

Supplemental Figure 1: Western blot analysis of dCas9^{p300} or dCas9^{KRAB} protein levels following systemic administration of AAV9:CMV.Cre. A) High levels of dCas9^{p300} are detected 14 days post injection in heart, moderate levels are seen in the spleen and pancreas, and low levels in the gastrocnemius. B) Similarly, high levels of dCas9^{KRAB} is found in the heart while moderate levels are seen in the spleen and pancreas at 8 weeks post injection. C) $dCas9^{p300}$ protein levels in the liver of AAV9:CMV.Cre treated animals 14 days post-treatment with or without Cre. All experiments were repeated twice

Α

Supplemental Figure 2: Testing candidate gRNAs in primary fibroblasts and T cells from *Rosa26:LSL-dCas9*^{p300} mice. A) Genome browser track showing the location of the four tested gRNAs for the *Pdx1* promoter region and B) Twelve gRNAs for the *Foxp3* promoter region. C) *Pdx1*-targeting gRNAs were tested in primary fibroblasts from the hindlimb of a *Rosa26:LSL-dCas9*^{p300} mouse in triplicate and compared to a *Myod*-targeting control gRNA. gRNA #4 significantly upregulated *Pdx1* as compared to controls. (n=3 per gRNA, one-way ANOVA with Dunnett's post-hoc, p=0.0035). D) Percentage of FOXP3-eGFP positive cells after dCas9^{KRAB}-induced repression with *Foxp3*-targeting gRNAs in iTreg cells (one-way ANOVA with Dunnett's post-hoc, p=1.3E-13). E) Percentage of FOXP3-eGFP positive cells after dCas9^{KRAB} mouse compared to control gRNA treated or non-transduced cells (one-way ANOVA with Dunnett's post-hoc, p=0.0012). For D-E, n=2 mice per condition, ** p<0.001, * p=0.219. All error bars represent standard deviation.

Supplemental Figure 3: Specificity of dCas9^{p300} binding the *Pdx1* promoter *in vivo* in the liver of *Rosa26:LSL-dCas9^{p300}* mice following systemic administration of AAV9 encoding both *Cre* and a gRNA. Genome browser tracks showing Cas9 ChIP-seq signal from livers of dCas9^{p300} mice 14 days post-treatment with an AAV9:Cbh.Cre-gRNA, either *Pdx1*-gRNA or the control-gRNA, and mice treated with saline (PBS). The highlighted region shows the area where dCas9^{p300} is targeted to the promoter of *Pdx1*. Specific signal is found only in the *Pdx1*-gRNA treated animals.

Supplemental Figure 4: H3K27ac enrichment at the *Pdx1* promoter *in vivo* in the liver of *Rosa26:LSL-dCas9*^{p300} mice following systemic administration of AAV9 encoding both *Cre* and a gRNA. Genome browser tracks of H3K27ac ChIP-seq signal from livers of dCas9^{p300} mice 14 days post-treatment with AAV9:Cbh.Cre-gRNA, encoding either the *Pdx1*-targeting gRNA or the control non-targeting gRNA, and mice treated with saline (PBS). The highlighted region shows the area where dCas9^{p300} is targeted to the promoter of *Pdx1*. Enrichment of H3K27ac around the dCAS9^{p300} target site in the *Pdx1* gRNA treated mice is highlighted in blue.

