
Supplementary Note 1. Computational Details. 1 

A stochastic model was implemented to simulate Cap and IRES activation, ribosome 2 

initiation, elongation, termination, and potential ribosome recycling mechanisms for cap-3 

dependent and IRES-mediated genes.  4 

In the mathematical model, initiation events are dictated by the mRNA state. Specifically, 5 

four possible mRNA activation states were proposed (ܵைிி, ܵ஼஺௉, ூܵோாௌ, ܵ஼஺௉ିூோாௌ), where: ܵைிி 6 

represents a non-permissive initiation state; ܵ஼஺௉ allows for only cap-dependent ribosomal 7 

initiation; ܵூோாௌ allows for only IRES-mediated initiation; and ܵ஼஺௉ିூோாௌ allows both cap-8 

dependent and IRES-mediated initiation. Eq. 1 represents the transition reactions between 9 

mRNA states. 10 

ܵைிி ௞ೀಿష಴ሱۛ ۛۛ ሮ௞ೀಷಷష಴ርۛ ۛۛ ሲۛ ܵ஼஺௉݇ைேିூ ↓↑ ݇ைிிିூ 										 ݇′ைேିூ ↓↑ ݇′ைிிିூ
ூܵோாௌ ௞ᇱೀಿష಺ሱۛ ۛۛ ሮ௞ᇱೀಷಷష಺ርۛ ۛۛ ሲۛ ܵ஼஺௉ିூோாௌ ,              (1) 11 

where each ݇௫ represents a first-order transition rate between two RNA states, and ݇′௫ is the 12 

transition rate conditioned on the activation state of the other construct (e.g., ݇′ைேିூ is the cap-13 

dependent activation rate of IRES). A simpler three-state model was considered by removing 14 

the fourth RNA state (i.e., ܵ஼஺௉ିூோாௌ). The parameter estimation section describes how a system 15 

with three or four mRNA states was chosen. 16 

When the system is in one of the appropriate mRNA activity states, cap-dependent and 17 

IRES-mediated initiation events occur with propensities ݓூேூ்ି஼ and ݓூேூ்ିூ, respectively, which 18 

are defined:  19 

ூேூ்ି஼ݓ = ൝݇ூேூ்ି஼, ݂݅	ܵ஼஺௉	ݎ݋	ܵ஼஺௉ିூோாௌ		,	0, ,݁ݏ݅ݓݎℎ݁ݐ݋    (2) 20 



ூேூ்ିூݓ = ൝݇ூேூ்ିூ, ݂݅	 ூܵோாௌ	ݎ݋	ܵ஼஺௉ିூோாௌ		,	0, ,݁ݏ݅ݓݎℎ݁ݐ݋    (3) 21 

 22 

where ݇ூேூ்ି஼ and ݇ூேூ்ିூ represent the cap and IRES initiation rates, respectively.  23 

To simulate the model under stochastic dynamics, Eqs. (2) and (3) were used to 24 

generate a vector of random initiation event times for each gene, ߬ூேூ்಺ೃಶೄ and ߬ூேூ்಴ಲು. A 25 

codon-dependent model for translation was used, in which the elongation rate for each codon is 26 

given by ത݇௘൫ݑ௜ തൗݑ ൯, where ݑ௜ is the known frequency of the ݅௧௛ codon in the human genome, ݑത is 27 

the average codon usage frequency in the human genome, and ത݇௘ is the basal elongation rate 28 

(to be estimated from the data). In the models, the final codon termination rates were assumed 29 

to be equal to the average elongation rate.  30 

For increased computational efficiency, ribosome elongation was approximated using a 31 

coarse-grained procedure. For this, sparse ribosome loading was assumed to enable simple 32 

calculation of the average time needed by a ribosome to complete gene elongation, τ௞೐, as 33 

follows: 34 

τ௞௘ =   ∑ ଵ௞ത೐ ቀ௨೔ ௨ഥൗ ቁ௅௜ୀଵ ,        (4) 35 

where ܮ represents the gene length in codons. Using the specific gene sequence for the cap-36 

dependent gene and IRES-mediated gene, we calculated the total elongation time ߬஼௔௣ and 37 ߬ூோாௌ, respectively. At any time, ݐ, such that 0 < ݐ − ߬ூேூ்಴ೌ೛ < ߬஼௔௣, the position of a given cap-38 

translating ribosome was obtained by calculating the proportion of elongated gene as follows: 39 

