Figure S1

Figure S1, related to Fig. 1: Polarization of CckA and DivL is not sufficient to activate CtrA in predivisional cells in the absence of DNA replication.

(A) Schematic of the CckA-ChpT phosphorelay activity at the new pole in predivisional cells.

(B) Flow cytometry profiles after SYTOX staining showing DNA content of synchronized cells expressing *dnaA* (+IPTG) or depleted of *dnaA* (-IPTG) with ectopic expression of *ctrA* (+0.075% xyl) and *podJ* (+cumate) when indicated.

(C) Biological replicate of Fig. 1B.

(D) mRNA levels of the *ctrA* and *podJ* genes measured by qRT-PCR and normalized to *rpoA* mRNA levels in cells expressing *dnaA* (+IPTG) or depleted for *dnaA* (-IPTG) with ectopic expression of the stable *ctrA* point mutant *ctrA* $\Delta 3\Omega$ (+0.075% xyl) and *podJ* (+cumate) when indicated.

(E) CtrA $\Delta 3\Omega$ protein levels in cells depleted for *dnaA* (-IPTG) with ectopic expression of the stable *ctrA* point mutant *ctrA\Delta 3\Omega* (+0.075% xyl) when indicated.

(F) Data represent one of the biological replicates from Fig. 1C with addition of the +dnaA + $ctrA \Delta 3\Omega$ condition.

(G) CtrA and GcrA protein levels at the times indicated post-synchronization in cells expressing *dnaA* (+IPTG) or depleted of *dnaA* (-IPTG) with ectopic expression of wild-type *ctrA* (+van) and *gcrA-3xflag* (+xyl) when indicated. Graphs show CtrA and GcrA protein band intensity normalized to RpoA.

Figure S2

20 kDa

40 kDa

Figure S2, related to Fig. 1: Polarization of CckA and DivL is not sufficient to activate CtrA in predivisional cells in the absence of DNA replication.

(A) mRNA levels of the CtrA-activated gene *divK* measured by qRT-PCR and normalized to *rpoA* mRNA levels at the times indicated post-synchronization in cells expressing *dnaA* (+IPTG) or depleted of *dnaA* (-IPTG) with ectopic expression of the proteolytically stable mutant $ctrA \Delta 3\Omega$ (+van) and with (+xyl) or without ectopic expression of *gcrA-3xflag*.

(B) CtrA protein levels in cells expressing (+ 50 μ M van) or not (-van) the PA5295 phosphodiesterase in cells depleted for *dnaA* (-IPTG).

(C) mRNA levels of the CtrA-activated gene *divK* measured by qRT-PCR and normalized to *rpoA* mRNA levels at the times indicated post-synchronization in cells expressing *dnaA* (+IPTG) or depleted of *dnaA* (-IPTG) and the *P. aeruginosa* phosphodiesterase PA5295 (+50 μM van) when indicated. This strain also expressed an ectopic copy of *podJ* (+cumate), when indicated.

(D) SciP protein levels at the times indicated post-synchronization in cells expressing *dnaA* (+IPTG) or depleted of *dnaA* (-IPTG) with ectopic expression of *ctrA* (+xyl) and *podJ* (+cumate) when indicated.

(E-G) Same as Fig. 1D-F but with additional Texas-Red-X succinimidyl ester (TRSE) staining to label the stalk by non-specifically labeling surface-exposed proteins (Hughes *et al.*, 2013). Scale bars = 2 μm.

Figure S3, related to Fig. 2: Replication of the full chromosome is not required for CtrA activation.

(A) Flow cytometry profiles after SYTOX staining showing DNA content of synchronized cells expressing *dnaA* (+IPTG) or depleted of *dnaA* (-IPTG) with ectopic expression of *ctrA* (+van) and *dnaA*(*R*357*A*) (+xyl) when indicated.

(B) *ctrA* mRNA levels measured by qRT-PCR and normalized to *rpoA* mRNA levels in cells expressing dnaA (+IPTG) or depleted of *dnaA* (-IPTG) with ectopic expression of *dnaA*(*R357A*) (+xyl) when indicated.

(C) GcrA protein levels in cells expressing *dnaA* (+IPTG) or depleted of *dnaA* (-IPTG) with ectopic expression of wild-type *ctrA* (+van) and *dnaA*(*R*357A) (+xyl). RpoA is shown as a loading control.

(D) mRNA levels of *ctrA* measured by qRT-PCR and normalized to *rpoA* mRNA levels in cells expressing dnaA (+IPTG) or depleted of *dnaA* (-IPTG) with ectopic expression of *ctrA* (+van) and *dnaA*(*R*357A) (+xyl) when indicated.

(E) Biological replicate of Fig. 2B.

Figure S4, related to Fig. 3: CtrA activation in predivisional cells is reduced when chromosome segregation is perturbed.

(A) Flow cytometry profiles after SYTOX staining showing DNA content of synchronized cells with (+van) or without (-van) ectopic expression of *parA(K20R)*. Expression of *parA(K20R)* was induced 60 min. before synchronization and after synchronization with 500 μ M vanillate.

