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Supporting Information Text30

1. Simulation Details31

In the MD simulations, we first minimize the energy of the system using the steepest descent method. Then, we let the32

system equilibrate at 300K in the NPT ensemble. During the equilibration, the polypeptide is positionally restrained to ensure33

that no conformational transitions occur at this stage. We do this by applying harmonic potentials with a force constant of34

k = 1000 kJ/mol/nm2 to all Ala9 atoms. The equilibration time is 1ns, i.e., 106 time steps. To speed up the equilibration35

process, we assign to each particle an initial velocity drawn from a Maxwell-Boltzmann distribution at the desired temperature.36

We perform production runs in the NVT ensemble using a modified Berendsen thermostat with a time constant of 0.1ps (1).37

We constrain all bond lengths using the LINCS algorithm. The bond angles are unconstrained. The Ala9 polypeptide was build38

using the open-source molecular builder software Avogadro 1.2.0. (2). The N terminus is NH+
3 and the C terminus is CO−2 .39

2. Numerical Extraction of the Memory Kernel40

In this section, we derive an equation that allows us to compute the running integral of the memory kernel, G(t) =
∫ t

0 dsΓ(s),
directly from time-series data. The final equation generalizes the method to extract G(t) in a harmonic potential derived in (3)
to an arbitrary potential U .
We multiply the GLE in Eq. (1) in the main text by the initial velocity q̇(0) = v(0) and ensemble average the result. This leads
to

m
d
dtC

vv(t) = −C∇Uv(t)−
∫ t

0
dsΓ(s)Cvv(t− s), [1]

where CAB(t) = 〈A(t)B(0)〉 denotes an equilibrium correlation function. In deriving Eq. (1), we used the orthogonality relation
〈FR(t)v(0)〉 = 0 which follows from the derivation of the GLE using orthogonal projection operators (4, 5). Time integration of
Eq. (1) gives a continuous equation for the running integral G(t)

mCvv(t) = C∇Uq(t)− C∇Uq(0) +mCvv(0)−
∫ t

0
ds′ Cvv(s′)G(t− s). [2]
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By multiplying the GLE by the initial position q(0) and ensemble averaging, we find

mC v̇q(t) = −C∇Uq(t)−
∫ t

0
dsΓ(s)Cvq(t− s). [3]

This follows from the fact that the GLE is the result of an orthogonal projection onto the subspace spanned by {q(0), v(0)}
and that the random force FR lies completely in the orthogonal subspace to {q(0), v(0)}, i.e. 〈FR(t)q(0)〉 = 0 at all times t (6).
Evaluating Eq. (3) at t = 0 and inserting C v̇q(t) = −Cvv(t) gives

mCvv(0) = C∇Uq(0). [4]

Hence, Eq. (2) becomes

Cvv(t)
Cvv(0)C

∇Uq(0) = C∇Uq(t)−
∫ t

0
ds′ Cvv(s′)G(t− s). [5]

Discretizing Eq. (5) by use of the trapezoidal rule gives

Cvvn
Cvv0

C∇Uq0 = C∇Uqn − ∆t
2 GnC

vv
0 −∆t

n−1∑
i=1

Gn−iC
vv
i , [6]

where we used G(0) = 0. Solving Eq. (6) for Gn = G(t) gives

Gn = 2
∆t Cvv0

(
C∇Uqn − C∇Uq0

Cvv0
Cvvn −∆t

n−1∑
i=1

Gn−iC
vv
i

)
, [7]

where CABn is the n-th value of the equilibrium correlation function C(t) = 〈A(t), B(0)〉.41

3. Computation of the Effective Mass42
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Fig. S1. From the MD data, we compute the velocity distribution of the hb4 reaction coordinate in a given interval [q − dq, q + dq] with dq = 0.001 nm. It can be seen that
the distribution is independent of the position q.

In Fig. S1, the velocity distribution P (v|q) conditioned on the position q is shown for different values of q. Fig. S1 shows that43

the velocity distribution is independent of the position q. This implies that the effective mass of the reaction coordinate is44

independent of q.45

4. Markovian Embedding46

The direct numerical integration of the GLE is not advisable since it would involve a nested loop. A more efficient way is to
introduce additional degrees of freedom to map the GLE onto a system of linearly coupled standard Langevin equations (7). In
the following, we demonstrate how this is done. We consider the system of coupled equations:

mq̈(t) = −dU(q)
dq −

N∑
n=1

kn (q(t)− yn(t)) , [8a]

ẏn = −kn
γn

(yn(t)− q(t)) +
√
kBT

γn
ηn for n = 1, 2, . . . , N, [8b]
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Fig. S2. Shown are free energies U computed from the GLE trajectories as a function of the hb4 reaction coordinate q, where the memory times are rescaled with a factor α
as described in the main text. The GLE free energies are compared to the MD free energy.

where U(q) is an external potential that only affects the reaction coordinate q. Each ηn is a stationary Gaussian process
with 〈ηn〉 = 0 and 〈ηn(t), ηl(t′)〉 = 2δnlδ(t − t′). Eq. (8) can be mapped onto a GLE for the reaction coordinate q. This is
accomplished by solving the inhomogeneous first order differential equation for the yn and by inserting the solution back into
the equation for q. The solution for yn(t) reads

yn(t) = (yn(0)− q(0)) e−t/τn + q(t)−
∫ t

0
ds e−(t−s)/τn q̇(s) +

∫ t

0
ds e−(t−s)/τn 1

γn
ηn(s). [9]

