Supplementary material

The Supplementary material fits to the numbering of the literature, of the pages and of the
equations of the paper. The Mathematica files for the simulations can also be found in [53].
Throughout the appendix the time is plotted on the abscissa and the corresponding amount of
substance is plotted on the ordinate if not otherwise stated.

8 Phase shifts by a strong stimulus

In this experiment, we show how our framework models the reset of the endogenous clock with a
strong knock-down of the per mRNA (M) by

u(t) =

if <t <t
{5 f0<t< an

0 else

where t, > 0.

Supplementary Figure 1la and Supplementary Figure 1b show the results. We see that as soon
as the external stimulus u stops, then the oscillation starts again with a shift of the endogenous
time’s phase.

In Supplementary Figure 1c and Supplementary Figure 1d, we see that if the knock-down takes
longer, the beginning of the oscillation is retarded and thus the shift of the endogenous time’s
phase is greater. In this way, by knocking down the per mRNA one can restart the endogenous
time whenever needed.

Now, we show that similar results can be obtained with different models. If we model inhibition
of the transcription of the per gene by

d Ky M
M= (1 =) — vy 18
M g LY T e (18)
instead of (1) while the remaining equations are given as in (2) to (5) with
1 o<t <t
u(t) = RU=Eet (19)
0 else
ts = 20, then we see a shift of the phase similar to the one in Supplementary Figure 2.
The inhibition of the translation of the per mRNA can be modeled by
d Py Py
—FPh=kM(1—-—u)—V——+Vor7— 20

instead of (2) in the system (1) to (5). In Supplementary Figure 3, we see the results. The
concentration of PER protein falls to zero and starts oscillating again when the translation of
PER is able to start again. This is also experimentally shown in [18], specifically Figure 3 in [18],
by giving cycloheximide to cultured neurons of the mammalian clock in the SCN. Cycloheximide
inhibits protein synthesis at the ribosomes. As soon as the cycloheximide is washed out, the
oscillations start again with all neurons having the same phase of their endogenous oscillations.
Furthermore in Supplementary Figure 3, we see that the concentration of mRNA increases as there
is no protein blocking the transcription of per mRNA.
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Supplementary Figure 1: The external stimulus stops the oscillations, which restart after the
external stimulus has decayed. (a) Time curves of all proteins where the superscript usy indicates
that these time curves stem from the extended model consisting of (6) and (2) to (5) for (17) with
ts = 20 and o = 0.05. (b) Time curve of M calculated from the model 1 to (5) and of MU0
calculated from (6) and (2) to (5) for (17) with ¢, = 20 and o = 0.05. Depending on the point of
time when the external stimulus decays, we obtain a different shift of the molecular clock’s phase
in (c) and (d). The experiment is as in (a) and (b) where ¢, = 25.

Supplementary Figure 2: After blocking the transcription of per gene, the molecular clock restarts
as soon as the inhibition stops. (a) Time curves where the superscript « indicates that these time
curves stem from the extended model consisting of (18) and (2) to (5) for (19) where t; = 20. (b)
Time curve of M calculated from the model 1 to (5) and of M" calculated from (18) and (2) to
(5) for (19) where t; = 20.
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Supplementary Figure 3: Blocking translation of per mRNA restarts the molecular clock as soon
as the inhibition stops. (a) Time curves where the superscript u indicates that these time curves
stem from the extended model consisting of (1) to (5) where (2) is replaced by (20) for (19) with
ts = 20. (b) Time curve of M and Py calculated from the model (1) to (5) and of M" and B}
calculated from (1) to (5) where (2) is replaced by (20) for (19) with t; = 20.

Supplementary Figure 4: Inhibiting translation of per mRNA with a stimulus with a period of
24 hours according to (16) shifts the phase of the molecular clock. (a) Time curves where the
superscript v indicates that these time curves stem from the extended model consisting of (1) to
(5) where (2) is replaced by (20) for (16) with ¢ = 7. (b) Time curve of the external stimulus u
defined in (16), of M and P, calculated from the model (1) to (5) and of M™ and B} calculated
from (1) to (5) where (2) is replaced by (20) for (16) with ¢ = 7.

