Theoretical and Applied Genetics

Accounting for epistasis improves genomic prediction of phenotypes with univariate and bivariate models across environments

Elaheh Vojgani^{1*}, Torsten Pook¹, Johannes W.R. Martini², Armin C. Hölker³, Manfred Mayer³, Chris-Carolin Schön³, Henner Simianer¹

¹ University of Goettingen, Center for Integrated Breeding Research, Animal Breeding and Genetics Group, Goettingen, Germany; ² International Maize and Wheat Improvement Center (CIMMYT), Texcoco, State of Mexico, Mexico; ³ Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany

Corresponding author

Correspondence to Elaheh Vojgani

Email: vojgani@gwdg.de

ORCID: 0000-0003-4375-3531

Supplemental tables

Trait	Definition	Location	Number of Phenotyped lines	Mean	Minimum	Maximum	Standard deviation
EV V2	Farkuvigour at V/2 stage	BBC	450) 202	4 10) 4 69	0.78\1.00		1 20\1 10
EV_V3	Early vigour at v3 stage		459(393	4.10\4.08	0.78\1.00	7.28(7.55	1.28\1.18
	(voru poor oorly vigour) to		402 (595	4.11(4.70	0.00 (1.05	9.00 9.05	1.51(1.10
		POG	440(389		1.22 (5.50	0.05 (0.74 7 00) 7 02	
	9 (very high early vigour)	COL	400(590	5.55\5.64	1.71(2.90	7.90(7.92 9.40\7.09	0.95(0.75
		GOL	210(204	0.51(0.07)	4.07 (5.49	0.49\7.90 7.24\9.4E	0.09(0.51
			210\204	5.51(0.15	1.95 \5.04	7.54\0.45	0.99(0.07
EV V4	Early vigour at V4 stage	BBG	459\393	3.85\4.65	0.67\0.93	8.29\8.49	1.48\1.48
	scored on scale from 1	EIN	462\393	4.24\4.82	0.94\1.52	7.07\7.46	1.11\0.98
	(very poor early vigour) to	OLI	439\389	5.27\6.07	0.80\2.99	7.52\8.36	1.08\0.75
	9 (very high early vigour)	ROG	459\390	5.44\5.85	2.65\2.88	7.86\7.94	0.92\0.78
		GOL	210\204	5.71\5.98	3.37\3.91	7.89\7.89	0.81\0.83
		том	210\204	5.26\5.75	2.59\3.92	6.89 \7.35	0.83\0.61
FV V6	Farly vigour at V6 stage	BBG	459\393	3.92\4.64	0.74\0.84	8.75\8.22	1.39\1.41
	scored on scale from 1	EIN	462\393	5.03\5.54	0.97\1.51	8.05\8.39	1.24\1.06
	(very poor early vigour) to	OLI	437\388	5.30\6.07	0.54\3.56	7.17\8.09	0.96\0.74
	9 (very high early vigour)	ROG	461\390	5.55\5.91	1.02\2.52	8.07\7.76	0.95\0.77
		GOL	210\204	6.24\6.24	3.90\3.81	8.45\7.94	0.85\0.85
		том	210\204	5.58\5.86	2.96\3.90	7.66\7.91	0.92\0.68
PH V4	Mean plant height of	BBG	461\393	35.86\41.48	9.27\16.38	60.40\62.85	8.43\7.93
	three plants of the plot at	FIN	462\393	34,49\38,73	6.90\20.43	53.14\57.94	7.24\6.17
	V4 stage in cm	OLI	440\388	18.43\22.55	7.35\11.89	31.11\35.75	3.93\3.87
		ROG	460\390	25.50\28.10	9.23\13.63	42.29\41.54	4.60\4.53
		GOL	210\204	62.88\68.98	34.30\38.39	88.24\95.30	9.79\10.96
		ТОМ	210\204	41.60\47.45	11.98\25.37	63.89\72.12	8.71\8.27
			•	-	-	-	-

Table S1 Phenotypic traits descriptions, locations, number of lines, mean, minimum, maximum and standard deviation of phenotypic traits in

 each location for KE (blue numbers) and PE (red numbers).