Supplemental Figure 5: Genome-wide analysis of histone ChIP-seq data from *Rosa26:LSL-dCas9*^{p300} and *dCas9*^{KRAB} mice in liver samples and T cells after transduction with gRNA. A) MA plot shows log₂(fold-change) in H3K27ac enrichment for samples from *Rosa26:LSL-dCas9*^{p300} mice when comparing liver cells treated with *Pdx1*-targeting gRNA (n=4) vs control non-targeting gRNA (n=4). B) MA plot shows log₂(fold-change) in H3K27ac enrichment for samples from *Rosa26:LSL-dCas9*^{p300} mice when comparing Th0 cells from mice crossed to *Cd4:Cre* and treated with *Foxp3*-targeting gRNA (n=3) vs control non-targeting gRNA (n=3). C) MA plot shows log₂(fold-change) in H3K9me3 enrichment from *Rosa26:LSL-dCas9*^{KRAB} mouse liver samples treated with*Pcsk9*-targeting gRNA (n=3) vs control non-targeting gRNA (n=3). Log₂(fold-change) in D) H3K27ac enrichment in samples from*Rosa26:LSL-dCas9*^{<math>KRAB} mouse liver cells treated with*Pdx1*-targeting gRNA (n=4) vs saline control (n=4), E) H3K27ac enrichment in Th0 cells from*Rosa26:LSL-dCas9*^{<math>p300} mice treated with *Foxp3*-targeting gRNA (n=4) vs saline control (n=4), E) H3K27ac enrichment in Th0 cells from *Rosa26:LSL-dCas9*^{p300} mice treated with *Foxp3*-targeting gRNA (n=4) vs saline control (n=4), E) H3K27ac enrichment in Th0 cells from *Rosa26:LSL-dCas9*^{p300} mice treated with *Foxp3*-targeting gRNA (n=4) vs saline control (n=4), E) H3K27ac enrichment in Th0 cells from *Rosa26:LSL-dCas9*^{p300} mice treated with *Foxp3*-targeting gRNA (n=4). G) Relationship of log₂(fold-change) in read counts per million (CPM) from RNA-seq and H3K27ac ChIP-seq when</sup></sup>

comparing between *Rosa26:LSL-dCas9*^{p300} mouse liver samples treated with Pdx1-targeting gRNA vs saline, H) *Rosa26:LSL-dCas9*^{p300} Th0 cells treated with *Foxp3*-gRNA with or without *Cd4:Cre*, and I) the relationship between RNA-seq and H3K9me3 ChIP-seq when comparing *Rosa26:LSL-dCas9*^{KRAB} mouse liver samples treated with *Pcsk9*-targeting gRNA vs saline control (A-F) grey = non-significant; red = differentially expressed gene (DEG); black = non-significant gene of interest; blue = differentially expressed gene of interest. (G-H) grey = non-significant; orange = significant DEG only; blue=significant differently enriched ChIP-seq signal only; red=significant DEG and ChIP-seq enrichment, FDR < 0.05 for liver samples, FDR < 0.01 for T cell samples).

Supplemental Figure 6: Differential analysis of RNA-seq data from dCas9 epigenome editor mouse liver samples after transduction. A) MA plots show $log_2(fold-change)$ in gene expression for *Rosa26:LSL-dCas9*^{p300} mouse liver when comparing between *Pdx1*-targeting gRNA vs control nontargeting gRNA, B) *Pdx1*-targeting gRNA vs saline, and C) control non-targeting gRNA vs saline. D) $Log_2(fold-change)$ in gene expression for *Rosa26:LSL-dCas9*^{KRAB} mouse liver when comparing between *Pcsk9*-targeting gRNA vs control non-targeting gRNA, E) *Pcsk9*-targeting gRNA vs PBS, and F) control non-targeting gRNA vs PBS. Red and blue dots indicate significant changes in gene expression (FDR < 0.05). All data are average of n=4 mice per treatment group.

