YMTHE, Volume 29

Supplemental Information

Gsx1 promotes locomotor functional

recovery after spinal cord injury

Misaal Patel, Ying Li, Jeremy Anderson, Sofia Castro-Pedrido, Ryan Skinner, Shunyao Lei, Zachary Finkel, Brianna Rodriguez, Fatima Esteban, Ki-Bum Lee, Yi Lisa Lyu, and Li Cai

Supplemental Information

Figure S1. Transduction of lenti-Gsx1-RFP is successful in delivering and overexpressing Gsx1 after SCI

Hemisection SCI was performed on 8-12 weeks old mice around T9-10. Immediately after lentivirus injection encoding Control (Ctrl or empty vector) or Gsx1 gene along with RFP reporter. Animals were harvested at 3 DPI (**A**) and 7 DPI (**B**). Sagittal sections were immunostained with antibodies against Gsx1 (**A** and **B**), NeuN (**F**) and GFAP (**G**). Arrows indicate co-expression of RFP and Gsx1 (green). Montage on the right of each of the image indicates small region (white box) of sagittal sections with separate channels (DAPI, RFP, and Gsx1) to indicate co-expression. Scale bars = 50 µm. Quantification of virally transduced cells co-labeled with Gsx1 at 3 DPI (**C**) and 7 DPI (**D**). (**E**) Histograms show the RT-qPCR analysis of

Gsx1 mRNA expression at 3 DPI, normalized to the Sham. n = 3; Mean \pm SEM; * = p < 0.05 indicates statistical signifance; Students' T-test (**C-D**); one-way ANOVA and Tukey post-hoc analysis (**E**). Sections of spinal cord samples at 3 DPI were also immunostained with antibodies against NeuN (**F**) and GFAP (**G**). Quantification of virally transduced cells co-labeled with NeuN and GFAP (**H**). DPI = days post injury.

Figure S2. Summary of RNA-seq analysis

(A) List of the number of biological replicates used for each group (SCI+Ctrl and SCI+Gsx1) at 3, 14, and 35 DPI for RNA-seq analysis. (B) List of the total number of differentially expressed genes (DEGs; p<0.05) that were upregulated and downregulated at 3 DPI, 14 DPI, and 35 DPI.
(C) Volcano plots depicts the differentially expressed genes at 3, 14, and 35 DPI.

Figure S3. Top 40 Gsx1-induced differentially expressed genes (DEGs) and functional enrichment of gene ontology (GO) terms

Heatmaps of the top 40 DEGs between the SCI+Ctrl and SCI+Gsx1 groups at 3 DIP (**A**), 14 DPI (**B**), and 35 DPI (**C**). Purple indicates downregulation and yellow indicates upregulation of the gene expression. Scatter plots of enriched terms for biological process using REVIGO at 3 DPI (**D**), 14 DPI (**E**), and 35 DPI (**F**). Circle size indicates the log10(p-value) of the GO terms. For 3 DPI, n=3; 14 DPI, n=3; and 35 DPI, n=4.

Figure S4. Gsx1 promotes cell proliferation in both the injured and sham mice.

(A) Representative low magnification images of sagittal sections through T9-10 spinal cord at 3 DPI showing the expression of viral reporter RFP and cell proliferation marker Ki67. Scale bar=100 μ m. White dotted line indicates the midline and the central canal of the spinal cord. Red dots/signals show virally transduced cells and green dots show Ki67+ cells at the lesion site. Histograms show the quantification of Ki67+ cells (**B**) and Ki67+/RFP+ co-labeled cells (**C**) among RFP+ cells. n = 3; Mean ± SEM; * = p < 0.05 indicates statistical signifance; one-way ANOVA and Tukey post-hoc analysis.