Inserting Eq. (9) into Eq. (8a) gives

mq̈(t) = −dU(q)
dq −

∫ t

0
dsΓ(t− s)q̇(s) + F (t), [10]

with F (t) =
∑

n

[
γn
τn

(q(0)− yn(0))e−t/τn − 1
τn

∫ t
0 ds e(t−s)/τnηn(s)

]
and the kernel Γ(t) =

∑
n
γn
τn
e−t/τn . If we assume that47

the system in Eq. (8) is initially in equilibrium, the initial conditions are distributed according to a Boltzmann distribution (7).48

Using this, it follows that 〈F (t)〉 = 0 and 〈F (t), F (0)〉 = kBTΓ(t). Hence, we obtain a GLE with a memory kernel consisting of49

a sum of exponentially decaying functions. One can generate a trajectory from the GLE in Eq. (10) by numerically integrating50

Eq. (8). In Fig. S2, we show free energies from trajectories generated using the GLE method described here. All free energies51

are independent of the memory rescaling factor α introduced in the main text and agree perfectly with the free energy extracted52

from the original MD simulation.53

5. Error Estimation of Correlated Data54

We consider a series of consecutive measurements

x = (x1, x2, . . . , xN ). [11]

Each xi is a fluctuating quantity distributed according to some probability distribution function P (x). We assume that the
system is equilibrated such that P (x) will be the same for all xi. In this case, the finite average x̄ = 1/N

∑N

i=1 xi ≡ τ is also a
fluctuating quantity.
In this work, x would represent the first passage times τFP "measured" using simulation data and x̄ ≡ τ the estimate of the
mean first passage time. When one performs consecutive measurements of first passage times, the resulting data will in general
be correlated. Therefore, the variance of x̄ does not equal the variance of x. In the following, we present how to estimate the
errors of averages of correlated data (8).
The variance of τ is given by

σ2
τ = 〈τ2〉 − 〈τ〉2. [12]

Inserting τ = 1/N
∑N

i=1 xi into the above equation yields

σ2
τ = 1

N2

N∑
i=1

N∑
j=1

(〈xi, xj〉 − 〈xi〉〈xj〉) . [13]
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We define Ci,j = 〈(xi − 〈xi〉) (xj − 〈xj〉)〉 = 〈xi, xj〉 − 〈xi〉〈xj〉, the covariance matrix of x. Since we consider an equilibrated
process, the covariance only depends on the difference |i− j|. Using this, we can rewrite the expression in Eq. (13) as

σ2
τ = 1

N2

N∑
i=1

N∑
j=1

C|i−j| = 1
N2

(
NC0 + 2

N−1∑
i=1

N−i∑
j=1

Cj

)
[14a]

= 1
N2

[
NC0 + 2

N−1∑
i=1

(N − i)Ci

]
. [14b]

From Eq. (14b), the formula for averages of correlated data immediately follows

∆τ2
MFP = 1

N

[
C0 + 2

N−1∑
i=1

(
1− i

N

)
Ci

]
. [15]

For our estimation of errors, we estimate the auto-correlation function by Ci = 1
N−i

∑N−i
k=1 (xk − x̄)(xk+i − x̄).55

6. Mean First-Passage and Mean Transition-Path Times56

24 26 28 30 32 34
t [ns]

0.4

0.6

0.8

1.0

1.2

q(
t)

[n
m

]

Transition Path Time

Fig. S3. Illustration of transition-path times using a hb4 trajectory from MD simulations. The red sections of the trajectory highlight two transition paths between the q values
0.32 nm and 0.99 nm.

In Fig. S3, we show exemplary transition paths between the two local minima in the free energy at q = 0.32nm and at57

q = 0.99 nm. A transition path between the two states qs → qf is a path that leaves qs and reaches qf for the first time without58

recrossing qs or qf . The mean transition path time τMTPT(qs, qf ) is the average over all transition path times qs → qf . In59

Fig. S4(a), we show τMTPT(qs = 0.32 nm, qf ) and τMTPT(qs = 0.99nm, qf ) for various systems, i.e., MD, GLE, underdamped60

LE and overdamped LE. The curves for the underdamped LE and overdamped LE are computed using the friction coefficient61

γ̄ =
∫∞

0 Γ(s) from the extracted memory kernel and the potential of mean force extracted from the MD system. We see a very62

good agreement between the GLE and MD simulations. Thus, the GLE with a time-dependent friction reproduces not only63

the mean first-passage times (MFPT) of the MD simulation, as shown in the main text, but also the mean transition-path64

times (MTPT). In Fig. S4(b), we show ratios of the mean transition-path times from MD and GLE simulations and from65

MD and overdamped LE simulations shown in Fig. S4(a). In Fig. S4(c), we show ratios of the MFPTs from MD and GLE66

simulations and from MD and overdamped LE simulations shown in Fig. 3(a) in the main text. Additionally, in Fig. S5 we67

show the first-passage time distributions between the positions qL = 0.32nm, qB = 0.54nm and qR = 0.99 nm. No significant68

deviation can be discerned between the MD and the GLE system in the distributions shown in Fig. S5(a), (b) and (d). In69

Fig. S5(c), it can be seen that the MD system has higher probabilities towards larger first-passage times compared to the GLE70

system. The impact of this on the MFPT can be seen in Fig. 3A in the main text.71

7. Non-Markovian Modeling for the End-to-end Distance72

We repeat the analysis performed for the hb4 reaction coordinate in the main text for the end-to-end distance of Ala9 (de2e).73

