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The age-structured Susceptible-Infectious-Removed model 

We used our previous age-structured SIR model to simulate the transmission of SARS-CoV-2 1: 

𝑑𝑆𝑛,𝑎(𝑡)

𝑑𝑡
= −𝑆𝑛,𝑎(𝑡)𝜋𝑎(𝑡) 

𝑑𝑆𝑣,𝑎(𝑡)

𝑑𝑡
= −(1 − 𝜎𝑚)𝑆𝑣,𝑎(𝑡)𝜋𝑎(𝑡) 

𝜕𝐼𝑛,𝑎(𝑡, 𝜏)

𝜕𝑡
+

𝜕𝐼𝑛,𝑎(𝑡, 𝜏)

𝜕𝜏
= −𝑓𝐺𝑇(𝜏)𝐼𝑛,𝑎(𝑡, 𝜏) 

𝜕𝐼𝑣,𝑎(𝑡, 𝜏)

𝜕𝑡
+

𝜕𝐼𝑣,𝑎(𝑡, 𝜏)

𝜕𝜏
= −𝑓𝐺𝑇(𝜏)𝐼𝑣,𝑎(𝑡, 𝜏) 

𝐼𝑛,𝑎(𝑡, 0) = 𝑆𝑛,𝑎(𝑡)𝜋𝑎(𝑡) 

𝐼𝑣,𝑎(𝑡, 0) = (1 − 𝜎𝑚)𝑆𝑣,𝑎(𝑡)𝜋𝑎(𝑡) 

𝑑𝑅𝑛,𝑎(𝑡)

𝑑𝑡
= ∫ 𝑓𝐺𝑇(𝜏)𝐼𝑛,𝑎(𝑡, 𝜏)𝑑𝜏

𝑡

0

 

𝑑𝑅𝑣,𝑎(𝑡)

𝑑𝑡
= ∫ 𝑓𝐺𝑇(𝜏)𝐼𝑣,𝑎(𝑡, 𝜏)𝑑𝜏

𝑡

0

 

𝑁𝑛,𝑎 = 𝑆𝑛,𝑎(𝑡) + ∫ 𝐼𝑛,𝑎(𝑡, 𝜏)𝑑𝜏
𝑡

0

+ 𝑅𝑛,𝑎(𝑡) 

𝑁𝑣,𝑎 = 𝑆𝑣,𝑎(𝑡) + ∫ 𝐼𝑣,𝑎(𝑡, 𝜏)𝑑𝜏
𝑡

0

+ 𝑅𝑣,𝑎(𝑡) 

𝜋𝑎(𝑡) = ∑ ∫
𝛽𝑎𝑏(𝑡)

𝑁𝑏
(𝐼𝑛,𝑏(𝑡, 𝜏) + (1 − 𝜎𝑡)𝐼𝑣,𝑏(𝑡, 𝜏)) 𝑑𝜏

𝑡

0

𝑚

𝑏=1

 

where 

• 𝜎𝑚 was the vaccine efficacy in reducing susceptibility to SARS-CoV-2 infection. 

• 𝜎𝑡 was the vaccine efficacy in reducing infectivity of SARS-CoV-2. 

• 𝑚 was the number of age groups in the population. 

• 𝑐𝑎𝑏(𝑡) was the average rate at which an individual in age group a made infectious contacts with 

age group b at time t.  

• 𝛽𝑎𝑏(𝑡) = 𝛼𝑎𝛾𝑏𝑐𝑎𝑏(𝑡) in which 𝛼𝑎 was the relative susceptibility of age group a and 𝛾𝑏 was the 

relative infectiousness of age group b.  

• The next generation matrix (NGM) for this SIR model was  
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𝑁𝐺𝑀(𝑡) = 𝑇𝐺𝑇 [
𝛽11(𝑡) ⋯ 𝛽1𝑚(𝑡)

⋮ ⋱ ⋮
𝛽𝑚1(𝑡) ⋯ 𝛽𝑚𝑚(𝑡)

] 

where 𝑇𝐺𝑇 was the mean generation time. The effective reproductive number 𝑅𝑒(𝑡) in the absence 

of vaccination or immunity was the spectral radius of this matrix.  