Trait	Definition	Location	Number of Phenotyped lines	Mean	Minimum	Maximum	Standard deviation
PH V6	Mean plant beight of	BBG	461\393	61 75\69 08	19 41\30 36	93 84\100 39	11 80\11 12
111_00	three plants of the plot at	FIN	462\393	62 40\69 36	21 41\36 53	95 54\98 80	11 89\9 62
	V6 stage in cm	011	440\390	36 74\45 35	8 34\14 78	58 40\72 48	8 69\8 53
		ROG	459\390	61.46\68.91	32.17\30.35	89.74\94.77	9.34\9.52
		GOL	210\204	94.21\98.30	37.28\54.75	127.54\130.51	15.05\15.29
		том	210\204	83.86\92.35	48.46\57.81	119.07\124.98	14.41\12.79
DH final	Final plant beight after	BBG	461\303	142 65\120 60	05 85\50 78	210 08\179 03	20 53\10 11
FII_IIIdi	flowering in cm	FIN	462\393	159 18\1/1 35	100 84\69 01	228 96\211 14	20.55(15.11
	nowering in em		432\387	118 17\112 46	58 74\58 55	175 81\173 15	21.97 (21.10
		ROG	461\390	137 04\122 25	74 25\63 56	211 14\201 92	22,32\20,40
		GOI	209\204	115 68\102 69	49 27\30 21	167 58\149 14	21 73\23 59
		TOM	210\204	157.99\144.61	81.92\79.28	245.00\195.36	24.82\18.95
	Dave after cowing until	PPC	461\202	92 10 92 09		05 74\02 04	1 21\ 1 10
FF	fomale flowering (days	EIN	401 (393	02.10 (02.00 92 EE\ 91 79	70 26 68 86	33.74\32.04 102.02\101.50	4.31 (4.10 5 22) 5 17
	until EQ% of the plot		402 (393	02.33 (01.70	70.50 (08.80	02 12\01 54	3.23(3.17)
	chowed silks)	POG	340(347 AEQ)200	72 06\71 01	72.00(09.40)	92.13 (91.34	3.70(3.08
	showed sliks)	TOM	209\203	76.88\74.16	63.93\62.13	93.28\92.17	5.58\4.64
RL	Root lodging score from 1	BBG	461\392	5.02\3.03	0.59\ <mark>0.03</mark>	9.58\ <mark>9.22</mark>	2.78\2.39
	to 9 (1 belonged to no	EIN	462\ <mark>393</mark>	3.48\2.23	0.63\0.76	9.21\8.08	2.29 \1.54
	lodging and 9 belonged to	OLI	439\ <mark>388</mark>	2.59\ <mark>1.80</mark>	0.59\ <mark>0.52</mark>	9.15\7.65	1.64\1.19
	severe lodging)	ROG	460\ <mark>390</mark>	2.39\1.50	0.96\0.95	9.01\8.50	2.21\1.13

Predicted Environment	Additional Environment	Top 5	Top 1	Тор 0.1	Top 0.01	Top 0.001
BBG	EIN	100%	100%	100%	100%	100%*
BBG	GOL	0%*	8%*	12%	100%	100%
EIN	BBG	100%	100%	100%	100%	100%*
EIN	GOL	100%*	100%*	28%*	100%	100%
OLI	GOL	16%*	16%*	100%*	100%	100%
ROG	BBG	100%	100%	100%	100%	100%*
ROG	GOL	100%*	100%*	100%*	100%	100%
том	BBG	100%*	100%*	100%*	0%*	100%*
том	EIN	100%	100%*	100%*	96%	100%*
ТОМ	GOL	100%*	100%*	100%*	64%	100%*

Table S2 The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 5 replicates for trait PH-V4 for both KE and PE (black percentages), only KE (blue percentages) and only PE (red percentages). The starts represent the non-convergence of pre estimated variance components based on the full set.