This reaction coordinate is of particular importance, since it is available from single-molecule Förster resonance energy transfer74

(FRET) experiments (9, 10). Here, de2e was computed from the same MD simulation data used in the main text to obtain the75

hb4 reaction coordinate. de2e is the distance between the center of masses of the first and the last residues of Ala9, i.e.,76

de2e(t) :=

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
Mala

1

∑
i∈Iresiude1

mi~ri(t)−
1

Mala
9

∑
i∈Iresiude9

mi~ri(t)

∣∣∣∣∣∣
∣∣∣∣∣∣ , [16]77
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Fig. S4. (a) We show the mean transition path time (MTPT) between qs = {0.32, 0.99} nm (blue, orange) and qf as a function of qf . We compute the MTPT from the MD

and GLE trajectories as well as trajectories generated using an underdamped (ULE) and overdamped Langevin equation (OLE) with the friction γ̄ =
∫∞

0
dsΓ(s) and the

PMF U(q) from the MD system shown in Fig. S2. In (b), we compare the ratios MD/GLE and MD/OLE from the data shown in (a). In (c), the same ratios are shown for the
mean first passage times (MFPT) shown in the main text.
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Fig. S5. First-passage time distributions between the positions qL = 0.32 nm, qB = 0.54 nm and qR = 0.99 nm considered in the main text. We compare distributions
computed from the MD system (blue) and the corresponding GLE system (red).

where mi denotes the mass of the i-th atom in one of the terminal residues. In Eq. (16), the summation is performed over78

the index sets Iresidue1 (all atom indieces of first residue) and Iresidue9 (all atom indices of last residue). The vectors ~ri(t)79

are the corresponding atom positions at time t and Mala
i is the total mass of the i-th residue. The free energy along the80

de2e-coordinate shows a sharp minimum containing loop states and a very broad region made up of a diverse spectrum of81

states. The α-helix forms a shoulder on the barrier between this region and the loop state. The free energies U(q) in Fig S682

show a good convergence for all but the sharp minimum. For this reason subsequent transition times were only calculated for83

the movement in the right minimum. As with hb4, the integral over the memory kernel was numerically extracted, together84

with the kernel itself, which is available as a numerical derivative of the integral. The kernel was fitted with five exponential85

functions using least-squares. The fit in Fig S7 a) agrees well with the numerical kernel, disregarding the oscillations. The86

integral over the kernel in Fig S7 b) extracted from the MD data follows an exponential regime up to approximately 7 ns,87

followed by a linear regime. The linear regime results in a kernel that is constant but just above zero. We assume that this is a88

numerical artifact, possibly as a result of the lack of convergence in the free energy. Since the velocity v and the mean force89

∇U in Eq. (7) have vanishing means, their correlation functions should decay to zero at sufficiently large lag times such that90

the running integral G of the memory function should converge to a constant value. For this reason, we disregard the linear91

regime in the fitting procedure and obtain an estimation of 7501 u/ps for the total friction, indicated as a black, dashed line92

in Fig S7 a). The validity of the resulting kernel is verified by simulating a Markov-Embedding system according to Eq. (8).93

From the resulting trajectory, the MFPTs and the MSD of the GLE system and the MD data are compared in Fig S8. A94

nearly perfect agreement can be seen for both.95
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are shown. (b) A 200 ns long segment of the trajectory is shown.
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8. Derivation of the Underdamped Langevin Equation from the GLE96

The underdamped Langevin equation can be straightforwardly derived from the GLE given by

mv̇(t) = −U ′[q(t)]−
∫ t

0
dsΓ(t− s)v(s) + FR(t). [17]

For this we expand the velocity v(s) in the integral in Eq. (17) around s = t

mv̇(t) = −U ′[q(t)]−
∞∑
n=0

v(n)(t)
n!

∫ t

0
ds (s− t)nΓ(t− s) + FR(t), [18]

= −U ′[q(t)]−
∞∑
n=0

v(n)(t)
n!

∫ t

0
ds (−s)nΓ(s) + FR(t). [19]

In the Markov limit, the memory kernel Γ(s) is sharply peaked at s = 0. Thus, we can extend the upper integration limit to
infinity without changing the value of the integral for t > 0. This results in

mv̇(t) = −U ′[q(t)]− γ0v(t) + γ1v̇(t)− γ2v̈(t) + · · ·+ FR(t) [20]
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where γn =
∫∞

0 ds s
n

n! Γ(s) are moments of the memory function. For quickly decaying memory functions all higher moments
vanish and we obtain the underdamped Langevin equation

mv̇(t) = −U ′[q(t)]− γ0v(t) + η(t), [21]

with 〈η(t), η(t′)〉 = 2kBTγ0δ(t− t′).97

9. Kramers Moyal Coefficients for Multidimensional Langevin Equations98

A coupled system of N first-order Markovian Langevin equations for the variables q(t) = (q1(t), q2(t), . . . , qN (t)) can be written
as

q̇i(t) = hi(q(t)) +
N∑
j=1

gij(q(t))ηj(t), [22]

where each ηj is a stationary Gaussian process that obeys

〈ηi(t)〉 = 0, and 〈ηi(t′)ηj(t)〉 = 2δijδ(t′ − t). [23]

To compute the Kramers Moyal Coefficients (KMCs) introduced in Sec. 11, one integrates Eq. (22) from t to t+ ∆t

qi(t+ ∆t)− qi(t) =
∫ t+∆t

t

ds hi(q(s)) +
N∑
j=1

∫ t+∆t

t

ds gij(q(s))ηj(s). [24]

