
Supplementary Document for the Manuscript

entitled: A Big Data Pipeline: Identifying

Dynamic Gene Regulatory Networks from Time

Course GEO Data with Applications to Influenza

Infection

Michelle Carey and Juan Camilo Ramı́rez and Shuang Wu and Hulin Wu

1 Article template produced by the pipeline for
GSE52428 subject 1

Title of submission

Name1 Surname1,2, Name2 Surname2, Name3 Surname2,3, Name4 Surname2,
Name5 Surname2‡, Name6 Surname2‡, Name7 Surname1,2,3*, with the Lorem
Ipsum Consortium

1 Affiliation Dept/Program/Center, Institution Name, City, State, Country
2 Affiliation Dept/Program/Center, Institution Name, City, State, Country
3 Affiliation Dept/Program/Center, Institution Name, City, State, Country

These authors contributed equally to this work.
‡These authors also contributed equally to this work.
Current Address: Dept/Program/Center, Institution Name, City, State,
Country
* correspondingauthor@institute.edu

Abstract

Please add abstract here

Introduction

Please review the below GEO Citation(s) and and add an Introduction here.
Woods CW, McClain MT, Chen M, Zaas AK et al. A host transcriptional signa-

1



ture for presymptomatic detection of infection in humans exposed to influenza
H1N1 or H3N2. PLoS One 2013;8(1):e52198. PMID: 23326326

Methods

Pre-processing

Affymetrix Genechip R© arrays are currently among the most widely used high-
throughput technologies for the genome-wide measurement of expression pro-
files. To minimize mis- and cross-hybridization problems, this technology in-
cludes both perfect match (PM) and mismatch (MM) probe pairs as well as
multiple probes per gene (Lipshutz et al., 1999). As a result, significant pre-
processing is required before an absolute expression level for a specific gene
may be accurately assessed. In general, pre-processing probe-level expression
data consists of three steps: background adjustment (remove local artifacts and
“noise”), normalization (remove array effects), and summarization at the probe
set level (combine probe intensities across arrays to obtain a measure of the
expression level of corresponding mRNA).

Detect the Dynamic Response Genes (DRGs)

(a) Obtain the estimated gene expression curves

We assume that the centered expression levels of the ith gene, belonging to
subject j, denoted here by xi,j , is a smooth function over time t and that the
centered gene expression measurement ỹi,j is a discrete observation from this
smooth function, which has been distorted by noise, i.e.,

ỹi,j = xi,j(tk) + εi,j ,

for i = 1, . . . , n, j = 1, . . . , N and k = 1, . . . ,Ki,j , where n is the number
of genes, N is the number of subjects (or experimental conditions), Ki,j is
the number of time points observed for the ith gene, belonging to subject j.
The noise εi,j is assumed to be an independently identically distributed (i.i.d.)
Gaussian random variable with mean 0 and variance σ2.

The Ki,j × 1 vector of the estimated centered expression levels evaluated at
the points t, for the ith gene, belonging to subject j, x̂i,j is obtained by spline
smoothing [1, 2]. This approach approximates xi,j by a linear combination

of L independent basis functions, xi,j ≈
∑L

l=1 bi,j,lci,j,l = Bi,jci,j , where the
Ki,j × L matrix Bi,j denotes the basis functions evaluated at time t and the
vector ci,j provides the corresponding coefficients.

The coefficients ci,j can be estimated by minimizing

[ỹi,j −Bi,jci,j ]
′[ỹi,j −Bi,jci,j ] + λjc

′
i,j

[∫
d2Bi,j(t)

dt2
d2Bi,j(t)

dt2
dt

]
︸ ︷︷ ︸

Ri,j

c′i,j (1)

2



where the first term defines the squared discrepancy between the observed cen-
tered gene expression measurements ỹi,j and the estimated measurements x̂i,j ,
and the second term containing the L×L matrix Ri,j which is the inner prod-
uct of the second derivative of the basis functions penalizes the curvature of x̂i,j

and hence requires it to be sufficiently smooth. The parameter λj controls the
trade-off between the fit to the data and the smoothness requirement and hence
ensures that x̂i,j has an appropriate amount of regularity. All the genes for each
subject are assumed to have the same λj . The minimum of (1) for fixed λj is