Predicted	Additional	Top 5	Top 1	Top 0.1	Top 0.01	Top 0.001
Environment	Environment					
BBG	EIN	100%	100%	100%	100%	96%*
BBG	GOL	96%	100%	100%	100%	100%
BBG	том	100%	100%	100%	100%	88%
EIN	ROG	100%	100%	92%	96%	92%
EIN	BBG	100%	100%	100%	100%	88%*
EIN	том	100%	100%	96%	96%	96%
OLI	ROG	100%	100%	100%	92%	96%
OLI	EIN	100%	100%	100%	92%	<mark>0%* / 96%</mark>
OLI	BBG	100%	100%	96%	96% / 88%	100%* / 76%
OLI	GOL	96%	96%	88%	96%	92%
OLI	том	92%	96%	72%	72%*	60%*
ROG	EIN	100%	100%	96%	52%*	0%* / 76%
ROG	BBG	100%	100%	100%	96% / 92%	0%*
ROG	GOL	100%	100%	96%	92%	96%
ROG	ТОМ	100%	100%	100%	84%	100%
GOL	ROG	100%	100%	100%	92%	100%
GOL	EIN	100%	100%	100%	100%	0%*
GOL	BBG	100%	100%	96%	96%	80%* / 96%
GOL	OLI	96%	92%	96%	92%	88%
GOL	том	100%	100%	100%	88% / 80%	80% / 96%
том	EIN	96%	92%	64%	44%*	0%*
том	BBG	100%	100%	100%	96%	80%*
том	OLI	96%	100%	100%	100%	92%
том	GOL	0%*	96%	100%	80%	96% / 96%

Table S3 The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 5 replicates for trait EV_V3 for both KE and PE (black percentages), only KE (blue percentages) and only PE (red percentages). The starts represent the non-convergence of pre estimated variance components based on the full set.

Predicted	Additional	Top 5	Top 1	Top 0.1	Top 0.01	Тор 0.001
Environment	Environment					
BBG	EIN	100%	100%	100%	100%	12%*
BBG	GOL	100%	100%	96%	68%	56%
EIN	OLI	100%	96%	100%	100%	100%
OLI	EIN	88%	88%	96% / 16%*	96% / <mark>4%</mark> *	8%* / 8%*
OLI	BBG	100%	100%	96%	100%	100%
OLI	GOL	100%	100%	100%	96%	100%
OLI	ТОМ	100%	100%	100%	96%	96%
ROG	EIN	100%	100%	100%	100%	0%*
GOL	EIN	100%	100%	100%	100%	0%*
GOL	ТОМ	100%	96%	100%	100%	100%
том	ROG	100%	96%	100%	92%	100%
том	EIN	100%	96%	88%	100%	100%
том	BBG	100%	96%	25%*	40%*	80%
том	GOL	80%	80%	96% / 48%*	96%	80%

Table S4 The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 5 replicates for trait EV_V4 for both KE and PE (black percentages), only KE (blue percentages) and only PE (red percentages). The starts represent the non-convergence of pre estimated variance components based on the full set.

Predicted	Additional	Top 5	Top 1	Top 0.1	Top 0.01	Тор 0.001
Environment	Environment					
BBG	ROG	100%	100%	100%	100%	80%*
BBG	EIN	100%	100%	96%	92%	0%*
BBG	GOL	0%* / 25%*	0%* / 48%*	24%* / 24%*	0%*	100%
EIN	ROG	100%	100%	96%	80%* / 96%	52%* / 96%
EIN	GOL	4%* / 0% *	4%* / 88% *	48%* / 0% *	32%	100%
OLI	EIN	100%	100%	88%	88%	4%* / 84%
OLI	ROG	100%	100%	100%	100%	0%*
OLI	GOL	25%* / <mark>0%</mark> *	72% / 96%	24%* / <mark>4%</mark> *	12%*	100%
ROG	EIN	100%	100%	92%	80%	40%* / <mark>88%</mark>
ROG	BBG	96%	96%	100%	96% / <mark>84%</mark> *	96% / <mark>52%</mark> *
ROG	OLI	100%	100%	96%	100%	96%
ROG	GOL	25% / 0%*	0%* / 96%	0%* / 36%	0%	100%
GOL	ROG	100%	100%	100%	100%	96%*
GOL	EIN	100%	100%	100%	100%	80%*
том	ROG	100%	96%	24%*	60%* / 96%	0%* /72%
том	EIN	100%	100%	72%	72%	0%*
том	BBG	100%	76%	76% / 96%	84%	84%
том	OLI	100%	100%	100%	100%	96%
том	GOL	0%* / 0%	0%* / 84%	0%* / 0%	16%* / <mark>0%</mark> *	25%* / 60% [*]