We expand the functions hi and gij around qi(s) = qi(t) to first order, i.e.,

hi(q(s)) ≈ hi(q(t)) + (q(s)− q(t)) · hi(q(s))
∂q(s)

∣∣∣∣
q(s)=q(t)

, [25a]

gij(q(s)) ≈ gij(q(t)) + (q(s)− q(t)) · gij(q(s))
∂q(s)

∣∣∣∣
q(s)=q(t)

. [25b]

For the differences q(s)− q(t), one makes use of Eq. (24) to write

qi(s)− qi(t) =
∫ s

t

ds′ hi(q(s′)) +
N∑
j=1

∫ s

t

ds′ gij(q(s′))ηj(s′). [26]

Eq. (25) in combination with Eq. (26) is inserted into Eq. (24) and the result is averaged over the random force. By making use
of the relations in Eq. (23), one finds that the first two KMCs, i.e., the drift and diffusion coefficients, are uniquely determined
by the functions hi, gij and in the limit ∆t→ 0 given by (7)

D
(1)
i (q(t)) = hi(q(t)) + gkj(q(t)) ∂

∂qk
gij(q(t)), [27a]

D
(2)
ij (q(t)) = gik(q(t)) gjk(q(t)), [27b]
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where the Einstein summation convention is used. All higher order KMCs vanish in the limit ∆t→ 0. According to Pawula’s99

Theorem (see Sec.11), it is sufficient to show that the fourth order KMCs vanish in the limit ∆t→ 0, since from this it follows100

that all higher orders n ≥ 3 must also vanish.101

A. Underdamped One-Dimensional Langevin Equation. We consider the underdamped Langevin equation of the general form

q̇(t) = v(t), [28a]

v̇(t) = 1
m

(h[q(t)]− γ[q(t)]v(t) + b[q(t)]η(t)) [28b]

Defining q(t) = (q(t), v(t)) and comparing Eq. (28) with Eq. (22) to determine the functions hi and gij , we find

h1(q(t), v(t)) = v(t), h2(q(t), v(t)) = 1
m

(h[q(t)]− γ[q(t)]v(t)) , [29a]

g11(q(t), v(t)) = g12(q(t), v(t)) = g21(q(t), v(t)) = 0, g22(q(t), v(t)) = b[q(t)]
m

. [29b]

Thus, from Eq. (27) we obtain

Dq(q, v) = v, Dv(q, v) = h(q)
m
− γ(q)

m
v, Dvv(q, v) = Dvv(q) = b2(q)

m2 , [30]

and Dqv(q, v) = Dvq(q, v) = Dqq(q, v) = 0. The Fokker-Planck equation follows from Eq. (53) as102

Ṗ (q, v, t) =
[
− ∂

∂q
Dq(q, v)− ∂

∂v
Dv(q, v) + ∂2

∂v2Dvv(q, v)
]
P (q, v, t). [31]103

The equilibrium distribution Peq(q, v) ' exp(−βmv2/2− βU(q)) must be a stationary solution of the FP equation, from which
we straightforwardly obtain the conditions h(q) = −U ′(q) and b2(q) = m2Dvv(q) = kBTγ(q). Thus the underdamped Langevin
equation of a particle in a potential U(q) reads

q̇(t) = v(t), [32a]

v̇(t) = 1
m

(
−U ′[q(t)]− γ[q(t)]v(t) +

√
kBTγ[q(t)]η(t)

)
. [32b]

B. Overdamped One-Dimensional Langevin Equation. We consider the overdamped Langevin equation of the general form104

q̇(t) = h[q(t)] + g[q(t)]η(t). [33]105

From Eq. (27) we obtain106

Dqq(q) = g2(q), Dq(q) = h(q) + g(q)g′(q) = h(q) +D′qq(q)/2. [34]107

The Fokker-Planck equation follows from Eq. (53) as108

Ṗ (q, t) =
[
− ∂

∂q
Dq(q) + ∂2

∂q2Dqq(q)
]
P (q, t). [35]109

Again, the equilibrium distribution Peq(q) ' exp(−βU(q)) must be a stationary solution of the FP equation, from which we
obtain the condition h(q) = −Dqq(q)βU ′(q) +D′qq(q)/2. Associating the function Dqq(q) with the friction profile according to
Dqq(q) = 1/(βγ(q)), the overdamped Langevin equation of a particle in a potential U(q) finally reads

q̇(t) = −U
′(q)
γ(q) + kBT

2
∂

∂q

1
γ(q) +

√
kBT

γ(q) η(t). [36]

In Eq. (36), the second term on the r.h.s. cancels a spurious drift term and ensures that the correct stationary state is obtained.110

10. Diffusivity Profile from a Non-Linear Coordinate Transformation111

Here, we demonstrate how a friction or diffusivity profile arises through a non-linear coordinate transformation. Consider the
overdamped LE with the constant friction γ given by

q̇(t) = −U
′(q)
γ

+
√
kBT

γ
η(t). [37]

U(q) denotes the potential of mean force and η(t) is white noise. To use the results from section 9.B, we identify

h(q) = −U
′(q)
γ

, g(q) =
√
kBT

γ
. [38]
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Thus, we know that the drift coefficient is given by D1(q) = h(q)+g(q)g′(q) = −U ′(q)/γ and the diffusion coefficient is obtained
from D2(q) = g(q)2 = kBT/γ (see section 9.B). We now perform a coordinate transformation to a new variable Q = ξ(q),
where ξ is a non-linear function in q. Then Eq. (37) is transformed according to