Supplemental Figure 7. Comparison of dCas9^{VP64} and dCas9^{p300} activation of *Grin2c* expression in cerebellar granule neurons. A) qRT-PCR comparing *Grin2c* mRNA in CGNs transduced with lentivirus encoding either dCas9^{VP64} or Cre, and control LacZ or Grin2c promoter-targeting gRNAs. Two-way ANOVA was significant for gRNA F(1,20)=72.26 p<0.0001, dCas9 F(1,20)=42.08 p<0.001 and gRNA x dCas9 interaction F(1,20)=18.21 p=0.0004. n=6 per condition. By Sidak post-hoc test, *Grin2c* vs *LacZ* gRNA for dCas9^{p300} p<0.0001 and for dCas9^{VP64} p=0.43. dCas9^{p300} vs dCas9^{VP64} for *Grin2c* p<0.0001. B) qRT-PCR for Wnt7a mRNA in the same samples as (A) as a measure of maturity of the neurons. Two-way ANOVA showed no significant effect of gRNA F(1,20)=0.16 p=0.69 of dCas9 F(1,20)=0.74 p=0.40. n=6 per condition. C) qRT-PCR for human P300 mRNA in the same samples from (A) to demonstrate transgene induction by Cre addition. Two-way ANOVA was significant for dCas9 F(1.20)=108.9 p<0.0001 but not gRNA F(1,20)=0.86 p=0.36. n=6 per condition. D) Representative western blot of dCas9 expression in cerebellar granule neurons transduced as in (A). Actin is shown as a loading control. Molecular weight (MW) markers shown on left. n=2, repeated twice, raw images in Supplementary Information 1. E) ChIPaPCR for dCas9 from CGNs of the $dCas9^{p300}$ transgenic mice transduced with *Cre* and the *LacZ* or *Grin2c*gRNAs. Grin2c signal in the pulldown was normalized to Gapdh in the same sample as a control for sample processing. Grin2c vs LacZ p=0.0026 by student's two-tailed t-test, n=5 per condition. For all graphs, points show mean and error bars show standard deviation.

Supplemental Figure 8: Validation of *in vivo* stereotaxic viral injection into the brain to activate $dCas9^{p_{300}}$ expression and neuronal gene regulation. A) Contralateral injection strategy to compare two treatments in the same animal. B) Representative image showing delivery of the AAV vector encoding Cre and *GFP* under the control of the *Syn1* promoter and a gRNA expression cassette by injection into the hippocampus of *Rosa26:LSL-dCas9*^{p_300} mice induces dCas9 expression in most neurons. Scale bar = 50µm. n = 3 C) Cumulative frequency distribution of FOS fluorescence intensity for all GFP+ cells, normalized to the average FOS intensity in the paired control. *LacZ*-gRNA: n = 197 cells, *Fos* Enh2-gRNA: n = 190 cells from 3 animals. p<0.001 by Kolmogorov-Smirnov test. D) Schematic of current clamp recording of CA1 neurons. E) Representative images confirming that recorded CA1 neurons are positive for both biotin and GFP+, with GFP being an indicator that AAV has transduced the recorded cell and that biotin was introduced through the patch pipette after recording. BF = bright field, scale bar = 10µm, n = 3.

Supplemental Figure 9: Western blots showing $dCas9^{KRAB}$ expression and increase in LDLR upon repression of *Pcsk9*. A) Western blots visualized with low (left) and high (right) exposure times showing increased LDLR protein in the 3 samples with $dCas9^{KRAB}$ targeted to the promoter of *Pcsk9*, but not in control-gRNA or saline treated controls (n = 4 per group). B) Western blots from the same mice showing $dCas9^{KRAB}$ expression in animals that received AA9:CBh.Cre-gRNA (n = 4 per group).

Supplemental Figure 10: Specificity of $dCas9^{KRAB}$ binding the *Pcsk9* promoter *in vivo* in the liver of *Rosa26:LSL-dCas9^{KRAB*} mice following systemic administration of AAV9 encoding *Cre* and a gRNA. Genome browser tracks showing FLAG ChIP-seq signal in the liver of $dCas9^{KRAB}$ mice 14 days post-treatment with AAV9:Cbh.Cre-*Pcsk9*.gRNA, AAV9:Cbh.Cre-*control*.gRNA, or PBS. Highlighted regions show the area where $dCas9^{KRAB}$ is targeted to the promoter of *Pcsk9*. Specific signal is found only in the *Pcsk9*-gRNA treated animals.

Supplemental Figure 11: H3K9me3 enrichment at the *Pcsk9* promoter *in vivo* in the liver of Rosa26:LSL-*dCas9*^{*KRAB*} mice following systemic administration of AAV9 encoding *Cre* and a gRNA. Genome browser tracks showing H3K9me3 ChIP-seq signal for from livers of $dCas9^{KRAB}$ mice 14 days post-treatment with AAV9:Cbh.Cre-*Pcsk9*.gRNA, AAV9:CBh.Cre-*control*.gRNA, or PBS. Highlighted regions show the area where dCas9^{KRAB} is targeted to the promoter of *Pcsk9*. Enrichment of H3K9me3 is noticeable in around the dCas9^{KRAB} binding site in the *Pcsk9*-gRNA treated animals.