Table S5 The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 5 replicates for trait EV_V6 for both KE and PE (black percentages), only KE (blue percentages) and only PE (red percentages). The starts represent the non-convergence of pre estimated variance components based on the full set.

Predicted	Additional	Top 5	Top 1	Top 0.1	Top 0.01	Тор 0.001
Environment	Environment					
BBG	ROG	100%	100%	100%	96%	80%*
BBG	EIN	92%	100%	100%	100%	100%
BBG	OLI	100%	100%	100%	100%	36%
BBG	GOL	100%	100%	96%	96%	92%*
EIN	ROG	100%	100%	100%	100%	0%*
EIN	BBG	100%	100%	80%	100%	32%*
EIN	OLI	100%	100%	100%	100%	96%
EIN	GOL	100%	100%	100%	100%	100%*
OLI	ROG	100%	100%	96%	68%	16%*
OLI	EIN	100%	100%	100%	100%	92%
OLI	BBG	100%	100%	100%	100%	56%*
OLI	GOL	100%	100%	100%	96%	0%*
ROG	EIN	100%	100%	100%	100%	92%
ROG	BBG	100%	100%	100%	96%	84%*
ROG	OLI	100%	100%	100%	100%	0%*
ROG	GOL	100%	100%	100%	100%	8%*
GOL	ROG	100%	100%	100%	100%	96%*
GOL	BBG	100%	100%	100%	100%	<mark>0%* / 96%</mark>
GOL	OLI	100%	100%	100%	100%	0%*
том	ROG	100%	100%	92%	88%	40%*
том	EIN	100%	100%	100%	100%	100%
том	BBG	100%	100%	32%	92%	0%*
том	OLI	100%	100%	100%	96%	4%*
том	GOL	52%*	68%* / 88%	72%* / 92%	92%	16%* / 96%

Table S6 The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 5 replicates for trait PH_V6 for both KE and PE (black percentages), only KE (blue percentages) and only PE (red percentages). The starts represent the non-convergence of pre estimated variance components based on the full set.

Predicted	Additional	Top 5	Top 1	Top 0.1	Top 0.01	Тор 0.001
Environment	Environment					
BBG	ROG	52%* / <mark>0%</mark> *	0%*/0%*	0%*/0%*	0%*	100%
BBG	EIN	100%	100%	100%	100%	96%
BBG	том	36%*	4%*	0%*	92%	100%
EIN	ROG	0%*/ 25%	<mark>0%*/0%*</mark>	0%*/0%*	96% / 0%*	92%
EIN	BBG	8%*	4%*	0%*	96%	96%
EIN	OLI	100%	100%	100%	100%	92%
EIN	ТОМ	64%	4%*	0%*	100%	100%
OLI	ROG	0%*/4%*	<mark>0%*/0%*</mark>	<mark>0%*/0%*</mark>	0%*	96%
OLI	EIN	100%	96%	100%	100%	100%
OLI	BBG	4%*	0%*	0%*	100%	96%
OLI	GOL	100%	100%	100%	100%	100%
OLI	ТОМ	28%*	12%*	0%*	96% / 84%*	92%
ROG	EIN	100%	100%	100%	100%	96%
ROG	BBG	40%*	0%*	0%*	100%	100%
ROG	ТОМ	24%*	8%*	4%*	88%	100%
GOL	ROG	8%* / 0%*	4%* / 4%*	8%* / 4%*	0%*	100%
GOL	BBG	8%*	4%*	4%*	100%	100%
GOL	ТОМ	0%*	0%*	4%*	88%	100%
том	ROG	<mark>0%*/ 0%*</mark>	<mark>0%*/0%*</mark>	<mark>0%*/0%</mark> *	36%* / 0%*	48%* / 96%
том	EIN	100%	100%	84%	76%	40%* / 96%
том	BBG	8%*	0%*	0%*	88%	52%*
том	OLI	100%	100%	92%	92%	96%
том	GOL	100%	100%	96%	100%	96%