For the same model as in the last experiment but with an oscillating external stimulus given
by (16) with ¢ = 7, we obtain the entrainment of the endogenous clock as for the first experiment
where the results are shown in Figure 2a, Figure 2c and Figure 2e. Specifically, we use the equations
(6) and (2) to (5) with (7) for this experiment. See for example Supplementary Figure 4 for the
synchronization of the endogenous time with the external time for a shift of 12 hours. Of course
these cases could also model the degradation of the PER-TIM complex or further modifications,

see Table 2.
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Supplementary Figure 5: On the abscissa the period T of the external Zeitgeber is plotted and on
the ordinate the entrained period of the endogenous clock. The red line is the ideal entrainment
where the period of the external Zeitgeber is adopted. (a) Data points for the blue graph: (18,20.0),
(19,20.3), (20,19.9), (21,21.0), (22,22.0), (23,23.0), (24,24.0), (25,25.0), (26,26.0), (27,26.9),
(28,27.7), (29,27.8). (b) Data points for the blue graph: (18,23.7), (19,22.4), (20, 23.3), (21, 22.0),
(22,23.8), (23,22.6), (24,23.6), (25,24.3), (26,23.8), (27,21.7), (28,23.0), (29, 24.3).

9 Range of entrainment

Now, we show that these systems can adapt to different periods and how this is modeled with our
framework. We choose an external stimulus

wr (£) = 0.06 - (cos (%%) 4 1) (21)

whose period can be set to any period T" where 7" > 0. To exclude effects of the transient, the
periods of the simulated oscillations of the per mRNA are determined from the peaks occurring in
the range of [170,220] hours with the help of the FindArgMax function of Mathematica. We start
with the model (1) to (5) where (2) is exchanged by (8) with a = 2. We call this model the fly
model. The range of entrainment can be seen in Supplementary Figure 5a where the red line is
the ideal entrainment which means that the period of the Zeitgeber is adopted by the endogenous
clock.

Now, we use the model (9) instead of (1) and still use (2) to (5) with v = 2.5. We call this
model the mammalian model. The parameters have different values to adapt each model to
obtain a more or less realistic range of adaption to the external period. The range of entrainment
is depicted in Supplementary Figure 5b where the read line also stands for the ideal entrainment.

In both cases we have a limited range of entrainment, whereby the latter is much larger in
flies (8 hours), Supplementary Figure 5a, than in mammals (2 hours), Supplementary Figure 5b.
This effect fits to the observed experimental data, see for example Figure 2 in [19]. We remark
that the coupling constants o and ~ are effective parameters that contain a lot of effects that can
be analyzed in more detail. For example in mammals, a closer look on the reasons of a weaker
entrainment to light is that the light-receiving cells are also coupled to other cells that do not
receive the light stimulus directly, as discussed in e.g. [41, (3)]. This causes inertial effects which
makes the light-receiving cells react more rigidly.

In the next experiment, we show for the mammalian model that the entrained period is constant
for the range of entrainment after a transient, while the periods outside the range of entrainment
are only constant for a certain range followed by a range where the period changes, see Supplemen-
tary Figure 6e. These ranges follow each other and thus oscillate. This effect is known as relative
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coordination, see [58| for example. The periods are determined as follows. With the Mathematica
function FindArgMax, we subtract the time of the peak of M in the interval [190 + T,,210 + T,,]
from the time of the peak of M in the interval [167 + T, 180 + T,,] where T,, = 24n, n >0.
We choose n € {1,...,15} which means that we determine the entrained period at each day. In
Supplementary Figure 6, we plot the corresponding time curves of M where we also see corre-
sponding effects for the amplitude, that means constant amplitudes for the range of entrainment
and oscillating amplitudes outside the range of entrainment. From these time curves the data for
Supplementary Figure 6e is created.

10 Analyzing phase-response curves

In the presented framework phase-response curves can also be simulated. In other words our model
shows that light pulses given at different times provoke different phase shifts. At certain times no
phase shifts occur. We start with the fly model. If we give the light pulse when the concentration
of PER protein is high, then we restart the circadian clock, see Supplementary Figure 7a and
Supplementary Figure 7b, and we shift it by about eight hours. If we give the light pulse when the
concentration of PER protein is low, then the clock is hardly effected, see Supplementary Figure
7c and Supplementary Figure 7d. We remark that we obtain similar figures for the mammalian
model. We have a shift of the clock if the concentration of per mRNA is low and hardly no effect
if the concentration of per mRNA is high. The one hour light pulse with which we perturb the
endogenous clock is given by

¢ iftelty,to+ 1]
Ut (1) = {0 else (22)

where ¢ > 0 and t5 > 0.