(B) Relative fold-change in CtrA protein levels normalized to RpoA levels 100 min. post-synchronization, when inducing parA(K20R) or parB(G101S) 60 min. pre-synchronization compared to the uninduced condition. Bars indicate mean ± SEM from three biological replicates shown as individual datapoints.

(C) Flow cytometry profiles after SYTOX staining showing DNA content of synchronized cells with (+van) or without (-van) ectopic expression of *parB*(*G101S*). Expression of *parB*(*G101S*) was induced 60 min. before synchronization and after synchronization with 500 μ M vanillate.

(C) Time lapse of MipZ-CFP dynamics within a single cell expressing the *parB*(*G101S*) mutant. *parB*(*G101S*) was induced 30 min. before synchronization and during imaging post-synchronization in the agarose pad with addition of 500 μ M vanillate. Red arrows show MipZ-CFP internal clusters next to the newly replicated chromosomal origins. Scale bar = 1 μ m.

Figure S5, related to Fig. 4: ChpT access to the new swarmer pole is affected when chromosome segregation is disrupted.

(A) Percentage of cells with detectable foci at the swarmer pole at any time during time-lapse imaging of DivL-GFP and PopZ-YFP without *parA(K20R)* induction (dividing cells; -van) and with *parA(K20R)* induction (elongated cells only; +van). *parA(K20R)* was induced 30 min. pre- and post-synchronization with 500 μ M vanillate. Bars indicate mean from two biological replicates shown as individual datapoints. Total # of cells examined from two biological replicated in each case.

(B) Example from time lapse imaging of cells quantified in (A) for DivL-GFP. Green arrow shows DivL-GFP localization at the new swarmer pole. Red arrow shows DivL-GFP accumulation in a single internal cluster. Scale bar = 1 μ m.

(C) Time-lapses of ChpT-sfGFP in wild-type cells. Additional examples of individual cells from the one shown in Fig. 4A. See also Movie S1. Green arrow shows ChpT-sfGFP localization at the new swarmer pole and blue arrow shows ChpT-sfGFP localization at the old stalked pole. Scale bar = 1 μ m.

(D) Average fluorescence intensity profiles from the new pole to the old pole of the five individual cells shown in (C).

(E) Boxplot representing the length of detection of ChpT-sfGFP in wild-type cells at the new pole, based on the number of consecutive frame with a detectable ChpT-sfGFP polar cluster. The lower and upper boundaries of the boxes correspond to the 25% and 75% percentiles, respectively. The median is shown as a thick black line and the whiskers represent the minimum and maximum values.

(F) Timelapse of MipZ-CFP dynamics within a single cell expressing ectopic wild-type *parA*, induced 30 min. before synchronization and during imaging post-synchronization in the agarose pad with addition of 500 μ M vanillate. Green arrow shows MipZ-CFP localization at the new swarmer pole . Red arrow shows MipZ-CFP internal cluster. Scale bar = 1 μ m.

(G) As in (B) but for PopZ-YFP dynamics. The green arrow shows PopZ-YFP localization at the new swarmer pole. Scale bar = 1 μ m.

Figure S6, related to Fig. 5: ParA not bound to DNA recruits ChpT to the swarmer pole

(A-B) Full time lapses of CckA-GFP (A) and ChpT-sfGFP (B) dynamics in cells expressing parA(K20R) (+van) with (+xyl) or without (-xyl) induction of popZ expression, corresponding to Fig. 5A and B respectively. Scale bar = 1 μ m.

(C) YFP-MipZ internal clusters colocalize with ectopically produced ParA(K20R)-CFP. Time lapse imaging of YFP-MipZ and ParA(K20R)-CFP dynamics within a single cell expressing *parA(K20R)* (+van). *parA(K20R)* was induced 30 min. before synchronization and during imaging post-synchronization in the agarose pad with addition of 500 μ M vanillate. In the overlay, YFP-MipZ is shown in green and ParA(K20R)-CFP in red. Red arrows show the YFP-MipZ and ParA(K20R)-CFP internal cluster. Scale bar = 1 μ m.

(D) Bacterial two-hybrid assay testing the interaction of ChpT fused to the T25 *Bordetella* adenylate cyclase domain with ParA and ParA point mutants fused to the *Bordetella* T18 adenylate cyclase domain. When spotted on MacConkey agar plates supplemented with IPTG and maltose, interactions between the two fusion proteins result in a red color shift of the bacterial colony.

(E-F) Time lapse of the dynamics of ectopic ChpT-sfGFP and the ChpT(R167E,R169E,R171E)-sfGFP (ChpT*-sfGFP) mutant (+xyl) in cells that are not expressing parA(K20R). Compare to Fig. 5E and F, respectively. Note that the ChpT*-sfGFP point mutant fails to accumulate at the new pole prior to cell division, compared to ectopically produced wild-type ChpT-sfGFP (red arrow). Scale bar = 1 μ m.