Table S7 The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 5 replicates for trait PH_final for both KE and PE (black percentages), only KE (blue percentages) and only PE (red percentages). The starts represent the non-convergence of pre estimated variance components based on the full set.

Predicted	Additional	Top 5	Top 1	Top 0.1	Top 0.01	Top 0.001
Environment	Environment					
BBG	EIN	4%*	4%*	0%*	92% / 32%*	80%
BBG	ROG	0%*	0%*	0%* / 0%*	80% / 0%*	68%
EIN	BBG	96% / 36%*	92% / 96%	92% / 0%*	88% [*] / <mark>0%</mark> *	88% / 96%
EIN	ROG	0%*	0%*	0%* / 0%*	96% / 0% [*]	96% / <mark>84%</mark>
OLI	ROG	0%*	92% / <mark>0%</mark> *	16%* / 0%*	10 / 0%*	92% / 76%
OLI	BBG	100%	84%	0%*	4%*	96% / 32% [*]
OLI	EIN	64%*	20%	0%*	52%*	44%*
ROG	EIN	0%*	0%*	0%*	80%	52%*
ROG	BBG	40%	100%	0%*	0%*	96%
том	EIN	28%*	20%*	24%*	40%*	72% / 12% [*]
том	BBG	72%	100%	4%*	8%*	96%
том	OLI	100%	100%	96%	96%	96%
том	ROG	12%*	96% / <mark>0%</mark>	0%* / 4%*	20% [*] / 4% [*]	4%*/ 40%*

Table S8 The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 5 replicates for trait FF for both KE and PE (black percentages), only KE (blue percentages) and only PE (red percentages). The starts represent the non-convergence of pre estimated variance components based on the full set.

Table S9 The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 5 replicates for trait RL for both KE and PE (black percentages), only KE (blue percentages) and only PE (red percentages). The starts represent the non-convergence of pre estimated variance components based on the full set.

Predicted Environment	Additional Environment	Top 5	Top 1	Top 0.1	Тор 0.01	Тор 0.001
BBG	EIN	100%	100%	100%	100%	96%
EIN	ROG	100%	100%	96%	96%	96%
EIN	BBG	100%	72%	60%*	20%*	96% / 16% [*]
EIN	OLI	92%	92%	92%	96%	68%
ROG	EIN	100%	100%	96%	88%	68%
ROG	BBG	100%	100%	100%	96%	96%
ROG	OLI	100%	100%	96%	100%	100%

Landrace	Locations	RKHS	GBLUP	ERRBLUP	sERRBLUP
	BBG	0.479	0.470/0.721	0.468/0.754	0.707/0.822
	EIN	0.479	0.455/0.713	0.458/0.748	0.679/0.812
KE	OLI	0.435	0.439/0.627	0.438/0.655	0.623/0.717
	ROG	0.460	0.469/0.674	0.467/0.707	0.665/0.784
	GOL	0.543	0.519/0.730	0.521/0.742	0.694/0.759
	том	0.353	0.346/0.660	0.350/0.681	0.617/0.691
	BBG	0.423	0.424/0.692	0.426/0.715	0.648/0.784
	EIN	0.420	0.412/0.680	0.413/0.704	0.652/0.775
PE	OLI	0.334	0.324/0.582	0.326/0.602	0.558/0.665
	ROG	0.422	0.449/0.638	0.447/0.654	0.584/0.688
	GOL	0.590	0.604/0.697	0.606/0.706	0.664/0.731
	том	0.342	0.370/0.614	0.370/0.630	0.528/0.662

Table S10 The predictive ability of RKHS, univariate GBLUP within environments, univariate ERRBLUP within environments and maximum univariate sERRBLUP across environments (blue numbers) and the maximum predictive ability of bivariate GBLUP, bivariate ERRBLUP and bivariate sERRBLUP (red numbers) in KE and PE for the trait PH_V4.