(A) Representative low magnification images of sagittal sections through T9-10 spinal cord at 3 DPI showing the expression of viral reporter RFP and NSPC marker Nestin. Scale bar=100 μ m. White dotted line indicates the midline and central canal of the spinal cord. Red dots/signals show virally transduced cells and green dots show Nestin+ cells. Histograms show the quantification of Nestin+ (**B**) and Nestin+/RFP+ co-labeled cells (**C**) among RFP+ cells. n = 3; Mean ± SEM; * = p < 0.05 indicates statistical signifance; one-way ANOVA and Tukey post-hoc analysis.

Figure S6. Gsx1 upregulates NSPC signaling pathways.

Lists of differentially expressed genes that are known to promote Notch signaling (**A**), and regulate NSPCs (**B-C**) identified by RNA-seq (DESeq2) analysis at 3 DPI. (**D**) Gene expression box plots of the genes associated with Nanog signaling pathway and NSPC genes. Each dot represents the gene expression as log2(count per million) for one biological replicate sample. n=3 for all data points; Mean \pm SEM; * = p < 0.05 indicates statistical signifance; Students' t-test.

Figure S7. Gsx1 upregulates Wnt signaling pathway in the injured spinal cord.

(A) Lists of differentially expressed genes that are involved in Wnt signaling at 3, 14, and 35 DPI from RNA-seq analysis. (B) A histogram shows the RT-qPCR analysis of the genes involved in the Wnt signaling pathway (Cdh1, Bmpr1a and Col6a2). N=3; Mean \pm SEM; * = p < 0.05 indicates statistical signifance; One-way ANOVA followed by Tukey post-hoc test. (C) A diagram depicts the upregulated Wnt signaling pathway by Gsx1 expression revealed by IPA.

Figure S8. Gsx1 treatment does not change the number of oligodendrocytes after SCI Hemisection SCI was performed on 8-12 weeks old mice around T10 followed by lentivirus injection encoding Ctrl or Gsx1 gene along with RFP reporter. Animals were harvested 56 DPI and sagittal sections are immunostained with oligodendrocyte marker, Olig2 (**A**). Bottom left of the image includes the higher magnification z-stack view of the area denoted by a dashed white line to indicate co-expression. Scale bar = 20 µm. (**B**) A histogram shows the quantification of Olig2+/RFP+ among RFP+ cells at 56 DPI. n = 6; Mean ± SEM; * = p < 0.05 indicates statistical signifance; Students' t-test.

Figure S9. Effects of Gsx1 on astrogliosis and glial scar formation in the uninjured spinal cord is not significant

Representative fluorescence images of sagittal sections through the lesion site in the spinal cord at 56 DPI show the expression of viral reporter RFP, GFAP (**A**) and chondroitin sulfate proteoglycan (CSPG, stained with CS56) (**B**), and the quantification of the immunostained area with anti-GFAP and anti-CS56 around the injury site is shown on the right. Scale bar =50 μ m, n=4 for all three groups: Sham, Sham+Ctrl and Sham+Gsx1. Mean ± SEM; * = p < 0.05 indicates statistical signifance; One-way ANOVA followed by Tukey post-hoc test.

Figure S10. Gsx1 expression promotes neurogenesis and inhibits astrogliosis *in vitro* Neural stem cells, NE-4C (ATCC), were cultured for 3 days post transduction before inducing differentiation with 10^{-7} M retinoic acid. The effect of Gsx1 on neural differentiation was performed by lentivirus transduction, a control lentivirus (Lenti-Ctrl) (**A**, **D**) and lentivirus carrying Gsx1 (Lenti-Gsx1) (**B**, **E**) were transduced into NE-4C cells. Cells were selected with 0.5 µg/mL Puromycin for 48-hours 3 days after viral transduction and cultured for 14 more days and followed by immunocytochemistry assay. Arrowheads indicate Gsx1-labeled cells in cyan color confirming lentivirus-mediated Gsx1 expression in virally transduced cells. Cell nuclei were labeled with DAPI in blue. (**C**, **F**) histograms of the percentages of MAP2+ neurons and GFAP+ astrocytes over the total number of DAPI+ cells. N=9; Data shown as Mean ± SEM. Students' Ttest. p-value < 0.05 indicates statistical significance.