• 𝑆𝑛,𝑎(𝑡) and 𝑅𝑛,𝑎(𝑡) were the number of susceptible and removed individuals among those who 

were not vaccinated in age group 𝑎 at time t. 

• 𝑆𝑣,𝑎(𝑡) and 𝑅𝑣,𝑎(𝑡) were the number of susceptible and removed individuals among those who 

were vaccinated in age group 𝑎 at time t. 

• 𝐼𝑛,𝑎(𝑡, 𝜏) was the number of infectious individuals among those who were not vaccinated in age 

group a at time t who were infected at time 𝑡 − 𝜏.  

• 𝐼𝑣,𝑎(𝑡, 𝜏) was the number of infectious individuals among those who were vaccinated in age group 

a at time t who were infected at time 𝑡 − 𝜏.  

• 𝑁𝑛,𝑎  was the total number of people who were not vaccinated in age group 𝑎. 

• 𝑁𝑣,𝑎  was the total number of people who were vaccinated in age group 𝑎. 

• 𝜋𝑎(𝑡) was the force of infection on age group 𝑎 at time 𝑡. 

• 𝑓𝐺𝑇 was the pdf of the generation time. 

The incidence rate of infections and symptom onsets in age group 𝑎 at time 𝑡 were calculated as 

follows:  

𝐴𝑎,𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛(𝑡) = (𝑆𝑛,𝑎(𝑡) + (1 − 𝜎𝑚)𝑆𝑣,𝑎(𝑡)) 𝜋𝑎(𝑡) 

𝐴𝑎,𝑜𝑛𝑠𝑒𝑡(𝑡) = 𝑝𝑎,𝑜𝑛𝑠𝑒𝑡 ∫ 𝐴𝑎,𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛(𝑢)

𝑡

0

𝑓𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛(𝑡 − 𝑢)𝑑𝑢 

where 𝑝𝑎,𝑜𝑛𝑠𝑒𝑡 was the probability of developing symptoms among infections in age group 𝑎 and 

𝑓𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 was the probability density function (pdf) of the incubation period. Similarly, the 

incidence rate of hospitalizations and deaths were calculated as follows: 

𝐴𝑎,ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑡) 

= 𝑝𝑎,ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∫ (𝑆𝑛,𝑎(𝑡) + (1 − 𝜎𝑚)(1 − 𝜎𝑠)𝑆𝑣,𝑎(𝑡)) 𝜋𝑎(𝑡)

𝑡

0

𝑓ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑡 − 𝑢)𝑑𝑢 

𝐴𝑎,𝑑𝑒𝑎𝑡ℎ(𝑡) 

= 𝑝𝑎,𝑑𝑒𝑎𝑡ℎ ∫ (𝑆𝑛,𝑎(𝑡) + (1 − 𝜎𝑚)(1 − 𝜎𝑠)𝑆𝑣,𝑎(𝑡)) 𝜋𝑎(𝑡)

𝑡

0

𝑓𝑑𝑒𝑎𝑡ℎ(𝑡 − 𝑢)𝑑𝑢 
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where 𝑝𝑎,ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 and 𝑝𝑎,𝑑𝑒𝑎𝑡ℎ were the probability of hospitalizations and deaths among 

infections in age group 𝑎, 𝑓ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 was the pdf of the time between infection and 

hospitalization, and 𝑓𝑑𝑒𝑎𝑡ℎ was the pdf of the time between infection and death.  

Quantifying the reduction in infectiousness of an imported infection 

We assume that once infected, unvaccinated and vaccinated individuals have the same infectiousness 

profile. We also assume that the temporal distribution of infectiousness is the same for symptomatic 

and asymptomatic infections (but they may have different magnitude of infectiousness). Let 𝑔(∙) be 

the pdf of incubation period and ℎ(∙)  be the temporal distribution of infectiousness relative to the 

time of symptom onset. We assume that 𝑔(∙) is lognormal with the mean of 5.22 (95% CI 4.1-7.0) 

days 2 and ℎ(∙) is the same inferred infectiousness profile by days after symptom onset (i.e., -10 – 8 

days) in Figure 2C as in our previous study 3. The temporal distribution of infectiousness 𝑡 days after 

infection is obtained by convoluting the two distributions (Figure S7): 