Q̇ = ξ̇(q) = ξ′(q) q̇ [39a]

= ξ′(q)
(
−U

′(q)
γ

+
√
kBT

γ
η(t)
)

[39b]

= h̃(Q) + g̃(Q) η(t), [39c]

where we defined h̃(Q) = −ξ′(q = ξ−1(Q))U ′(q = ξ−1(Q))/γ and g̃(Q) = ξ′(q = ξ−1(Q))
√
kBT/γ. From the Langevin equation

in Eq. (39c), it immediately follows that the transformed drift and diffusion coefficient in Q are given by

D̃1(Q) = h̃(Q) + g̃(Q)g̃′(Q), [40]
D̃2(Q) = g̃(Q)2. [41]

By using the identity ∂
∂q

= ξ′(q) ∂
∂Q

, one finds

D̃1(Q) = D̃2(Q)
kBT

∂

∂Q

(
−U(Q) + kBT ln ξ′(Q),

)
, [42]

D̃2(Q) = ξ′(Q)2 kBT

γ
≡ kBT

γ̃(Q) , [43]

where ξ′ denotes the derivative of ξ w.r.t. q. Hence, the overdamped LE in the coordinate Q has multiplicative noise and a112

friction profile given by γ̃(Q) = γ/ξ′(Q)2.113

11. Kramers-Moyal Expansion and Pawula Theorem114

We here consider a general multidimensional stochastic process described by the trajectory q(t), in the main text we consider115

the special case of a two-dimensional process, i.e. q = (q, q̇) ≡ (q, v). The Kramers-Moyal coefficients are derived from the116

transition probability W (q, t|q′, t′), which is the probability that q(t) = q given that q(t′) = q′, for t > t′. The transition117

probability is a well-defined quantity for Markov and non-Markov processes. However, in contrast to Markov processes,118

for non-Markov processes W (q, t|q′, t′) does not contain the full information of the dynamics, i.e., we can not describe the119

stochastic process completely based on the transition probabilities alone. For non-Markov processes, further information is120

required.121

A. The Kramers-Moyal Expansion. To consider the multi-dimensional Kramers-Moyal expansion, it is useful to introduce the
multi-index notation (11) which employs the multi-index α = (α1, α2, . . . , αN ) ∈ NN . The convention is as follows: For
some vector r ∈ RN , the product of coefficients is defined as rα ≡ rα1

1 rα2
2 · · · r

αN
N and we define α! ≡ α1!α2! . . . αN !. The

absolute value of the multi-index is defined as |α| =
∑N

i=1 αi ≡ n. Using the above described multi-index notation, the n-th
multi-dimensional Kramers-Moyal coefficient with a finite lag time ∆t can be defined as

D(n)
α (q, t,∆t) = 1

n!∆t 〈(q(t+ ∆t)− q(t))α〉q(t)=q . [44]

In equation Eq. (44), 〈 〉q(t)=q denotes the conditional expectation value that at time t, q(t) = q. We start with the joint
probability P2(q, t + ∆t; q′, t) of observing q at time t + ∆t and q′ at time t with ∆t > 0. For Markov and non-Markov
processes, P2 can be written as

P2(q, t+ ∆t; q′, t) = W (q, t+ ∆t|q′, t)P1(q′, t). [45]

By integrating over q′ we obtain

P1(q, t+ ∆t) =
∫

dq′W (q, t+ ∆t|q′, t)P1(q′, t), [46]

where dq′ = dq′1dq′2 . . .dq′N . Next we substitute ∆ = q − q′ ⇒ d∆ = −dq′ and obtain

P1(q, t+ ∆t) =
∫

d∆W (q, t+ ∆t|q −∆, t)P1(q −∆, t). [47]

Now we expand the integrand in equation Eq. (47) in q around q + ∆

P1(q, t+ ∆t) =
∫

d∆
∑
|α|≥0

∆α

α!

(
− ∂

∂q

)α
W (q + ∆, t+ ∆t|q, t)P1(q, t), [48]
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where the sum
∑
|α|≥0 goes over all possible permutations and |α| = 0, 1, 2, . . . ,∞. Rearranging Eq. (48) gives

P1(q, t+ ∆t) =
∑
|α|≥0

n!
α!

(
− ∂

∂q

)α
P1(q, t)∆tD(n)

α (q, t,∆t), [49]

where the equivalent definition of the finite-time Kramers-Moyal coefficients has been used

D(n)
α (q, t,∆t) =

∫
d∆ 1

n!∆t∆
αW (q + ∆, t+ ∆t|q, t). [50]

From Eq. (50), it follows that ∆tD(0)
α (q, t,∆t) = 1. Therefore, we can write

P1(q, t+ ∆t) = P1(q, t) +
∑
|α|≥1

n!
α!

(
− ∂

∂q

)α
P1(q, t)∆tD(n)

α (q, t,∆t). [51]

After rearranging we find

P1(q, t+ ∆t)− P1(q, t)
∆t =

∑
|α|≥1

n!
α!

(
− ∂

∂q

)α
D(n)
α (q, t,∆t)P1(q, t), [52a]

=
∞∑
n=1

∑
|α|=n

n!
α!

(
− ∂

∂q

)α
D(n)
α (q, t,∆t)P1(q, t), [52b]

where the sum
∑
|α|=n goes over all α with |α| = n. From Eq. (50), it follows that D(n)

α (q, t, 0) = 0 for n > 0. Therefore,
taking the limit ∆t→ 0 on both sides gives the standard Kramers-Moyal expansion of the Fokker-Planck equation

∂P1(q, t)
∂t

=
∞∑
n=1

∑
|α|=n

n!
α!