ĉi,j = (B′i,jBi,j + λRi,j)
−1B′i,jỹi,j

and the estimated centered expression levels are x̂i,j = Bi,j ĉi,j .
We expect that only a small fraction of genes respond to the external stimu-

lus and the majority of the genes have no significant response with relatively flat
expression levels over time. Therefore, estimating the parameter λj using the
conventional method of minimizing the prediction error with generalized cross
validation (GCV), see [3] for details, of all the genes together is not ideal as GCV

will tend to select a λj that is large to minimize the prediction error of the ma-
jority of unresponsive genes. As we are interested in obtaining an appropriate
amount of regularity for the responsive genes, we apply an approach similar to
[4] and [5] and choose a subset of the genes that exhibit time course response
patterns with relatively smooth trajectories that do not fluctuate widely. Then
we rank these genes by their interquartile range and select 200 of the top rank-
ing genes as our estimation subset. The regularity parameter λj is estimated
by minimizing the GCV of the responsive genes in our estimation subset, this
parameter is then used to smooth the time course data for all the genes.

(b) Perform a hypothesis test to identify the genes with expressions
that change significantly over time

Dynamic response genes (DRGs) can be defined as genes with expressions that
change significantly over time. In order to determine which genes can be con-
sidered DRGs, we use an F-statistic which compares the goodness-of-fit of the
null hypothesis H0 : x̂i,j = 0 versus the alternative hypothesis Ha : x̂i,j 6= 0.
The F-statistic is given by,

Fi,j =

RSS0
i,j−RSS1

i,j

dfi,j−1
RSS1

i,j

Ki,j−dfi,j

,

where dfi,j = Bi,j(B
′
i,jBi,j + λRi,j)

−1B′i,j is the degrees of freedom of the

estimated curve x̂i,j , RSS0
i,j = ỹ′i,jỹi,j and RSS1

i,j = [ỹi,j − x̂i,j ]
′[ỹi,j − x̂i,j ]

are the residual sum of squares under the null and the alternative models for
the i-th gene, belonging to subject j. The genes with large F-ratios can be
considered as exhibiting notable changes with respect to time.
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Cluster the DRGs into temporal gene response modules
(GRMs)

As many of the DRGs exhibit similar expression patterns over time, we wish
to cluster them into co-expressed modules (groups of genes which have similar
gene expression patterns over time). This step not only reduces the modeling
dimension but also eases the identifiability problem. It is widely recognized
that many co-expressed genes may follow similar temporal patterns, but at the
same time, some genes may have very few or even no co-expressed genes, and
thus may exhibit unique temporal response patterns. Consequently, the GRMs
can vary greatly in size, with some being large and containing many genes and
others being small or even containing a single gene. To obtain these clusters,
we adopt the Iterative Hierarchical Clustering (IHC) method introduced in [6].
This approach requires a single parameter α that controls the trade-off of the
between- and within-cluster correlations. In particular, the average within-
cluster correlation will be approximately α, and the between- cluster correlation
will be below α. The IHC algorithm is outlined below:

Initialization: Cluster the data for the standardized DRGs using the hierar-
chical agglomerative clustering approach. Let the distance metric be the
Spearman rank correlation with a threshold of α, and the linkage method
be the average of the genes in each cluster.

Merge: Treat each of the cluster centers as ‘new genes’ and use the same rule as
in the initialization step to merge the centers into new clusters. The cluster
centers provide the average time-course pattern of the cluster members.

Prune: Let ci be the center of cluster i. If the correlation between the cluster
center and gene j, which will be denoted by ρi,j , is less than α, then remove
genej from the cluster i. Let P be the number of genes removed from the
existing S clusters. Assign all P genes into single-element clusters. Hence,
there is now (S + P ) clusters in total.

Repeat Merge-Prune Steps until the index of clusters converges.