Supplemental Figure 12: Manipulation of gene expression in T cells from $dCas9^{p300}$ and $dCas9^{KRAB}$ mice. A) Schematic of T cell isolation strategy for the $Rosa26:LSL-dCas9^{p300}$ or $dCas9^{KRAB}$ mice. B)

Representative sort strategy for the purification of naïve CD4+ Tcells using the Beckman Culture Astiros or B) SONY SH800S sorter (Lymphocytes / Single Cells / Live cells / CD4+ / CD25- / CD62L^{hi} / CD44^{lo}). C) Representative sort strategy for dCas9^{p300}-induced Tregs used in all experiments (Lymphocytes / Single Cells / Live cells / THY1.1+ / FOXP3-eGFP+). D-E) Gating strategy used for analyzing all Foxp3 activation and repression experiments and to interpret the effect of targeting Foxp3 with D) dCas9^{p300} in Th0 cells or E) dCas9^{KRAB} in iTreg cells (Lymphocytes / Single Cells / Live cells / THY1.1+ / FOXP3+). F) Gating strategy used for analysis of all suppression assays in order to determine the proliferation of Tconv when in co-culture with dCas9^{p300}-induced Tregs (Lymphocytes / Single Cells / Live cells / Cell Trace Violet+ / Divided). G) Cell proliferation traces from in vitro assays of suppression of T cell proliferation when co-cultured with T cells expressing control non-targeting gRNA (n = 3) or various dilutions of T cells expressing the *Foxp3*-targeting gRNA (n = 4 per dilution). **H**) Ouantification of division index from this suppression assay, showing a significant difference between cells treated with the controltargeting gRNA and *Foxp3*-targeting gRNA (p = 0.0346, one-way ANOVA with Dunnett's post-hoc, n =3 for non-targeting control (NTC) and n = 4 for *Foxp3*-targeting gRNA samples). For the boxplot, box was drawn from the 25th to 75th percentile with the horizontal bar at the mean and whiskers extend to the data minimum and maximum.

Supplemental Figure 13: Genome wide-specificity of gene regulation by $dCas9^{p300}$ determined by RNA-seq in Th0 cells. A) Heatmap visualization and hierarchical clustering of log₂(fold-change) in gene expression comparing Th0 cells from $Rosa26:LSL-dCas9^{p300}$ mice crossed with or without Cd4:Cre and treated with the indicated gRNAs. B) The intersection between genes found to be differentially expressed when comparing Th0 cells with or without Cd4:Cre and treated with the *Foxp3*-targeting gRNA or with the control non-targeting gRNA. C-F) MA plots depicting log₂(fold-change) gene expression changes for C) Cd4:Cre+Foxp3-gRNA vs Cd4:Cre+ control-gRNA; D) Cd4:Cre+Foxp3-gRNA vs Cd4:Cre- control-gRNA; F) Cd4:Cre+ control-gRNA vs Cd4:Cre- foxp3-gRNA vs Cd4:Cre- control-gRNA; F) Cd4:Cre+ control-gRNA vs Cd4:Cre- foxp3-gRNA vs Cd4:Cre- control-gRNA; F) Cd4:Cre+ control-gRNA vs Cd4:Cre- foxp3-gRNA vs Cd4:Cre- control-gRNA; F) Cd4:Cre+ control-gRNA vs Cd4:Cre- foxp3-gRNA vs Cd4:Cre- control-gRNA; F) Cd4:Cre+ control-gRNA vs Cd4:Cre- foxp3-gRNA vs Cd4:Cre- control-gRNA; F) Cd4:Cre+ control-gRNA vs Cd4:Cre- control-gRNA vs Cd4:Cre- foxp3-gRNA vs Cd4:Cre- control-gRNA vs Cd4:Cre- control-gRNA vs Cd4:Cre- control-gRNA vs Cd4:Cre- control-gRNA vs Cd4:Cre- foxp3-gRNA vs Cd4:Cre- control-gRNA vs C