Figure S11. Gsx1 expression promotes 5-HT neuronal activity

Hemisection SCI was performed on 8-12 weeks old mice around T10 followed by lentivirus injection immediately after SCI. Representative images of sagittal section of the spinal cord from the SCI+Ctrl (n=3: **A-C**) and SCI+Gsx1 (n=3: **D-F**) groups at 35 DPI. The white dotted line indicates the hemisection site. "X" indicates the virus injection site. In the SCI+Ctrl group, 5-HT immunostained axons stopped rostral to the lesion site (**A-C**). In the SCI+Gsx1 group, 5-HT stained axons were detected caudally to the lesion site (**D-F**). Scale bar = 20 µm.

Supplementary Tables S1-3. IPA reports of the DEG-associated signaling pathways induced by Gsx1 expression (see attached Microsoft Excel files).

	3 DPI		14 DPI		35 DPI		
	ID	Log2(Fold Change)	ID	Log2(Fold Change)	ID	Log2(Fold Change)	
Genes	Ppef2	1.7456	Bpgm	0.6457	9330175M20Rik	0.9304	
	Cnga4	1.5203	Snca	0.6409	Gm2897	0.9209	
	Tmem51as1	1.4642	Fam46c	0.5624	4930525G20Rik	0.8941	
	AI506816	1.3532	Gjc2	0.5451	Zfp819	0.8928	
	Cdsn	1.3006	Nkx2-9	0.5346	Ripply2	0.8629	
	G530011O06Rik	1.2743	Ppp1r14a	0.5226	Peg12	0.8311	
pa	Fsip1	1.2560	Rasl11b	0.5223	Mum1l1	0.8199	
ulate	3110070M22Rik	1.2345	Prr18	0.5131	1500015L24Rik	0.8142	
	Fbxw10	1.2303	Klk6	0.5103	1110015O18Rik	0.8049	
reg	Galr3	1.2074	Ptgs1	0.5076	4930441O14Rik	0.8042	
Jpr	Rn45s	1.2041	Ptp4a1	0.4919	Sox14	0.7864	
01	C130026l21Rik	1.1821	S100b	0.4672	Zfp804b	0.7683	
Top 2	Erv3	1.1741	Bin2	0.4563	Mir331	0.7637	
	Afp	1.1694	Tmem88b	0.4517	Cacna1f	0.7612	
	A330048O09Rik	1.1366	Mbp	0.4422	Fgf5	0.7601	
	Xlr3a	1.1299	Atp10b	0.4393	Mipol1	0.7477	
	1700001O22Rik	1.1218	lsg20	0.4377	Mir149	0.7471	
	Apoa2	1.1206	AI848285	0.4364	Tmem232	0.7392	
	Mir466i	1.1092	Arhgef37	0.4320	Gpr88	0.7370	
	Crybb1	1.0996	Plp1	0.4288	6430584L05Rik	0.7369	
	ID	Log2(Fold Change)	ID	Log2(Fold Change)	ID	Log2(Fold Change)	
	Col28a1	-2.4223	Col1a1	-2.0110	Snai1	-1.4631	
	Oan	-2.0659	Aspn	-1.8378	Wfdc17	-1.4354	
	Wif1	-1.9547	Col1a2	-1.7949	Dkk2	-1.4094	
SS	Sbspon	-1.7291	Col6a3	-1.6645	Cilp2	-1.3829	
Gene	Itih4	-1.6936	Col5a1	-1.4541	H19	-1.3015	
	Twist1	-1.6811	Kcni15	-1.4052	Asar2	-1.2978	
ed	Sostdc1	-1.6651	Mfap5	-1.3046	Atp6v0a4	-1.2820	
lat	Plekha4	-1.6475	Thbs1	-1.2104	Foxa1	-1.2655	
gu	Ncmap	-1.6447	Serpinh1	-1.1806	Apoc2	-1.2628	
re	Agp1	-1.6233	Ppic	-1.1093	Anapt4	-1.2556	
NN	Gldn	-1.6205	Loxl1	-1.0945	Fam180a	-1.2413	
Ó	Prx	-1.6059	Tnc	-1.0594	Cd8b1	-1.2400	
0	Wnt4	-1.5861	Ltbp2	-1.0186	Twist1	-1.2251	
p 2	Cdh1	-1.5587	Cpz	-1.0108	Pi16	-1.2225	
To	Nafr	-1.5471	Scara5	-0.9871	Gstm2	-1.2204	
1	Slc43a1	-1.5467	Scara3	-0.9867	Wnt9a	-1.1770	
	Foxd1	-1.5382	Rcn3	-0.9815	Dpt	-1.1667	
	Kcni13	-1.5141	Mrc2	-0.9796	Col6a2	-1.1481	
	Crlf1	-1.4928	Sh3pxd2a	-0.9693	Gpnmb	-1.1465	
	Dpt	-1.4878	Tspan11	-0.9674	Ms4a7	-1.1420	