𝑓(𝑡) = ∫ 𝑔(𝑢)ℎ(𝑡 − 𝑢)𝑑𝑢
𝑡

0

 

Let 𝐹(𝑡) = ∫ 𝑓(𝑢)
𝑡

0
𝑑𝑢, which is the cumulative temporal distribution of infectiousness t days after 

infection. Given that we are only concerned about the temporal distribution but not the absolute 

magnitude of infectiousness, we set 𝐹(∞) = 1 without loss of generality.  

The effect of testing and quarantine on reducing the expected force of infection (FOI) exerted by 

infected travellers on the destination 

Let 𝑝𝑃𝐶𝑅(𝑡) be the sensitivity of RT-PCR test for an individual who has been infected for t days 

(Figure S7). We estimate  𝑝𝑃𝐶𝑅(𝑡) based on the data from Kucirka et al 4. If an infected individual is 

test-negative on day t and then tested again on day t + d, we assume that the correlation between the 

sensitivity of the two tests is a function of d as shown in Figure S8.  

Suppose an infected traveller is infected d days before arrival and will be quarantined for 𝑞 days if 

test-negative upon arrival (the FOI posed by him/her on the destination is highest if he/she is infected 

immediately before arrival because he/she will be test-negative upon arrival). The expected 

cumulative infectiousness that this traveller poses on the destination is 

𝐺(𝑑, 𝑞, 1) = (1 − 𝑝𝑝𝑐𝑟(𝑑)) (𝐹(∞) − 𝐹(𝑑 + 𝑞)) = (1 − 𝑝𝑝𝑐𝑟(𝑑)) (1 − 𝐹(𝑑 + 𝑞)) 

if there is no test upon quarantine release and  

𝐺(𝑑, 𝑞, 2) = 𝐺(𝑑, 𝑞, 1)(1 − 𝑝𝑝𝑐𝑟(𝑑 + 𝑞)) 
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if he/she is tested again upon quarantine release. Note that these are an upper-bounds because the 

calculations ignore the possibility that the infected traveller could be detected and isolated during 

quarantine (e.g., due to overt symptoms).   

Determining the eligibility for inbound travel from different origins 

We first consider a single origin. We assume that vaccinated and unvaccinated individuals are subject 

to the same FOI at the origin. Let 𝜋𝑢 and 𝜋𝑣 be the prevalence of infection among unvaccinated and 

vaccinated travellers arriving from the origin. 𝜋𝑢 and 𝜋𝑣 can be estimated from either (i) the observed 

number of infections detected among unvaccinated and vaccinated inbound travellers arriving from 

the origin; or (ii) the incidence statistics (adjusted for under-ascertainment) and vaccine coverage at 

the origin 5. For the latter, if the incidence statistics are not stratified by vaccination status, then 𝜋𝑢 

and 𝜋𝑣 can be crudely estimated from the overall prevalence (𝜋) and vaccine coverage (𝑣) at the 

origin by assuming that 𝜋𝑣 = (1 − 𝜎𝑚) 𝜋𝑢 and 

𝜋 = (1 − 𝑣)𝜋𝑢 + 𝑣(1 − 𝜎𝑚)𝜋𝑢 

where v is the vaccine coverage at the origin.  

Let 𝑛𝑢 and 𝑛𝑣 be the number of unvaccinated and vaccinated inbound travellers on a given day. The 

expected FOI from these travellers is 

𝐹𝑂𝐼𝑖𝑚𝑝𝑜𝑟𝑡 < 𝐺(0, 𝑞, 𝑠)(𝑛𝑢𝜋𝑢 + 𝑛𝑣(1 − 𝜎𝑚)𝜋𝑢) 