(
− ∂

∂q

)α
lim

∆t→0
D(n)
α (q, t,∆t)P1(q, t) = LKMP1(q, t), [53]

where LKM denotes the Kramers-Moyal operator.122

B. Pawula Theorem. According to the Pawula Theorem the expansion in Eq. (53) either stops after the second term or it
contains an infinite number of terms. This can be derived by using the generalized Schwarz inequality. For a non-negative
function P (q) ≥ 0 and arbitrary functions f(q) and g(q), one finds(∫

dqP (q)f(q)g(q)
)2

≤
∫

dqP (q) f(q)2
∫

dqP (q) g(q)2. [54]

When P (q) is the transition probability W (q + ∆, t + ∆t|q, t), and f(q) → ∆β , g(q) → ∆γ , where the multi-indices β, γ
are a partition of α, i.e., |α| = |β|+ |γ| = n+ (n+m) and α! = β!γ!, the Schwarz inequality implies for the Kramers Moyal
coefficients (7) (

D(2n+m)
α

)2
≤ (2n)! (2(n+m))!

[(2n+m)!]2
D

(2n)
β D(2(n+m))

γ , for n,m ≥ 1. [55]

The factorial prefactors follow from the definition Eq. (44). If D(2n)
β = 0, then from Eq. (55) we find that D(2n+1)

α = D
(2n+2)
α =

· · · = 0, i.e.,

D
(2n)
β = 0 ⇒ D(2n+m)

α = 0, for m ≥ 1. [56]

From Eq. (55), it also follows that if D(2(n+m))
γ = D

(2r)
γ = 0, we find that the coefficients D(2n+m)

α = D
(2(n+m)−m)
α = D

(2r−m)
α

for all combinations of n,m with n+m = r vanish, meaning

D(2r)
γ = 0 ⇒ D(2r−m)

α = 0 for m = 1, 2, . . . , r − 1. [57]

Combining Eq. (56) with a repeated use of Eq. (57) gives in summary the following non-trivial properties:123

1. The expansion stops after the first order, which means that there is no stochastic part in the corresponding Langevin124

equation. This become clear by consideration of Section 9: According to Eq. (27b), if all second order KMCs vanish, the125

amplitude of the random forces in the LE also vanish. The fact that the expansion may stop after the first order follows126

from Eq. (56) for n = 1. If the second order KMCs are zero, so are all higher orders.127
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2. The expansion stops after the second order, i.e, the Kramers Moyal expansion becomes the ordinary Fokker-Planck128

equation, which describes a diffusion process. This follows from Eq. (56) and Eq. (57). If we consider n = 2 in Eq. (56),129

it follows that if the fourth order KMCs are zero, then all orders higher than four are also zero. On the other hand,130

Eq. (57) says that if the fourth order KMCs are zero, the third order KMCs must also be zero. Hence, all orders larger131

than two must vanish if the fourth order KMCs turn out to be zero.132

3. The expansion contains an infinite number of terms. This can be seen by setting the third order KMCs to be non-zero.133

Then, according to Eq. (57), the fourth order KMCs can not be zero. Furthermore, if the fourth order KMCs are non-zero,134

Eq. (57) again implies that then the sixth order KMCs must also be non-zero. In this way, the repeated use of Eq. (57)135

implies that the Kramers Moyal expansion contains an infinite number of terms.136

12. Kramers Moyal Coefficients for the GLE137

To obtain analytical approximations for the KMCs from the GLE, we use the general results for stationary Gaussian processes
derived below in subsection A. To approximate Dq(q, v), we integrate the relation q̇(t) = v(t) from t to t+ ∆t, which gives

q(t+ ∆t)− q(t) =
∫ t+∆t

t

ds v(s). [58]

For small ∆t, the integral on the r.h.s. can be approximated by the trapezoidal rule as

q(t+ ∆t)− q(t) = v(t+ ∆t) + v(t)
2 ∆t+O(∆t3) = v(t)∆t+ v(t+ ∆t)− v(t)

2 ∆t+O(∆t3). [59]

By taking the conditional average on both sides and dividing by ∆t, we can make use of the definition of Dq given by

Dq(q, v,∆t) = 1
∆t 〈q(t+ ∆t)− q(t)〉q(t)=q

v(t)=v
, [60]

which is a special case of Eq. (44). In this way, we find Dq in terms of Dv for finite ∆t

Dq(q, v,∆t) = v + ∆t
2 Dv(q, v,∆t) +O(∆t2). [61]

To compute Dv in the presence of a potential, we divide the GLE in Eq. (17) by the mass m and integrate from t to t+ ∆t

v(t+ ∆t)− v(t) =
∫ t+∆t

t

ds
(
−U

′[q(s)]
m

−
∫ s

0
ds′ Γ(s− s′)v(s′) + FR(s)

)
. [62]

The function U ′(q(s))/m is expanded around s = t and to leading order in ∆t, we obtain

v(t+ ∆t)− v(t) = −∆tU
′[q(t)]
m

+O(∆t2) +
∫ t+∆t

t

ds
(
−
∫ s

0
ds′ Γ(s− s′)v(s′) + FR(s)

)
. [63]