஼஺௉ݔ = ݆ such that ∑ ଵ௞ത೐ ቀ௨೔ ௨ഥൗ ቁ௝௜ୀଵ ݐ≥ −  ߬ூேூ்஼஺௉<∑ ଵ௞ത೐ ቀ௨೔ ௨ഥൗ ቁ௝ାଵ௜ୀଵ  ,  (5) 40 



and for the IRES-mediated gene for 0 < ݐ − ߬ூேூ்಺ೃಶೄ < ߬ூோாௌ: 41 

ூோாௌݔ = ݆ such that ∑ ଵ௞ത೐ ቀ௨೔ ௨ഥൗ ቁ௝௜ୀଵ ݐ≥ −  ߬ூேூ்ூோாௌ<∑ ଵ௞ത೐ ቀ௨೔ ௨ഥൗ ቁ௝ାଵ௜ୀଵ  , (6) 42 

where ߬ூேூ்஼஺௉ and ߬ூேூ்ூோாௌ are the times at which the corresponding ribosome initiated 43 

translation begins.  44 

To consider potential interaction mechanisms between cap-dependent and IRES-45 

mediated translation, two possible hypotheses were postulated:  46 

A first hypothetical model considers potential ribosome recycling (or crossover) 47 

mechanisms, by which a ribosome that completes translation of the cap-dependent gene could 48 

immediately re-initiate translation of the IRES-mediated gene. In this context, a new 49 

propensity,	ݓ஼ூ, that specifies the probability that a ribosome completing cap will re-initiate at 50 

IRES was introduced. The specification of such reactions reflects single-mRNA translation 51 

observations by Wang et al., 20161, which suggest ribosome hops between adjacent open 52 

reading frames on a single RNA. To test if such recycling mechanisms are necessary to 53 

reproduce the experimental data, multiple models with and without nonzero values for the 54 

crossover rate ݓூ஼ were compared. 55 

In the second hypothetical model, cap and IRES interdependency were tested by 56 

assuming that the activation and deactivation of cap or IRES could depend on the activity state 57 

for the other sensor (e.g., IRES could activate faster when cap is already active). Including 58 

different combinations of these hypothetical mechanisms in the three- and four-state models led 59 

us to propose a list of 14 different sub-models, each comprising between 7 and 12 free 60 

parameters (see Extended Data Fig. 6b). The sub-models test different hypotheses, including 61 

variations of the number of mRNA states (3 or 4 states), dependency on Cap and IRES 62 

switching states, and/or the existence of the cross-over mechanism. Cap and IRES dependency 63 



are represented in the see Extended Data Fig. 6b by red lines, which denote that the 64 

corresponding reaction parameter value has a free value during the optimization process. All 65 

models have 3 or 4 mRNA states, denoted by 3S or 4S, respectively. From see Extended Data 66 

Fig. 6b left to right, the first seven models lack crossover, while the last seven have cross-over 67 

(denoted by subscript ‘C’, e.g. 3SC). Models can have independent (denoted by subscript ‘I’) or 68 

dependent (denoted by subscript ‘D’) Cap or IRES activation/deactivation. Models can also 69 

have a single dependent activation or deactivation rate (denoted by subscript ‘m1’ or ‘m2’). 70 

Converting ribosome elongation times to fluorescence intensity 71 

To relate the ribosome elongation times to fluorescence intensity, a similar approach as 72 

in Aguilera et al.2 was adopted. Ribosome occupancy is converted to fluorescence intensity by 73 

increasing the simulated intensity by one unit after each ribosome moves across the tag-region. 74 