Supplementary Table S4. Top 20 upregulated and 20 downregulated DEGs determined by RNA-seq analysis

Supplementary Table S5. List of primary and secondary antibodies used for immunohistochemistry

	Vendor, Catalog	Host Species	Туре	RRID	Dilution			
Primary Antibody								
Gsx1	Millipore Sigma, SAB2104632	Rabbit	Polyclonal	AB_10667904	1:200			
Ki67	Abcam, ab15580	Rabbit	Polyclonal	AB_443209	1:1000			
Nestin	Abcam, ab6142	Mouse	Monoclonal	AB_305313	1:200			
Caspase3	Cell Signaling, 9661S	Rabbit	Polyclonal	AB_2341188	1:300			
DCX	Santa Cruz Biotechnology, sc-8067	Goat	Polyclonal	AB_2088491	1:100			
PDGFRa	Abcam, ab61219	Rabbit	Polyclonal	AB_2162341	1:100			
NeuN	Millipore Sigma, MAB377	Mouse	Monoclonal	AB_2298772	1:300			
GFAP	Millipore Sigma, G3893	Mouse	Monoclonal	AB_477010	1:400			
Olig2	Millipore Sigma, AB9610	Rabbit	Polyclonal	AB_570666	1:500			
vGlut2	Millipore Sigma, AB2251-I	Guinea Pig	Polyclonal	AB_2665454	1:1000			
ChAT	Millipore Sigma, SAB2500236	Goat	Polyclonal	AB_10603616	1:300			
GABA	Millipore Sigma, A-2052	Rabbit	Polyclonal	AB_477652	1:3000			
CS56	Millipore Sigma, C8035	Mouse	Monoclonal	AB_476879	1:200			
Map2	Invitrogen, MA5-12826	Mouse	Monoclonal	AB_10976831	1:500			
GFAP	Invitrogen, PA1-10019	Rabbit	Polyclonal	AB_1074611	1:1000			
Secondary Antibody								
Alexa Fluor 488 Donkey anti Mouse	Jackson Immuno Research, 715-545-150	-	Polyclonal	AB_2340846	1:200			
Alexa Fluor 488 Donkey anti Rabbit	Jackson Immuno Research, 711-545-152	-	Polyclonal	AB_2313584	1:200			
Alexa Fluor 488 Donkey anti Goat	Jackson Immuno Research, 705-545-003	-	Polyclonal	AB_2340428	1:200			
Alexa Fluor 488 Donkey anti Guinea Pig	Jackson Immuno Research, 706-545-148	-	Polyclonal	AB_2340472	1:200			
Alexa Fluor 647 Donkey anti Mouse	Jackson Immuno Research, 715-605-150	-	Polyclonal	AB_2340862	1:200			
Alexa Fluor 647 Donkey anti Rabbit	Jackson Immuno Research, 711-605-152	-	Polyclonal	AB_2492288	1:200			
Alexa Fluor 647 Donkey anti Goat	Jackson Immuno Research, 705-605-003	-	Polyclonal	AB_2340436	1:200			
Alexa Fluor 647 Donkey anti Guinea Pig	Jackson Immuno Research, 706-605-148	-	Polyclonal	AB_2340476	1:200			