Again, we take the conditional average on both sides and divide by ∆t. The conditional average of the integral part on the
r.h.s. is approximated by Eq. (79), i.e., by the result for Dv in the absence of a potential U . For this approximation to
work, the velocity distribution should be independent of the position q, such that we can neglect the condition on q in the
conditional averaging of the velocity in the integral. In Fig. S1, we show that the probability distribution of the velocity
is indeed independent of q, i.e., P (v|q) ≈ P (v). Therefore, approximating conditional averages over q and v by conditional
averages over v alone is a valid approximation. Also neglecting the impact of the potential U on the memory kernel we find

Dv(q, v,∆t) ≈ −U
′(q)
m

+ D̃v(v,∆t) +O(∆t), [64]

where D̃v(v,∆t) denotes the drift coefficient in the absence of a potential U and is given in Eq. (79). To compute Dqq, we
square Eq. (59) and find

(q(t+ ∆t)− q(t))2 = (v(t+ ∆t)− v(t))2

4 ∆t2 + v(t)v(t+ ∆t)∆t2 +O(∆t6). [65]

Taking the conditional average and dividing by 2∆t and using the definitions of Dqq and Dvv gives

Dqq(q, v,∆t) = ∆t2

4 Dvv(q, v,∆t) + ∆t
2 〈v(t+ ∆t)v(t)〉q,v +O(∆t5). [66]

The conditional autocorrelation function on the r.h.s. is approximated by Eq. (81). This is again motivated by the results
shown in Fig. S1, i.e., by the fact that P (v|q) ≈ P (v), which yields

Dqq(q, v,∆t) = ∆t2

4 Dvv(q, v,∆t) + ∆t
2
Cvv(∆t)
Cvv(0) v

2 +O(∆t5). [67]
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Fig. S9. Comparison of KMCs computed from MD and GLE trajectories for different lag times ∆t.

In an analogous manner, Dvv(q, v) is approximated by squaring Eq. (63) and using Eq. (83b), which gives

Dvv(q, v,∆t) = ∆t
2

(
U ′(q)
m

)2

+ D̃vv(v,∆t) +O(∆t2). [68]

If we take the limit ∆t→ 0, only the first order KMCs do not vanish, as follows from Eq. (61), Eq. (64), Eq. (67) and Eq. (68)),
so that we obtain

lim
∆t→0

Dq(q, v,∆t) = v, lim
∆t→0

Dv(q, v,∆t) = −U
′(q)
m

, [69a]

lim
∆t→0

Dqq(q, v,∆t) = 0, lim
∆t→0

Dvv(q, v,∆t) = 0. [69b]

Hence, in the limit of ∆t going to zero, the KMCs of a GLE only reproduce the deterministic part of the dynamics and contain138

no information on the stochastic part.139

By averaging over q with a weight function ∝ e−βU(q) or over v with a weight function ∝ e−βmv
2/2, the results for finite ∆t,140

Eq. (61), Eq. (64), Eq. (67) and Eq. (68)), read to leading order141
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Dq(q,∆t) = −∆t
2
U ′(q)
m

+O(∆t2) [70a] Dq(v,∆t) = v +O(∆t), [70b]

142

Dqq(q,∆t) = ∆t
2 Cvv(∆t)− ∆t2

4 C̄(∆t)∆C(∆t) +O(∆t3),
[70c]

Dqq(v,∆t) = ∆t
2
Cvv(∆t)
Cvv(0) v

2 − ∆t2

4 C̄(∆t)∆C(∆t) +O(∆t3),

[70d]

143

Dv(q,∆t) = −U
′(q)
m

+O(∆t), [70e] Dv(v,∆t) = v∆C(∆t) +O(∆t), [70f]

144

Dvv(q,∆t) = −C̄(∆t)∆C(∆t) + ∆t
2

(
U ′(q)
m

)2

+O(∆t2),

[70g]

Dvv(v,∆t) = −C̄(∆t)∆C(∆t) + ∆t
2

〈(
U ′(q)
m

)2
〉

+O(∆t2).

[70h]

145

The quantities C̄(∆t) = (Cvv(∆t) + Cvv(0))/2 and ∆C(∆t) = (Cvv(∆t) − Cvv(0))/(∆t Cvv(0)) are defined in subsection A146

below. In Fig. S9 we compare the marginalized KMCs computed from MD and GLE data for various ∆t and find very good147

agreement. The GLE model reproduces the KMCs from the MD trajectories over many orders of magnitude of the lag time148

∆t. In Fig. S10, we compare Eq. (70c) and Eq. (70g) with numerically computed KMCs from MD and GLE simulations as a149

function of the lag time ∆t. For this, we average the numerical Dvv over v and evaluate it in the vicinity of the minimum150

at q = 0.32nm of U(q), i.e., where the mean force vanishes. The numerical Dqq is averaged over q and v. As can be seen in151

Fig. S10, the analytical approximations describe the KMCs very well for small ∆t, as expected. This also confirms that the152

numerical computation of the KMCs is accurate.153
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Fig. S10. The second-order KMCs Dqq(∆t) and Dvv(qmin,∆t) as a function of the lag time ∆t. Dvv is averaged over v and is evaluated at the free energy minimum at
qmin = 0.32 nm. Dqq is averaged over q and v. The data points show the KMCs computed from the MD (circles) and GLE (crosses) trajectories. The dashed lines show the
analytic expressions in Eq. (70g) (blue) and Eq. (70c) (red).