For this, a cumulative probe design vector was defined that records the number of probe sites 75 

upstream from each codon, ࢍࢉ = ሾܿଵ, ܿଶ, … , ܿ௅ሿ, for the appropriate construct (i.e., ݃	 = cap-76 

dependent or IRES-mediated genes, respectively). Using this, the intensity was calculated as 77 

the sum of the product of the position of the ribosome at a given time and ࢍࢉ.  For cap-78 

dependent spots, the intensity vector is defined as: 79 

(ݐ)஼஺௉ܫ =   ∑  80 (8)     ,((ݐ)஼஺௉࢞)஼஺௉ࢉ

and for IRES-mediated spots it is: 81 

(ݐ)ூோாௌܫ =   ∑  82 (9)     ,((ݐ)ூோாௌ࢞)ூோாௌࢉ

where ࢉ௚(࢞௚) is the intensity of a given ribosome at position ࢞௚, and the summations are taken 83 

over all ribosomes present on the mRNA at time ݐ. To have consistent units of intensity between 84 

model simulations and experimental data, intensity values are reported in units of mature 85 

proteins (u.m.p.) as described in detail on the Methods section. 86 



Comparison of experimental data and model 87 

To reproduce experimental data, the model was simulated using a modified Direct 88 

Method3 for 4000 trajectories representing independent RNA spots. Simulations were run for a 89 

burn-in period of 10,000 seconds to approximate steady state. Simulations were processed and 90 

used to capture spot intensity for the cap-dependent gene (ܫ஼஺௉) and the IRES-mediated gene 91 (ܫூோாௌ). Additionally, simulated spots were classified as cap-dependent with probability ஼ܲ஺௉, 92 

IRES-mediated with probability ூܲோாௌ; both with probability ஼ܲ஺௉ିூோாௌ, or neither with probability 93 

ேܲ௢௡௘. 94 

Modeling Harringtonine experiments 95 

Harringtonine inhibits new initiation events by directly blocking the 60S subunit in the 96 

ribosome, and it has been widely used to perform run-off assays to estimate elongation rates.4 97 

To mimic the effects of Harringtonine in our model, the initiation rate was modified for the first 98 

gene as follows: 99 

ூேூ்ି஼ݓ = ൝݇ூேூ்ି஼, ݐ	݂݅ < ,0			,	ுݐ ,݁ݏ݅ݓݎℎ݁ݐ݋      (10) 100 

and the initiation rate for the second gene as follows: 101 

ூேூ்ିூݓ = ൝݇ூேூ்ିூ, ݐ	݂݅ < ,0			,	ுݐ ,݁ݏ݅ݓݎℎ݁ݐ݋      (11) 102 

where ݐு is the time of application of Harringtonine. 103 

Modeling Sodium Arsenite (NaAs) and Dithiothreitol (DTT) experiments 104 

NaAs and DTT are chemical stresses that have been used to affect cap-dependent 105 

initiation in previous single-molecule translation experiments.1 The mechanism of action for 106 

NaAs is not well understood, but it has been suggested to affect ribosome initiation through its 107 



action on translation factors, such as eIF2a and eIF4.5 To simulate these chemical stresses, two 108 

potential mechanisms of action were tested. The first potential mechanism of action involves 109 

blocking cap-dependent translation by affecting its RNA state, and was implemented in the 110 

model by modifying the cap activation rates, ݇ைேି஼ and ݇′ைேି஼, as follows: 111 

݇ைேି஼ 	= ൝ ݇ைேି஼	, ݐ	݂݅ < ݇ௌ்	,	ௌ்ݐ ∙ ݇ைேି஼,  112 (12)    	,݁ݏ݅ݓݎℎ݁ݐ݋

and 113 

݇′ைேି஼ 	= ൝ ݇′ைேି஼	, ݐ	݂݅ < ݇ௌ்	,	ௌ்ݐ ∙ ݇′ைேି஼,  114 (13)     ,݁ݏ݅ݓݎℎ݁ݐ݋

where, ݇ௌ் is an inhibition constant, where a total inhibition is achieved by ݇ௌ் = 0, and a null 115 

inhibition is achieved by ݇ௌ் = 1. The time ݐௌ் denotes the time of stress application. 116 

In the second mechanism of action, it was hypothesized that the drug directly blocks 117 

cap-dependent translation initiation. In the model, this is achieved by modifying ݓ௜௡௜ as follows: 118 