Gene	Forward (5' -> 3')	Reverse (5' -> 3')
Gsx1	CTTCCCTCCCTTCGGATCG	GTCCACAGAGATGCAGTGAAA
Cd68	GGACCCACAACTGTCACTCAT	AAGCCCCACTTTAGCTTTACC
Itgam	ATGGACGCTGATGGCAATACC	TCCCCATTCACGTCTCCCA
Cd86	TGTTTCCGTGGAGACGCAAG	TTGAGCCTTTGTAAATGGGCA
ll1b	GCAACTGTTCCTGAACTCAACT	ATCTTTTGGGGTCCGTCAACT
Tnf	CCTGTAGCCCACGTCGTAG	GGGAGTAGACAAGGTACAACCC
Ki67 (Mki67)	ATCATTGACCGCTCCTTTAGGT	GCTCGCCTTGATGGTTCCT
Nestin	CCCTGAAGTCGAGGAGCTG	CTGCTGCACCTCTAAGCGA
NeuN (Hrnbp3)	AACCACGAACTCCACCCTTC	GACCTCAATTTTCCGTCCCTC
vGlut (Slc17a6)	TGGAAAATCCCTCGGACAGAT	CATAGCGGAGCCTTCTTCTCA
Th	GTCTCAGAGCAGGATACCAAGC	CTCTCCTCGAATACCACAGCC
Tph1	AACAAAGACCATTCCTCCGAAAG	TGTAACAGGCTCACATGATTCTC
Chat	CCATTGTGAAGCGGTTTGGG	GCCAGGCGGTTGTTTAGATACA
Gfap	CGGAGACGCATCACCTCTG	AGGGAGTGGAGGAGTCATTCG
Lcn2	GCAGGTGGTACGTTGTGGG	CTCTTGTAGCTCATAGATGGTGC
Serpina3n	ATTTGTCCCAATGTCTGCGAA	TGGCTATCTTGGCTATAAAGGGG
Notch1	CCCTTGCTCTGCCTAACGC	GGAGTCCTGGCATCGTTGG
Nrarp	AAGCTGTTGGTCAAGTTCGGA	CGCACACCGAGGTAGTTGG
Jag1	CCTCGGGTCAGTTTGAGCTG	CCTTGAGGCACACTTTGAAGTA
Jag2	CACTGTCCGTCAGGATGGAAC	TAGCCGCCAATCAGGTTTTTG
DII1	CCCATCCGATTCCCCTTCG	GGTTTTCTGTTGCGAGGTCATC
Hes1	TCAGCGAGTGCATGAACGAG	CATGGCGTTGATCTGGGTCA
Cdh1	CAGGTCTCCTCATGGCTTTGC	CTTCCGAAAAGAAGGCTGTCC
Bmpr1a	TGCAAGGATTCACCGAAAGC	TGCCATCAAAGAACGGACCTAT
Col6a2	GCTCCTGATTGGGGGGACTCT	CCAACACGAAATACACGTTGAC
Ctnna1	AAGTCTGGAGATTAGGACTCTGG	ACGGCCTCTCTTTTTATTAGACG
Ntng1	TGCTAAACACAGTCATTTGCGT	GCACACATTCTCATCGTCCAG
Syn1	AGCTCAACAAATCCCAGTCTCT	CGGATGGTCTCAGCTTTCAC

Supplementary Table S6. List of primers for qRT-PCR analysis

Supplementary Videos. Open field locomotor behavior observation of the sham; SCI+Ctrl, and SCI+Gsx1 animals, related to Figure 6H.