Supplemental figures

5-fold cross validation with 5 replicates

Fig. S1 Comparison of pre estimated genetic and residual variances and covariances of converged bivariate sERRBLUP model (top 5%) based on the full dataset (dashed horizontal lines) and estimated genetic and residual variances and covariances of converged bivariate sERRBLUP (top 5%) based on training set in each run of 5-fold cross validation with 5 replicates (colored bars) for predicting BBG when the additional environment is OLI in KE for trait PH_V4.

Number of not converged folds

Fig. S2 The difference between the mean predictive ability of only the converged folds and the mean predictive ability of all folds in 5-fold cross validation with 5 replicates vs. the number of the folds (1 to 24) which did not converge across all traits in all combinations for both KE and PE.

Percentage of interactions maintained in the model

Fig. S3a Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait EV_V3 in KE (left side plots) and PE (right side plots). In each panel, the solid lines' color indicates the environment in which the relationship matrices determined by variable selection.

Fig. S3b Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated effects variances in KE (left side) and PE (right side) for trait EV-V3. In each panel, the solid lines' color indicates the additional environment used to predict the target environment.

Percentage of interactions maintained in the model

Fig. S4a Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait EV_V4 in KE (left side plots) and PE (right side plots). In each panel, the solid lines' color indicates the environment in which the relationship matrices determined by variable selection.

Fig. S4b Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated effects variances in KE (left side) and PE (right side) for trait EV-V4. In each panel, the solid lines' color indicates the additional environment used to predict the target environment.

r ercentage of interactions maintained in the model

Fig. S5a Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait EV_V6 in KE (left side plots) and PE (right side plots). In each panel, the solid lines' color indicates the environment in which the relationship matrices determined by variable selection.

Fig. S5b Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated effects variances in KE (left side) and PE (right side) for trait EV-V6. In each panel, the solid lines' color indicates the additional environment used to predict the target environment.

Percentage of interactions maintained in the model

Fig. S6a Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait PH-V6 in KE (left side plots) and PE (right side plots). In each panel, the solid lines' color indicates the environment in which the relationship matrices determined by variable selection.

Fig. S6b Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated effects variances in KE (left side) and PE (right side) for trait PH-V6. In each panel, the solid lines' color indicates the additional environment used to predict the target environment.

Percentage of interactions maintained in the model

Fig. S7a Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait PH-final in KE (left side plots) and PE (right side plots). In each panel, the solid lines' color indicates the environment in which the relationship matrices determined by variable selection.

Fig. S7b Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated effects variances in KE (left side) and PE (right side) for trait PH-final. In each panel, the solid lines' color indicates the additional environment used to predict the target environment.

Percentage of interactions maintained in the model

Fig. S8a Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait FF in KE (left side plots) and PE (right side plots). In each panel, the solid lines' color indicates the environment in which the relationship matrices determined by variable selection.

Percentage of interactions maintained in the model

Fig. S8b Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated effects variances in KE (left side) and PE (right side) for trait FF. In each panel, the solid lines' color indicates the additional environment used to predict the target environment.

Percentage of interactions maintained in the model

Fig. S9a Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait RL in KE (left side plots) and PE (right side plots). In each panel, the solid lines' color indicates the environment in which the relationship matrices determined by variable selection.

r ercentage of interactions maintained in the model

Fig. S9b Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated effects variances in KE (left side) and PE (right side) for trait RL. In each panel, the solid lines' color indicates the additional environment used to predict the target environment

.

Percentage of interactions maintained in the model

Fig. S10 Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments (solid colored lines) when SNP interaction selections are based on estimated effects sizes (left side) and estimated effects variances (right side) for trait PH-V4 in KE. In each panel, the solid lines' color indicates the environment in which the relationship matrices were determined by variable selection.