Note that 𝐺(0,0,0) = 𝐹(∞) = 1 and hence  𝐹𝑂𝐼𝑖𝑚𝑝𝑜𝑟𝑡 can also be interpreted as the expected number 

of undetected infections among inbound travellers (as in Figure 3 in the main text). To avoid 

underestimating 𝐹𝑂𝐼𝑖𝑚𝑝𝑜𝑟𝑡, we ignore the effect of vaccine efficacy in reducing infectivity. If only 

vaccinated travellers are allowed for entry, the expected FOI from these travellers reduces to 

𝐹𝑂𝐼𝑖𝑚𝑝𝑜𝑟𝑡 < 𝐺(0, 𝑞, 𝑠)𝑛𝑣(1 − 𝜎𝑚)𝜋𝑢 

On the other hand, the FOI exerted by the local cases is 

𝐹𝑂𝐼𝑙𝑜𝑐𝑎𝑙 = 𝑖𝐷𝐹(∞) = 𝑖𝐷 ≈ 𝜋𝐷𝑁𝐷/𝑇 

where 𝑖𝐷 is the daily number of infections at the destination, 𝜋𝐷 is the prevalence of infections at the 

destination, 𝑁𝐷 is the population size of the destination and 𝑇 is the duration of infection.  

We propose that measures for preventing infection importation from the origin (i.e., quarantine, 

testing and ceilings on 𝑛𝑢 and 𝑛𝑣) should be maintained to ensure that 𝐹𝑂𝐼𝑖𝑚𝑝𝑜𝑟𝑡 is small compared 

to 𝐹𝑂𝐼𝑙𝑜𝑐𝑎𝑙. For example, 𝐹𝑂𝐼𝑖𝑚𝑝𝑜𝑟𝑡 < 𝜀𝐹𝑂𝐼𝑙𝑜𝑐𝑎𝑙 where 𝜀 is a risk threshold set by the destination on 

the origin (say 𝜀 = 0.01). This condition would be satisfied if 
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𝐺(0, 𝑞, 𝑠)(𝑛𝑢𝜋𝑢 + 𝑛𝑣(1 − 𝜎𝑚)𝜋𝑢) < 𝜀𝐹𝑂𝐼𝑙𝑜𝑐𝑎𝑙 

If COVID-19 has been eliminated at the destination for a prolonged period, 𝜀𝐹𝑂𝐼𝑙𝑜𝑐𝑎𝑙 can be replaced 

with the daily number of infections that the destination can confidently contain without substantial 

socioeconomic disruption.   

In the general case where there are multiple origins (denoted by the subscript i in what follows), the 

above criterion is naturally generalized to ∑ 𝐹𝑂𝐼𝑖𝑚𝑝𝑜𝑟𝑡,𝑖𝑖 < 𝐹𝑂𝐼𝑙𝑜𝑐𝑎𝑙 ∑ 𝜀𝑖𝑖  which would hold if  

∑ 𝐺(0, 𝑞𝑖, 𝑠𝑖)(𝑛𝑢,𝑖𝜋𝑢,𝑖 + 𝑛𝑣,𝑖(1 − 𝜎𝑚)𝜋𝑢,𝑖)

𝑖

< 𝐹𝑂𝐼𝑙𝑜𝑐𝑎𝑙 ∑ 𝜀𝑖
𝑖

 

Under this formulation, the quarantine duration, testing requirement, ceilings on inbound volume and 

risk threshold for each origin would be judiciously determined by the destination when prescribing the 

eligibility criteria for each origin (e.g., with respect to their social, economic and political importance 

to the destination).  

Determining the trigger of the circuit breaker  

We now describe the algorithm for monitoring whether the actual number of detected infections 

among travellers arriving from a given origin conforms with the above-mentioned eligibility criteria. 

If the detected number of infected travellers is higher than expected, then a circuit breaker will be 

triggered to suspend travellers from that origin and the corresponding eligibility criteria will be 

updated in light of that data.   