A. Kramers Moyal Coefficients of a Stationary Gaussian Process. Here, we derive the KMCs for a stationary Gaussian process,
i.e. for a GLE Eq. (17) in the absence of a potential U . The results of this subsection are used above to approximately compute
the KMCs of a GLE. To proceed, we consider the velocity v(·) as an N dimensional stationary Gaussian process,

v(·) → v = (v1, v2, . . . , vN )T , [71]

P (v) = 1√
(2π)N detσ

e−
1
2 vT ·σ−1·v, [72]

where σij = 〈vi, vj〉 = 〈v|i−j|, v0〉 denotes the covariance matrix of the N dimensional stationary Gaussian distribution P (v).
We can use Eq. (72) to compute the conditional probability distribution. For this, we partition P (v) using

vT · σ−1 · v = (vN−1 vN ) ·
(

M O
OT N

)
·
(

vN−1
vN

)
, [73]

where we introduce the vectors O ∈ RN−1 and vN−1 ∈ RN−1 and the matrix M ∈ R(N−1)×(N−1). vN = v denotes the value of
the velocity at time t. The partitioning in Eq. (73) leads to

P (v) = P1(vN )PN−1(vN−1|vN ). [74]

PN−1(vN−1|vN ) is the conditional probability distribution we must use when computing conditional averages. It has the form

PN−1(vN−1|vN ) =
√

detM
(2π)N e−

1
2 (vN−1+M−1OvN )T ·M·(vN−1+M−1OvN ). [75]
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As can be seen in Eq. (75), the mean of the distribution is shifted. We find

〈vi〉vN =v = −(M−1OvN )i =
〈v|N−i|, v0〉
〈v2

0〉
v. [76]

In the continuous case, Eq. (76) becomes

〈v(s)〉v(t)=v = Cvv(|t− s|)
Cvv(0) v, [77]

where Cvv denotes the velocity autocorrelation function.
We use Eq. (77) in the conditional expectation 〈v(t+ ∆t)− v(t)〉v = 〈v(t+ ∆t)〉v − 〈v(t)〉v, and find

〈v(t+ ∆t)− v(t)〉v = Cvv(∆t)− Cvv(0)
Cvv(0) v. [78]

Inserting the last result into Eq. (44), we obtain the first order KMC for a stationary Gaussian process

D̃v(v,∆t) = Cvv(∆t)− Cvv(0)
∆t

v

Cvv(0) = ∆C(∆t) v, [79]

where D̃v(v,∆t) denotes the KMC in the absence of a potential U and ∆C(∆t) ≡ (Cvv(∆t)− Cvv(0))/(∆t Cvv(0)).
To compute Dvv we start from〈

(v(t+ ∆t)− v(t))2〉
v

=
〈
v(t+ ∆t)2〉

v
+
〈
v(t)2〉

v
− 2 〈v(t+ ∆t)v(t)〉v . [80]

For the conditional velocity autocorrelation function, we obtain similarly as for the conditional average velocity in Eq. (77)

〈v(s), v(s′)〉v(t)=v = Cvv(s− s′)− Cvv(t− s)Cvv(t− s′)
Cvv(0) + Cvv(t− s)Cvv(t− s′)

Cvv(0)2 v2. [81]

Inserting this into Eq. (80) gives〈
(v(t+ ∆t)− v(t))2〉

v
= − (Cvv(∆t) + Cvv(0)) Cvv(∆t)− Cvv(0)

Cvv(0) +
(
Cvv(∆t)− Cvv(0)

Cvv(0) v

)2

. [82]

From this the second order KMC immediately follows as

D̃vv(v,∆t) = − (Cvv(∆t) + Cvv(0))
2

(Cvv(∆t)− Cvv(0))
∆t

1
Cvv(0) + ∆t

2

(
Cvv(∆t)− Cvv(0)

∆t
v

Cvv(0)

)2

[83a]

= −C̄(∆t) ∆C(∆t) + ∆t (∆C(∆t) v)2 /2, [83b]

where we defined C̄(∆t) ≡ (Cvv(∆t) + Cvv(0)) /2 and ∆C(∆t) has been defined above.154

13. Numerical Computation of KMCs: Kernel Density Estimators155

To compute the KMCs numerically, we divide our parameter space (q, v) into a grid. In each cell of the grid, we must find an
estimate for the conditional probability distribution P (q, v, t+ ∆t|q′, v′, t), which is usually accomplished by histograms. When
the statistics in a cell are insufficient, i.e., when the number of data points in a cell is too small, the estimate of the probability
distribution via a histogram depends significantly on the choice of the boundaries of the cell. To avoid such ambiguities, we
use kernel density estimators (12). Kernel density estimators have the advantage that each point of occurrence within a cell
contributes to the estimate of the density at its point of occurrence and not in a range of a bin. This means that, for a given
data set q ∈ RN , a p.d.f. P (q) is estimated by P̂ (q) via

P̂ (q) = 1
Nh

N∑
i=1

K
(
q − qi
h

)
. [84]

Here K denotes the kernel with bandwidth h. For example, one could use a Gaussian kernel

K
(
q − qi
h

)
∝ e−

1
2

(
q−qi

h

)2

. [85]

In this paper, we used an Epanechnikov kernel

K
(
q − qi
h

)
∝ max

(
1−

(
q − qi
h

)2
, 0
)
, [86]

where the optimal bandwidth h was estimated by the inverse of the grid size. For small time steps ∆t = 0.001 ps, the grid size156

in q direction is 5000 and in v direction it is 300. Hence, the respective bandwidths are 0.0002 and 0.003. For larger time steps157

∆t ≥ 0.001ps, the grid size in q direction is decreased to 500 and therefore the bandwidth is 0.002.158
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