Supplementary Information

Differential roles of YTHDF1 and YTHDF3 in embryonic stem cell-derived cardiomyocyte differentiation

Shen Wang¹, Jun Zhang¹, Xiang Wu¹, Xianrong Lin¹, Xiao-Min Liu^{1*} and Jun Zhou^{1, 2*}

¹ School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.

² State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing,

Jiangsu 210009, China.

* Correspondence: jz572@cpu.edu.cn, liuxm642@cpu.edu.cn

Figure S1. Detection of *YTHDF* mRNA levels in *Ythdf*-knockdown cells. (A) Detection of *YTHDF1* and *YTHDF3* mRNA levels in *Ythdf1*-knockdown ESCs by qRT-PCR. (B) Detection of *YTHDF1* and *YTHDF3* mRNA levels in *Ythdf3*- knockdown ESCs by qRT-PCR. Error bars, mean \pm s.e.m.; ***P* < 0.01, ****P* < 0.001, unpaired two tailed *t*-test; *n* = 4 independent experiments.

Figure S2. Cell growth and embryonic bodies (EBs) formation of *Ythdf*-knockdown cells. (A) Measurement of cell growth rate in ESCs lacking either YTHDF1 or YTHDF3. Error bars, mean \pm s.e.m.; **P* < 0.05, unpaired two tailed *t*-test; *n* = 3 independent experiments. (B) Representative morphologic images of *Ythdf1*- and *Ythdf3*-knockdown EBs compared with shScram EBs at day 4.

Figure S3. Reproductively of RNA-sequencing data. Pearson's correlation of reads enrichment as log₂(FPKM+1) between two biological replicates in control and *Ythdf*-KD ESC (day 0), EB (day 2) and CM (day 8).

Figure S4. GO analysis of significantly differentially expressed genes in *Ythdf***-KD CMs.** (A) Volcano plot of differentially expressed genes between the control and *Ythdf***-KD CMs.** (B-C) GO analysis of significantly differentially expressed genes in *Ythdf***-KD CMs versus** control CMs by RNA-seq. The *P*-value for the enrichment of biological pathways (B) and molecular functions (C) GO-term is shown.

Figure S5. Stability of m⁶A-bearing and non-m⁶A transcripts in *Ythdf*-depleted CMs. (A) A total of 238 CM-specific genes showed simultaneously downregulated in *Ythdf1*-KD cells and upregulated in *Ythdf3*-KD cells, among which 155 transcripts are not m⁶A-modified, others contains m⁶A peaks in either ESC, EB or CM samples. (B) Measurement of mRNA levels of CM-specific transcripts bearing m⁶A or not in *Ythdf*-KD and control CMs after transcription inhibitor actinomycin D treatment for 4 h. (C) Overlapped the upregulated (*upper*) or dowregulated (*down*) genes of *Ythdf1*-KD and *Ythdf3*-KD CMs (day 8) in comparison with control CMs. (D) Box plot showing the fold changes (shYthdf/shScram) of CM RNA-seq FPKM in overlapping upregulated (*left*) and downregulated (*right*) genes shown in A. CM-specific genes indicates the genes with log₂(CM FPKM/ESC FPKM)>1.

Figure S6. Protein sequence alignment of mouse YTHDF1 and YTHDF3. Conserved

YTH domain and non-conserved regions are highlighted in green and purple, respectively.

Table S1. Primers for qPCR used in this study.

Gene name	Forward	Reverse
Ythdf1	5'-GCCCACAGCTATAACCCTAAA-3'	5'-GTGGATGTCGTCCTCAGAATAG-3'
Ythdf3	5'-GGGAAAGGCCCACTCTATTT-3'	5'-GAGACCAGACACCAGCATAAG-3'
Nanog	5'-CAGCATCCATTGCAGCTATCC-3'	5'-CTGCCCCACATGGAAAGG-3'
Pou5f1	5'-TCGGACCAGGCTCAGAGGTA-3'	5'- ATCCCTCCGCAGAACTCGTA-3'
Sox2	5'-AAACCAAGACGCTCATGAAGAAG-3'	5'- CGCTCGCCATGCTGTTC-3'
<i>Dppa3</i>	5'- AGACTTGTTCGGATTGAGCAG-3'	5'-TTTCGCATTCTCAGAGGGATC-3'
Klf2	5'- CCTATCTTGCCGTCCTTTGC-3'	5'- CAGACCGTCCAATCCCATG-3'
Brachyury	5'- TCCCGAGACCCAGTTCATAG-3'	5'- TTCTTTGGCATCAAGGAAGG-3'
Nkx2-5	5'-CTTTAGGAGAAGGGCGATGAC-3'	5'-AGGCTACGTCAATAAAGTGGG-3'
Gata4	5'-CACTTAGGGATATGGGTGTTCC-3'	5'-GGCAGGTGGAGAATAAGGAAG-3'
Mef2c	5'-TTCCACTCCCCATTGGA-3'	5'-TGCGCTTGACTGAAGGACTTT-3'
Actc1	5'- GCTGTCTTCCCGTCCATC-3'	5'- ACTTCAGAGTCAGGATACCTCG-3'
Actg2	5'- CCTAAACCCCCAAAGCAAACAG-3'	5'- CCCCGAATCCAGAACGATG-3'
Sox7	5'- CTTCAGGGGACAAGAGTTCG-3'	5'- GGGTCTCTTCTGGGACAGTG-3'
Cldn6	5'- TTTGCAGGCTCGGATATCAG-3'	5'- TTGACCCAGCCAAGCAG-3'
Crb3	5'- AGACGCTGGAGTCAGGTCC-3'	5'- TTAGGCGACGAGTTGGTGAC-3'
Myh7	5'- CCATCTCTGACAACGCCTATC-3'	5'- GGATGACCCTCTTAGTGTTGAC-3'
Myl7	5'- CTGAGTGCCTTCCGCATGT-3'	5'- GCAAACAGTTGCTCTACCTCAG-3'
Tnnt2	5'- ACCCTCAGGCTCAGGTTCA-3'	5'- GTGTGCAGTCCCTGTTCAGA-3'
β -actin	5'-TTGCTGACAGGATGCAGAAG-3'	5'-ACTCCTGCTTGCTGATCCACAT-3'