Repeat Merge Step until the between-cluster correlations are less than α.

Construct the high-dimensional gene regulatory network
(GRN) that determines the interactions between the GRMs

High-dimensional gene regulatory networks map how the change in the expres-
sion of any single gene is regulated by its own expression level and other gene
expression levels. There is an abundance of literature regarding the use of or-
dinary differential equation (ODE) modeling to construct a high-dimensional
gene regulatory network (GRN) [7, 8, 9]. ODEs model gene regulations using
rate equations. ODEs differ from the classical regression models as they cap-
ture not only the direct effects that are strong interactions between two gene
response modules but they also include indirect effects high correlations that
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may exist between two gene response modules that are not directly connected
but influence each other via a third gene response module they both directly
interact with. In general, such indirect interactions may be induced not only by
the third gene response module, but equally by the entire collective dynamics
of a network.

Here we model the interactions between GRMs using the following ODE

dmq,j

dt
=

Q∑
p=1

βp,q,jmp,j , for q = 1, . . . , Q, (2)

where
dmq,j

dt represents the instantaneous rate of change in qth gene response

module for subject j, {βp,q,j}Qp,q=1 quantifies the regulation effects of the pth

gene response module on the rate of change of the qth gene response module for
subject j. The standard approach for estimating the parameters of differential
equations from noisy measurements is non-linear least squares (NLS) [10, 11].
However, this method requires initial estimates of the regulation effects and
initial conditions for the expression levels of the gene response modules at time
t0.

(a) Initial estimates of the regulation effects

The two-stage smoothing-based estimation method [12, 13] decouples the system
of differential equations in (2) and approximates it by a set of pseudo-regression
models as in (3). The first step obtains estimates of the average trajectory of

the pth GRM for subject j, m̂p,j and its derivative
dm̂p,j

dt for p = 1, . . . , Q. The
estimated trajectories m̂p are the average of the smoothed trajectories attained
by the spline smoothing approach in 1, over a fine mesh of values of {tr}Rr=1

for all the genes contained in the pth GRM. Similarly,
dm̂p,j

dt is estimated by
averaging the derivative of the smoothed trajectories obtained by the spline
smoothing approach in 1,

dx̂i,j

dt =
dBi,j

dt ĉi,j , over the same fine mesh of values
for all the genes contained in the pth GRM. The set of Q pseudo-regression
models is

dm̂q,j

dt
=

Q∑
p=1

θp,q,jm̂p,j + εp,j q = 1, . . . , Q and j = 1, . . . , N, (3)

where θp,q,j denotes the direct effects that is the strong relationships between
the pth GRM and the rate of change in the qth GRM for the jth subject.

It is widely accepted that gene regulatory networks are sparse, i.e., only a
few of the θp,q,j are non-zero. In order to determine which of the regulation
effects are significant (i.e., non-zero) we apply the least absolute shrinkage and
selection operator (LASSO) [14] approach to the pseudo-regression model in (3).
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The LASSO approach requires minimizing[
dm̂q,j

dt
−

Q∑
p=1

θp,q,jm̂p,j

]2
+ γ

Q∑
p=1

‖θp,q,j‖ q = 1, . . . , Q.

with respect to θp,q,j When γ is zero, the result will be same as conventional
regression; when the value of γ is large, the coefficients θp,q,j will approach zero.
This means that the LASSO estimator is a smaller model, with fewer predictors.
The L1 regularization parameter γ enforces the amount of sparsity in θ and can
be chosen by minimizing the GCV. As such, LASSO is a model selection and
dimensionality reduction technique that determines the significant coefficients
θp,q,j or initial estimates of the weighted network edges.