Let 𝑚𝑖 be the daily average detected number of infected travellers arriving at the destination. If the 

PCR test sensitivity for detecting infections is 𝑝𝑠𝑒𝑛𝑠 = 62% (i.e., within the range of 60-65% estimated 

from Hong Kong data), the maximum expected daily FOI exerted by infected travellers on the 

destination is 𝐺(0, 𝑞𝑖, 𝑠𝑖)𝑚𝑖/𝑝𝑠𝑒𝑛𝑠 . To keep the maximum expected FOI from these inbound 

travellers below a given threshold 𝛾𝑖  (which might be slightly higher than 𝜀𝑖𝐹𝑂𝐼𝑙𝑜𝑐𝑎𝑙 from the 

previous section in order to account for effects such as clustering of cases due to family or group 

travel and stochasticity), we require 𝐺(0, 𝑞𝑖, 𝑠𝑖)𝑚𝑖/𝑝𝑠𝑒𝑛𝑠 < 𝛾𝑖. This is equivalent to triggering the 

circuit breaker if the daily average number of detected infections among arriving inbound travellers 

exceeds 
𝑝𝑠𝑒𝑛𝑠𝛾𝑖

𝐺(0,𝑞𝑖,𝑠𝑖)
.   

In the illustrative example shown in Figure 4 in the main text, we assume 𝛾𝑖 = 0.8 (i.e., 80% of the 

expected total FOI from a typical infection) and all inbound travellers are quarantined for 4 days and 

tested twice. In this case, the circuit breaker would be triggered when the daily average number of 

detected infections among arriving inbound travellers exceeds 
𝑝𝑠𝑒𝑛𝑠𝛾𝑖

𝐺(0,4,2)
≈ 5.  
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We can further include the effects of stochasticity when determining the trigger for the circuit breaker. 

For example, assuming that the number of infected travellers follows a Poisson distribution, the 

circuit breaker could be triggered if the number of infections detected among arriving travellers 

exceeds a prespecified percentile of 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (
𝑝𝑠𝑒𝑛𝑠𝛾𝑖

𝐺(0,𝑞𝑖,𝑠𝑖)
) (e.g. lower percentiles correspond to more 

stringent criteria).  
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Supplementary Tables 

Table S1. Model parameters 

Parameter Description, assumption and source Value 

𝑅𝑒 Effective reproductive number in the absence of 

vaccination, considering the emergence of VOCs 

(assumed) 

1.0 – 9.0 

𝑇𝐺𝑇 Mean generation time 6 Figure 1 and S1: 5.4 days 

Figure S2: 4.4, 5.4, or 6.4 

days 

𝑓𝐺𝑇 Probability density function of generation time 6 Figure 1 and S1: Gamma 

(4, 1.35) 

Figure S2: 

Gamma (4, 1.1), 

Gamma (4, 1.35), or 

Gamma (4, 1.6) 

𝜎𝑚 Vaccine efficacy in reducing susceptibility 

(assumed)  

0.5, 0.6, 0.7, or 0.8 

𝜎𝑡 Vaccine efficacy in reducing infectivity (assumed)  0.3, 0.4, or 0.5 

𝜎𝑠 Vaccine efficacy in reducing symptomatic diseases 

and hospitalizations (assumed) 

0.8, 0.9, or 0.95 

𝑝𝑎,𝑑𝑒𝑎𝑡ℎ Age-specific infection fatality risk 7,8 Figure 1, S1 and S2: 

Age 0-9: 0.00161%  

Age 10-19: 0.00695% 

Age 20-29: 0.0309%  

Age 30-39: 0.0844% 

Age 40-49: 0.161% 

Age 50-59: 0.595% 

Age 60-69: 1.93% 

Age 70-79: 4.28% 

Age ≥ 80: 7.80% 

or  

Figure S2: 

Age 0-34: 0.003% 

Age 35-54: 0.076% 

Age 55-69: 0.59% 

Age 70-84: 6.0% 

Age ≥ 85: 23% 

𝑝𝑎,ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 Age-specific infection hospitalization risk 7 Figure 1, S1 and S2: 

Assumed to be 20 times 

of the age-specific 

infection fatality risk 

Figure S2: 

Age 0-9: 0.00161%  

Age 10-19: 0.0408% 

Age 20-29: 1.04%  

Age 30-39: 3.43% 

Age 40-49: 4.25% 

Age 50-59: 8.16% 

Age 60-69: 11.8% 

Age 70-79: 16.6% 

Age ≥ 80: 18.4% 

or  
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Assumed to be 5, 10, 20 

times of the age-specific 

infection fatality risk 

𝑓𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 Probability density function of incubation period 2 Lognormal distribution 