ூேூ்ି஼ݓ = ൝ ݇ூேூ்ି஼, ݐ	݂݅ < ݇ௌ்	,	ௌ்ݐ ∙ ݇ூேூ்ି஼,  119 (14)    .݁ݏ݅ݓݎℎ݁ݐ݋

Parameter estimation and optimization routines 120 

The parameter estimation strategy consists of finding a parameter set (Λഥ) that 121 

statistically reproduces all experimental data, including intensity histograms, fractions of 122 

translating spots, and Harringtonine ribosomal run-off assays as follows: 123 

Intensity histograms  124 

To compare experimental and simulated steady-state intensity histograms, the 125 

probability to observe the experimentally determined intensities (݀௖௔௣ or ݀ூோாௌ) was estimated 126 



given a parameter set (Λ) in the model implementation. To estimate	ܲ(݀; Λ), histograms were 127 

collected using ௧ܰ = 4000 independent stochastic trajectories per parameter evaluation. The 128 

likelihood function was estimated as follows: 129 

(ܯ|ܦ)஽௜௦௧ܮ = ∏ ܲ൫ ௝݀; Λ൯ேವ௝ୀଵ ,      (15) 130 

and the log-likelihood as: 131 

log (ܯ|ܦ)஽௜௦௧ܮ = ∑ logܲ൫ ௝݀; Λ൯ேವ௝ୀଵ ,    (16) 132 

where ܦ represents the data measured in ஽ܰ independent experimental data, and 133 ܯ 

corresponds to the model. As the experimental measurements can only detect protein 134 

intensities above a threshold of one mature protein, all spots with intensities below 1 u.m.p. 135 

were defined as non-translating mRNA. This metric was applied to experimental data consisting 136 

of cap-dependent spots (CAP) and IRES-mediated spots (IRES). With this, a total log-likelihood 137 

function was calculated as the sum of the functions for cap and IRES spots, that is: 138 

log (ܯ|ܦ)ವ೔ೞ೟்ܮ = ∑ log ஼ܲ஺௉ቀ ௝݀௖௔௣; Λቁே೟௝ୀଵ + ∑ log ூܲோாௌ൫ ௝݀ூோாௌ; Λ൯ே೟௝ୀଵ .  (17) 139 

Fraction of translating spot 140 

A similar approach was used to compute the likelihood to observe the experimentally 141 

determined number of spots classified as Cap-only, IRES-only, Cap+IRES, and non-translating. 142 

The likelihood function was computed as follows: 143 

(ܯ|ܦ)ிܮ = ∏ ܲ൫ ௝݂; Λ൯ேವ௝ୀଵ ,    (18) 144 

and the log-likelihood as: 145 

log (ܯ|ܦ)ிܮ = ∑ logܲ൫ ௝݂; Λ൯ேವ௝ୀଵ = ∑ ௜ܰ logܲ( ௜݂; ௜(߉ ,    (19) 146 



where each ௝݂ denotes the type (i.e., Cap, IRES, Cap+IRES, or non-translating) of the ݆௧௛ spot, 147 

஽ܰ is the total number of independent observed spots, ௜ܰ is the number of independent 148 

observed spots of the ݅௧௛ type, and ܲ൫ ௝݂; Λ൯ is the categorical distribution of spots of each type 149 

estimated by the model simulations with parameters Λ. 150 

Harringtonine induced ribosomal run-off 151 

To compare simulated and experimental time course data representing the intensity after 152 

Harringtonine application, a Gaussian likelihood function was assumed and calculated as 153 

follows: 154 

(ெܫ|஽ܫ)ு்ܮ = ∏ ଵඥଶ஠஢(௧೔)మ exp ൬− ൫ூವ(௧೔)ିூಾ(௧೔;௸)൯మଶఙ(௧೔)మ ൰ேವ௜ୀଵ ,  (20) 155 

with a log-likelihood form given by: 156 

log (ெܫ|஽ܫ)ு்ܮ = ு்ܥ − ∑ ൫ூವ(௧೔)ିூಾ(௧೔;ஃ)൯మଶ஢(௧೔)మேವ௜ୀଵ ,   (21) 157 

where σ(ݐ௜) is approximated by the measured SEM, and ஽ܰ is the number of time points from 158 

the Harrintonine run-off curve.  In this log-likelihood formulation, ܥு் is a constant that doesn’t 159 

depend on the parameters.  160 

 Experimental data was quantified for the total intensities for cap (ܫ஼஺௉ି஽) and IRES 161 