Percentage of interactions maintained in the model

Fig. S11 Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments (solid colored lines) when SNP interaction selections are based on estimated effects sizes (left side) and estimated effects variances (right side) for trait PH-V4 in PE. In each panel, the solid lines' color indicates the environment in which the relationship matrices were determined by variable selection.

Fig. S12 Comparison of predictive ability of univariate GBLUP within environments (filled squares) and the maximum predictive ability of univariate sERRBLUP across environments when the SNP interaction selections are based on estimated effects sizes (circles) and estimated effects variances (triangles) for trait PH-V4 in KE (left side plot) and in PE (right side plot). The colors dark blue, orange, purple, red, light blue and green represent the environments BBG, EIN, OLI, ROG, GOL and TOM, respectively. The circles' and triangles' colors indicate the environment which had the maximum predictive ability for this respective target environment.

Percentage of interactions maintained in the model

Fig. S13 Predictive ability for univariate GBLUP within Bernburg (dashed horizontal line), univariate ERRBLUP within Bernburg (black filled circle) and univariate sERRBLUP when the SNP interaction selections are based on estimated effects variances (blue solid line) and estimated effect sizes (red solid line) within Bernburg for trait PH-V4 in KE.

Fig. S14 Comparison of predictive ability of univariate GBLUP within environments (filled squares) and the maximum predictive ability of univariate sERRBLUP across EIN when the SNP interaction selections are based on estimated effects variances (orange circles) for trait PH-V4 in KE (left side plot) and in PE (right side plot). The colors dark blue, purple, red, light blue and green represent the environments BBG, OLI, ROG, GOL and TOM, respectively.

Fig. S15a Absolute increase in prediction accuracy from univariate GBLUP within environments to the maximum prediction accuracy of univariate sERRBLUP across environments when the SNP interaction selections are based on estimated effects variances in KE (left side plot) and in PE (right side plot). The average of absolute increase in prediction accuracy for each trait and environments are display in rows and columns, respectively.

Fig. S15b Absolute increase in prediction accuracy from maximum bivariate GBLUP the maximum prediction accuracy of bivariate sERRBLUP when the SNP interaction selections are based on estimated effects variances in KE (left side plot) and in PE (right side plot). The average of absolute increase in prediction accuracy for each trait and environments are display in rows and columns, respectively.

Percentage of interactions maintained in the model

Fig. S16 Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate ERRBLUP within environment (gray open circle), univariate sERRBLUP using a single environment for selecting the SNP interactions (gray open circles) and univariate sERRBLUP using all 5 environments jointly (filled black circles and solid line) for the SNP interaction selection based on estimated effects sizes (left side) and estimated effects variances (right side) for trait PH-V4 in KE.

Percentage of interactions maintained in the model

Fig. S17 Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate ERRBLUP within environment (gray open circle), univariate sERRBLUP using a single environment for selecting the SNP interactions (gray open circles) and univariate sERRBLUP using all 5 environments jointly (filled black circles and solid line) for the SNP interaction selection based on estimated effects sizes (left side) and estimated effects variances (right side) for trait PH-V4 in PE.

Fig. S18 The comparison between the maximum predictive abilities of bivariate GBLUP within all six environments and the maximum predictive abilities of univariate sERRBLUP across environments for all traits in KE (left side plot) and PE (right side plot). In each plot, the diagonal line (red line) and the overall linear regression line (black line) with the regression formula are shown.

Fig. S19a The correlation between all eight traits' heritabilities and predictive abilities of univariate GBLUP within environments (left side) and maximum predictive abilities of univariate sERRBLUP across environments (right side) in both landraces. The black lines indicate the overall linear regression lines.

Fig. S19b The correlation between all eight traits' heritabilities and the maximum predictive abilities of bivariate GBLUP (left side) and maximum predictive abilities of bivariate sERRBLUP (right side) for all environments in both landraces. The black lines indicate the overall linear regression lines.