(b) Refined estimation of the regulation effects

The parameter estimates from the two-stage method in the above pseudo-
regression model are not efficient in terms of estimation accuracy when the
model selection is performed simultaneously, and there can be significant ap-
proximation error in m̂p,j and its derivatives. The estimation of significant
coefficients or network edges can be improved or refined using nonlinear least
squares (NLS), maximum likelihood or other more efficient estimation meth-
ods once the model selection from part (a) of Step 6 is completed. We now
adopted the NLS approach which minimizes the squared discrepancy between
the numerical approximation to the solution of the differential equation (2) and

the observations. The non-zero estimates of {θ̂p,q,j}Qp,q=0 from part (a) are used

as initial estimates for the regulation effects β = {βp,q,j}Qp,q=1 in equation (2).
Given the initial estimates and a set of p initial values, m̂p,j , which are attained
by the spline smoothing approach in part (a), an initial numerical approximation
of the solution to differential equation (2) can be computed.

The variability in the GRN is assessed by calculating the confidence intervals
of the parameters β̂ using the delta method see [15] for details.

Results

Study

Use the study summary and overall design on GEO:
Summary
Diagnosis of influenza A infection is currently based on clinical symptoms and
pathogen detection. Use of host peripheral blood gene expression data to clas-
sify individuals with influenza A virus infection represents a novel approach to
infection diagnosis We used microarrays to assay peripheral blood gene expres-
sion at baseline and every 8 hours for 7 days following intranasal influenza A
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H1N1 or H3N2 inoculation in healthy volunteers. We determined groups of co-
expressed genes that classified symptomatic influenza infection. We then tested
this gene expression classifier in patients with naturally acquired respiratory
illness.

Overall design
We experimentally inoculated healthy volunteers with intranasal influenza A
H1N1 and H3N2. Symptoms were documented and peripheral blood samples
drawn into PAXgene RNA tubes for RNA isolation. We further enrolled patients
presenting to the Emergency Department with naturally acquired respiratory
illness, and documented symptoms and collected PAXgene RNA samples for
RNA isolation.

DRGs

The F-test statistic was used to identify the top 3000 DRGs. These genes
might translate into clinically valuable bio markers. Investigate the Annotation
Cluster(s) attained from DAVID given below:
Annotation Cluster 1 Enrichment Score: 9.75

Count P Value Benjamini
UP KEYWORDS Antiviral defense 10 6.6E-16 5.0E-14
GOTERM BP DIRECT defense response to

virus
10 1.0E-13 2.4E-11

GOTERM BP DIRECT type I interferon
signaling pathway

8 6.2E-13 7.0E-11

UP KEYWORDS Innate immunity 11 9.7E-12 2.4E-10
GOTERM BP DIRECT defense response to

virus
10 1.0E-13 2.4E-11

GOTERM BP DIRECT negative regulation
of viral genome
replication

6 8.9E-10 6.8E-8

UP KEYWORDS Cytoplasm 13 4.9E-4 7.3E-3
GOTERM CC DIRECT cytosol 10 5.2E-3 1.1E-1

Annotation Cluster 2 Enrichment Score: 4.32

Count P Value Benjamini
GOTERM BP DIRECT response to virus 7 2.5E-9 1.4E-7
GOTERM MF DIRECT double-stranded

RNA binding
3 1.7E-3 9.9E-2

GOTERM BP DIRECT type I interferon
signaling pathway

8 6.2E-13 7.0E-11

UP KEYWORDS RNA-binding 4 2.5E-2 1.8E-1
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GRMs

The IHC method with a correlation threshold of α = 0.7 was used to group
the 3000 DRGs into GRMS. These modules can be classified into single-gene
modules (SGM) with only one gene in each cluster, small-size modules (SSM)
that contain between 2-10 genes in each cluster, medium-size modules (MSM)
that consist of 11-99 genes in each of the clusters and large-size modules (LSM)
which contain over 100 genes in each cluster.

The large size modules are often of interest as so many genes follow the same
pattern.
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The Annotation Cluster(s) attained from DAVID of the genes in each of the
GRMS is given below:
GRM 1: Annotation Cluster 1 Enrichment Score: 14.85

Count P Value Benjamini
UP KEYWORDS Immunity 117 2.8E-21 3.7E-19
UP KEYWORDS Innate immunity 71 8.4E-17 8.4E-15
GOTERM BP DIRECT innate immune re-

sponse
84 1.2E-8 9.9E-6

Discussion

Conclusion
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