 within all spots (after subtraction of the base level of intensity). These two data sets 162 (ூோாௌି஽ܫ)

were collected to compute a total log-likelihood function as follows: 163 

log (ெܫ|஽ܫ)ಹ೅்ܮ = log (ெܫ|஼஺௉ି஽ܫ)ு்಴ಲುܮ 	+	 log  164 (22) .(ெܫ|ூோாௌି஽ܫ)ு்಺ೃಶೄܮ

Parameter searches consisted of optimization routines based on genetic algorithms (GA) using 165 

the function ga in MATLAB. The optimization routine was implemented with a population of 100 166 

individuals for 30 generations, and the implementation was run multiple times with random initial 167 



conditions. Additionally, the Pattern Search Algorithm6 was implemented using the function 168 

patternsearch in MATLAB to ensure convergence. The best parameter values were selected by 169 

minimizing a global objective function that considers all data sets, that is: 170 

− log (ܯ|ܦ)௢௧௔௟்ܮ = −൫	log (ܯ|ܦ)ವ೔ೞ೟்ܮ + log (ܯ|ܦ)ிܮ + log  ൯.  (23) 171(ெܫ|஽ܫ)ಹ೅்ܮ

The comparison of the optimization results for all tested models is given in Extended Data Fig. 172 

6c-d.  173 

Assessing how well models predict Sodium Arsenite (NaAs) and Dithiothreitol (DTT) 174 

experiments 175 

After optimizing the models, cross-validation experiments were predicted using the 176 

chemical stresses, NaAs and DTT. For this, simulated and experimental time course data 177 

representing the total translation spot intensity after NaAs or DTT application were compared. 178 

The likelihood function was calculated as follows: 179 

(ெܫ|஽ܫ)ௌ்ܮ = ∏ ଵඥଶ஠஢(௧೔)మ exp ൬− ൫ூವ(௧೔)ିூಾ(௧೔;௸)൯మଶఙ(௧೔)మ ൰ேವ௜ୀଵ ,  (24) 180 

and the log-likelihood function is: 181 

log (ெܫ|஽ܫ)ௌ்ܮ = ௌ்ܥ − ∑ ൫ூವ(௧೔)ିூಾ(௧೔;ஃ)൯మଶ஢(௧೔)మேವ௜ୀଵ ,   (25) 182 

where σ(ݐ௜) is approximated by the measured SEM, and ஽ܰ is the number of time points 183 

measured in the drug-treatment curve, and ܥௌ் is constant that doesn’t depend on model 184 

parameters. 185 

For chemical stress experiments, three data sets were used representing the intensity 186 

for Cap-only spots, IRES-only spots, and green (Cap) intensity in both cap and IRES spots. 187 

These three data sets were considered on a total log-likelihood function as follows: 188 



-log ൫log-=(ெܫ|஽ܫ)ೄ೅்ܮ (ெܫ|஼஺௉ି஽ܫ)ௌ்಴ಲುܮ  +	 log (ெܫ|ூோாௌି஽ܫ)ௌ்಺ೃಶೄܮ +	 log  ெ൯൯.189ܫ஼௔௣ାூோ௘௦ି஽หܫௌ்಴಺൫ܮ

 (26) 190 

Uncertainty Quantification 191 

To quantify uncertainty, the best parameter set from fitting was initially used and 100 192 

runs of 1,000 step Markov Chain Monte Carlo (MCMC) algorithm were run to explore an 193 

additional 100,000 possible parameter combinations. At each step, a random perturbation of 194 

10% to the current parameters was proposed, and every proposal for which the log-likelihood 195 

for the new parameter set was within a 1% of that found for the best fit was accepted (i.e., all 196 

parameters for which log(ܮ(ܫ஽|ܫ஻௘௦௧)/ܮ(ܫ஽|ܫே௘௪)) < 60 were accepted). The standard deviation 197 

of the resulting 26,650 accepted parameter sets was then used as a measure of parameter 198 

uncertainty as shown in Table 1.  199 

Computational Implementation and Codes 200 

All simulations were performed on the W. M. Keck High Performance Computing Cluster at 201 

Colorado State University. All codes and required data are available at: 202 

https://github.com/MunskyGroup/Koch_Aguilera_etal_2020.git. 203 
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