Mean: 5.22 days 

SD: 3.9 days 

𝑓ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 Probability density function of the time between 

infection and hospitalization (assumed)  

Gamma distribution 

Mean: 8 days 

SD: 3.6 days 

𝑓𝑑𝑒𝑎𝑡ℎ Probability density function of the time between 

infection and death; estimated from 𝑓𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 and 

the probability density function of the time 

between onset and death (Mean 18.8 days and SD 

8.46 days) from Verity et al 7; 

Gamma distribution 

Mean: 23.0 days 

SD: 9.9 days 

𝐻𝑚𝑎𝑥 The maximum number of COVID-19 

hospitalizations that the local health system could 

take care of per day (assuming it is similar to the 

daily number of COVID-19 hospitalizations 

admitted in the UK in early Jan 2021 9; On 1 Jan 

2021, the number of hospital admissions in the UK 

was 3,371; The maximum daily number of hospital 

admissions in the UK since the emergence of 

COVID-19 was 4,574 on 12 Jan 2021) 

0.005% of the total 

population 
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Supplementary Figures 

 

 

Figure S1. The effects of different contact patterns on the outcomes of PHSM relaxations in 

Hong Kong. The contact matrices were obtained from different periods in the CoMix contact survey 

in the UK (https://cmmid.github.io/topics/covid19/comix-reports.html). We estimated daily 

hospitalizations in Hong Kong following relaxation of PHSMs after all individuals aged 50 or above 

have been vaccinated, assuming 𝑅𝑒 = 1.3. Other parameters were the same as that in the scenario of 

𝑅𝑒 = 1.3 in Figure 1. When vaccine efficacies are high (e.g., 𝜎𝑚 = 0.8, 𝜎𝑡 = 0.5 and 𝜎𝑠 = 0.95), the 

peak of hospitalizations is delayed and the peak size of hospitalizations is also reduced, if we assume 

contact pattens from the periods when the most stringent PHSMs were implemented in the UK (e.g., 

during Lockdown 1 between 23 Mar and 3 Jun 2020, and Christmas and Lockdown 3 between 20 Dec 

2020 and 8 Mar 2021). 

https://cmmid.github.io/topics/covid19/comix-reports.html
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Figure S2. Boxplots of the maximum 𝑹𝒆 that prevents COVID-19 hospitalizations from overloading the health system in Hong Kong following the 

relaxation of PHSMs across different vaccination scenarios and assumptions regarding infection fatality risk (IFR), infection hospitalization risk 

(IHR) and mean generation time. 𝑅𝑒 is the effective reproductive number after relaxation of PHSMs in the absence of vaccination. Vaccines are prioritized 

for individuals aged X or above (x-axis). In the first column, the age-specific vaccine uptake is similar to that of the UK on 6 Jun 2021, and the uptake for 

those younger than 30 is similar to that of the 30-39 age group when they are eligible for vaccination. In the second to fourth column, vaccine uptake is 100% 

among all eligible individuals. In each panel, we assume the vaccine efficacy is 𝜎𝑚 ∈ (0.5, 0.6,0.7,0.8) in reducing the susceptibility to SARS-CoV-2 

infection, 𝜎𝑡 ∈ (0.3,0.4,0.5) in reducing SARS-CoV-2 infectivity and 𝜎𝑠 ∈ (0.8,0.9,0.95) in reducing symptomatic COVID-19 diseases (i.e., 36 combinations 

in total).  The maximum capacity of the health system (in terms of daily hospital admissions) is 0.005% of the population size. The red dashed line shows 

