : 0→ 0
S2 : 0→ 0

)
T

(
S1 : 0→ 0
S2 : 0→ 1

)
T

(
S1 : 0→ 1
S2 : 0→ 0

)
T

(
S1 : 0→ 1
S2 : 0→ 1

)
T

(
S1 : 0→ 0
S2 : 1→ 0

)
T

(
S1 : 0→ 0
S2 : 1→ 1

)
T

(
S1 : 0→ 1
S2 : 1→ 0

)
T

(
S1 : 0→ 1
S2 : 1→ 1

)
T

(
S1 : 1→ 0
S2 : 0→ 0

)
T

(
S1 : 1→ 0
S2 : 0→ 1

)
T

(
S1 : 1→ 1
S2 : 0→ 0

)
T

(
S1 : 1→ 1
S2 : 0→ 1

)
T

(
S1 : 1→ 0
S2 : 1→ 0

)
T

(
S1 : 1→ 0
S2 : 1→ 1

)
T

(
S1 : 1→ 1
S2 : 1→ 0

)
T

(
S1 : 1→ 1
S2 : 1→ 1

)


. [40]

Its block elements depend on deactivation switches of the individual channels, S1 and S2. On the next layer, for each transition
pair of the deactivation switches,

T

(
S1 : i→ j
S2 : n→ m

)
=
{
Tc ⊗ Tc if n = m = i = j = 0
T (S1 : i→ j)⊗ T (S2 : n→ m) else.

[41]

This implements the coupling between channels by selecting different transition probabilities if both deactivation gates are
inactive at the same time. The next layer describes individual channel transition probabilities (rescaled such that the full
system transition matrix has row-sum 1):

T (S : i→ j) =


pswitch · 116 n 6= m switching switch
(1− pswitch) · THH n = m = 0 inactive switch
(1− pswitch) · Tinactive(λ) n = m = 1 active switch

[42]

with the Hodgkin-Huxley transition matrix THH = Thh ⊗ Thh ⊗ Thh ⊗ Thh with individual gate transition matrices Thh that
describe gate opening and closing in the native state. Further, a transition matrix describing gate dynamics if the deactivation
switch is active is given. For fully activated coupling between gates and deactivation switch, it reads T̃inactive = To⊗To⊗To⊗To
with To being the single gate transition matrices for that case. In order to control the intensity of the gate-deactivation switch
coupling, we use a linear mixture parameter λ,

Tinactive(λ) = λT̃inactive + (1− λ)THH, [43]

i.e., the coupling can gradually be turned off by adjusting λ ∈]0, 1[, and the case λ = 0 leaves the deactivation switch with no
effect on the gate dynamics.

Finally, on the last layer, the single gate matrices are given by

Thh =
(

0.9483 0.0517
0.0055 0.9945

)
unperturbed [44]

To =
(

0.9483 0.0517
0.95 .05

)
active deactivation switch [45]

Tc =
(

0.8 0.2
0.0055 0.9945

)
both deactivation switches inactive [46]

The Markov chain is sampled from the transition matrix Tdimer using PyEMMA / msmtools (11) with a time step of 20
steps for 1 million time steps. The code used to generate and analyze the example can be found in our GitHub repository.
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Fig. S1. Analysis of error from weak couplings and limited sampling. MSM properties of full-system and decomposed estimates are shown as functions of sampling (x-axis) and
coupling (color code). (a) first row of transition probability matrix, (b) two highest implied timescales. (c) Stationary probabilities (shown for two example states). (d) dependency
d as difference in trace norms (line) and Frobenius norms (diamonds).
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33
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Fig. S2. Dependency-network between residues of Syt-1 C2A depicted using a standard graph layout (Fruchterman-Rheingold algorithm). a: VAMP-1 normalized dependency
network. Edge weights are indicated by colorbar. Nodes are colored according to an unsupervised classification by the k-means algorithm (k = 7). b: Visualization of protein
structure with color coded segments from our VAMP-1 analysis, i.e., same color code as in panel a.
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Fig. S3. Counterexample to IMD with dependency-network between residues of Chignolin (12). Analysis is based on flexible torsion angles (13). We show VAMP-1 (a) and
VAMP-2 (b) normalized dependency networks. Edge weights are indicated by colorbar. a) VAMP-1 dependency network with nodes colored according to an unsupervised
classification by the k-means algorithm (k = 4). Dependency histograms depict coupling strength of residues within a subsystem cluster (red) and between different subsystem
clusters (blue). Note that links between residue clusters express high normalized dependency scores, which is also mirrored in the two distributions having significant overlap.
Therefore, the peptide cannot be split into independent subsystems. b) VAMP-2 dependency network shows no clustering; every residue is connected to the network with
scores > 0.8, further indicating that Chignolin cannot be modeled with IMD.
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Fig. S4. Deviations of Hodgkin-Huxley ion channel models (IMD, MSM) from the ground truth, assessed with Root Mean Square Error (RMSE). RMSE is computed between
estimated eigenvalue spectrum (IMD, MSM) and spectrum of the generator transition matrix (ground truth) for all cases where connected transition matrices could be estimated.
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