In Supplementary Figure 7e, we see the phase-response curves for both models where we choose
(22) with ¢ = 1 and correspondingly o = 2 and v = 2.5. The difference of the phase is given in
hours where we subtract the time of the maximum peak of the concentration of per mRNA from
the perturbed model between ¢ = 85 and t = 95 from the time of the maximum peak of concen-
tration of per mRNA from the unperturbed model between ¢t = 80 and t = 90. The peak of the
concentration is detected by the Mathematica function FindArgMax. The phase-response curves
are known from experiments, see for example [22, 23, 24|. Furthermore, the peak concentration of
per mRNA is about 5 hours ahead of the maximum concentration of Fy, see Supplementary Figure
1b for example. Therefore, in the case of the mammalian model we shift ¢, by 5 hours such that
we are in the same phase as the fly model in order to compare both phase-response curves more
easily in Supplementary Figure 7e. We remark that our theoretical phase-response curves have the
same qualitative course as experimental curves and even the order of magnitude of the shift fits
well to experimental data.
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Supplementary Figure 6: In (a) to (d) we have the time curves of M for the mammalian model for
different periods of the external Zeitgeber. We see a constant behavior of the amplitude for the ex-
ternal periods that are within the range of entrainment and an oscillation of the amplitude for the
periods of the external Zeitgeber that do not belong to the range of entrainment. In (e) we have the
period oscillations for different periods of the external Zeitgeber for the mammalian model. The en-
trained periods are constant after a transient for the range of entrainment and oscillate outside the
range of entrainment. On the ordinate the entrained period is plotted and on the abscissa the day
n. The data points are as follows. For 7" = 21 (0,22.1), (1,22.0), (2,21.9), (3,22.0),(4,22.2),
(5,22.5), (6,23.1), (7,23.6), (8,23.8),(9,23.5),(10,23.0),(11,22.5),(12,22.2),(13,21.9), (14,21.9),
(15,22.0). For T' = 22 (0,23.8), (1,23.4),(2,23.1), (3,22.8), (4,22.6),(5,22.4), (6,22.3), (7,22.2),
(8,22.2), (9,22.1),(10,22.1), (11,22.1),(12,22.1), (13,22.0), (14,22.0), (15,22.0). For T = 23
(0,22.6),(1,22.7), (2,22.8), (3,22.9), (4,22.9), (5,22.9), (6,23.0), (7,23.0), (8,23.0), (9,23.0),
(10,23.0), (11,23.0), (12,23.0), (13,23.0), (14,23.0), (15,23.0). For T' = 24 (0,23.6), (1,23.7),
(2,23.8), (3,23.8), (4,23.9), (5,23.9), (6,23.9), (7,23.9),(8,23.9), (9,23.9), (10,24.0), (11,24.0),
(12,24.0), (13,24.0), (14,24.0),(15,24.0). For T' = 25 (0,24.3),(1,24.3), (2,24.3), (3,24.3),
(4,24.2), (5,24.0), (6,23.8), (7,23.4), (8,22.7), (9,22.0),(10,21.5), (11,21.9), (12,22.9), (13,23.6),
(14,24.0), (15,24.2). For T'= 26 (0,23.8), (1,23.0), (2,22.1), (3,21.6), (4,22.2), (5,23.4), (6,24.1),
( (9

7,24.3), (8,24.3), (9,24.1), (10,23.5), (11,22.7), (12,21.8), (13,21.7), (14,22.8), (15, 23.8)
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Supplementary Figure 7: A one hour light pulse causing a degradation of PER protein at a high
concentration of PER protein induces a phase shift of the PER oscillation. (a) Time curves where
the superscript u indicates that these time curves stem from the extended model consisting of (1)
to (5) where (2) is replaced by (8) with a = 1 for (22) with ¢ty = 14 and ¢ = 20. (b) Time curve of
M calculated from the model 1 to (5) and of M™ calculated from (1) to (5) where (2) is replaced
by (8) with o = 1 for (22)with t, = 14 and ¢ = 20. In (c¢) and (d) a one hour light pulse does not
shift the phase of the molecular clock if the pulse is given when the concentration of PER protein
is low. The experiment is as in (a) and (b) with ¢; = 2. In (e) we plot a phase response curve.
On the abscissa we have the time t, when the stimulus (22) for ¢ = 1 is given where a = 2 and
v = 2.5. The duration of the stimulus is one hour. On the ordinate we have the time difference of
the maximum peak of M and M", that means arg max;e(go,00) M — arg maxe(go,90) M* where M is
calculated from the unperturbed model (1) to (5) and M" once from the fly model, orange curve,
and once from the mammalian model, blue curve.
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