𝑅𝑒 = 2.5 and black dashed line shows 𝑅𝑒 = 4.5.
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Figure S3. Boxplots of the maximum 𝑹𝒆 that maintains the daily number of hospitalizations 

below the threshold of the healthcare capacity following the relaxation of PHSMs under 

different vaccination coverages. We assume vaccines are allocated from oldest to youngest age 

groups, and all individuals who are eligible for vaccination are vaccinated before any PHSMs are 

relaxed (100% uptake). Conservatively we assume the vaccine efficacy is 𝜎𝑚 ∈ (0.5,0.6,0.7) in 

reducing the susceptibility to SARS-CoV-2 infection, 𝜎𝑡 = 0 in reducing SARS-CoV-2 infectivity 

and 𝜎𝑠 ∈ (0.8,0.9,0.95) in reducing symptomatic COVID-19 diseases. The threshold of the healthcare 

capacity is assumed to be 0.005% of the total population of 27 countries and 277 sub-national 

administrative regions (of 8 countries) in which the simulations are performed. Country-level age 

demographics and contact patterns of the 35 countries are from Mistry et al 10. The ranges of y-axis 

are different for each row to increase readability. 
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Figure S4. The maximum 𝑹𝒆 that maintains the daily number of hospitalizations below the 

threshold of the healthcare capacity following the relaxation of PHSMs under different 

vaccination coverages.  Similar to Figure S3 but assuming children and adolescents are as 

susceptible and infectious as adults. The ranges of y-axis are different for each row to increase 

readability.   
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Figure S5. The maximum 𝑹𝒆 that maintains the daily number of hospitalizations below the 

threshold of the healthcare capacity following the relaxation of PHSMs under different 

vaccination coverages.  Similar to Figure S3 but assuming children and adolescents are as 

susceptible as adults but 50% more infectious than adults. The ranges of y-axis are different for each 

row to increase readability.
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Figure S6. The maximum 𝑹𝒆 that maintains the daily number of hospitalizations below the 

threshold of the healthcare capacity following the relaxation of PHSMs under different 

vaccination coverages.  Similar to Figure S3 but assuming 20% of all age groups of the population 

have been infected before and immune to SARS-CoV-2 infection before vaccination. The ranges of y-

axis are different for each row to increase readability. 
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Figure S7. Distribution of infectiousness and the sensitivity of RT-PCR by days since infection. 

We assume the incubation period is lognormal distributed with the mean of 5.22 (95% CI 4.1-7.0) 

days 2. We assume the distribution of infectiousness by days after symptom onset is the same as in our 

previous study 3. The distribution of infectiousness by days since infection (blue line) is obtained by 

integrating the two distributions. The sensitivity of RT-PCR by days since infection (orange line) is 

adapted from Figure 2 of Kucirka LM and Lauer SA et al 4.  
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Figure S8. Assumption about the sensitivity of the second test if the first test is negative. If the 

first test is negative, the sensitivity of the second test is dependent on: 1) the viral load of the 

individual during different time periods of the infection, and 2) the characteristics of the test (e.g., RT-

PCR or alternative tests).  Therefore, we assume that the sensitivity of the second test follows a linear 

relationship above. The sensitivity of the first and second test are independent if the time between the 

two tests is ≥ 5 days. The correlation between the sensitivity of the two tests is assumed to avoid 

overestimating the effects of testing, especially when the time interval between the two tests is very 

short. In Hong Kong, as of 15 Jun 2021, all inbound travellers from places of origins with moderate to 

high COVID-19 prevalence in Group A1, A2, B and C are required to be tested four times and 

quarantined for 21 days (https://www.coronavirus.gov.hk/eng/high-risk-places.html).

https://www.coronavirus.gov.hk/eng/high-risk-places.html
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Figure S9. The minimum proportion of vaccinated passengers on a “safe” flight by country or region of origin. We assume Hong Kong is the 

destination with a risk tolerance level of 2.0 new local cases per million population per day (i.e., 15 new cases in a 7.45 million population). Assuming a 

vaccine with 𝜎𝑚 = 60% is available worldwide, the map is showing the minimum proportion of vaccinated passengers on a “safe” flight by places of origin, 

using the risk assessment tool described in the Supplementary Information. There are either no case data in countries and regions in grey colour or that the 

SARS-CoV-2 prevalence at the origin is too high such that even if all passengers are vaccinated, the prevalence among inbound passengers would still be 

higher than risk tolerance level.
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