Supplementary Table S1, related to STAR Methods, strain construction: Bacterial strains used in this study

Caulobacter crescentus strains		
ML1071	ChpT-YFP	This study
ML3415	eYFP-mipZ::mipZ	This study
ML3359	hfa::P _{lacl} -lacl P _{dnaA} ::P _{lac} P _{cum} -podJ P _{xyl} -ctrA	This study
ML3360	$hfa::P_{lacl}-lacl P_{dnaA}::P_{lac} P_{cum}-podJ P_{xyl}-ctrA \Delta 3\Omega$	This study
ML3361	CckA-GFP hfa::P _{lacl} -lacl P _{dnaA} ::P _{lac} P _{cum} -podJ	This study
ML3362	DivL-GFP hfa::P _{lacl} -lacl P _{dnaA} ::P _{lac} P _{cum} -podJ	This study
ML3363	ChpT-YFP hfa::P _{lacl} -lacl P _{dnaA} ::P _{lac} P _{cum} -podJ	This study
ML3364	hfa::P _{lacl} -lacl P _{dnaA} ::P _{lac} P _{xyl} -gcrA-3xflag P _{van} -ctrA	This study
ML3365	$hfa::P_{lacl}-lacl P_{dnaA}::P_{lac} P_{xyl}-gcrA-3xflag P_{van}-ctrA \Delta 3\Omega$	This study
ML3366	cckA(Y514D) P _{van} -hdaA	This study
ML3367	hfa::P _{lacl} -lacl P _{dnaA} ::P _{lac} P _{cum} -podJ P _{van} -PA5295	This study
ML3368	DivL-GFP hfa::P _{lacl} -lacl P _{dnaA} ::P _{lac} P _{xyl} -dnaA(R357A)	This study
ML3369	DivL-GFP hfa::P _{lacl} -lacl P _{dnaA} ::P _{lac} P _{xyl} -dnaA(R357A) P _{van} -ctrA	This study
ML3370	MipZ-CFP P _{van} -parA(K20R)	This study
ML3371	CckA-GFP P _{van} -parA(K20R)	This study
ML3372	DivL-GFP Pvan-parA(K20R)	This study
ML3373	ChpT-sfGFP	This study
ML3374	ChpT-sfGFP P _{van} -parA(K20R)	This study
ML3375	ChpT-sfGFP P _{van} -parA	This study
ML3376	MipZ-CFP P _{van} -parA	This study
ML3377	YFP-MipZ P _{van} -parA(K20R)-cfp	This study
ML3378	ChpT-YFP P _{van} -parA(K20R)-cfp	This study
ML3379	PopZ-YFP P _{van} -parA(K20R)	This study
ML3380	ChpT-sfGFP P _{van} -parA(K20R) P _{xyl} -popZ	This study
ML3381	CckA-GFP P _{van} -parA(K20R) P _{xyl} -popZ	This study
ML3382	xyl::P _{xyl} -chpT-sfgfp P _{van} -parA(K20R)	This study
ML3383	xyl::P _{xyl} -chpT(R167E)(R169E)(R171E)-sfgfp P _{van} -parA(K20R)	This study
ML3384	MipZ-CFP van::Pvan-1Xflag-parB(G101S)	This study
E. coli strains		
ML3385	BTH101 pKNT25-ChpT	This study
ML3386	BTH101 pKNT25-ChpT _{DHP}	This study

ML3387	BTH101 <i>p</i> KT25-CckA _{HK}	This study
ML3388	BTH101 pKNT25-ChpT(R167E)(R169E)(R171E)-T25	This study
ML3389	BTH101 <i>p</i> UT18C-ParB	This study
ML3390	BTH101 <i>p</i> UT18C-ParA	This study
ML3391	BTH101 <i>p</i> UT18C-ParA(R195E)	This study
ML3392	BTH101 pUT18C-ParA(K20R)	This study
ML3393	BTH101 <i>p</i> UT18C-ParA(K20R)(R195E)	This study
ML3394	BTH101 <i>p</i> UT18C-ParA(D44A)	This study
ML3395	BTH101 <i>p</i> UT18C-ParA(D44A)(R195E)	This study
ML3396	BTH101 <i>p</i> UT18C-ParA(G16V)	This study
ML3397	BTH101 pUT18-ChpT	This study
ML3398	BTH101 pUT18C-CckA _{RD}	This study
ML3399	BTH101 <i>p</i> UT18C-MipZ	This study
ML3400	BTH101 pUT18C-MipZ(R194A)	This study

Supplementary Table S2, related to STAR Methods, plasmid construction and quantitative PCR: Primers used in this study

Primers	
AAGCTTTCGCGAGACGTCCAATTGCATATGACCGAGACCGTCACCGAGACCAC	pYFPC2_chpT_up_F
GGGGGCGGTGGTCTCGGTGACGGTCTCGGTCATATGCAATTGGACGTCTCGCG AAAGCTT	pYFPC2_chpT_up_R
GACCCCCGTGAAGAGCTCCTCGCCCTTCGACATGGTGGCGCCCGAGCCCCGC GCCGGGACCCAGGCGGCGATCGAGGCGCG	chpT_dwn_sfGFP_up_R
ACGCATGGCATGGATGAACTCTACAAGTAAGCTAGCTGCAGCCCGGGGGGATCC ACTAGTT	sfGFP_dwn_pYFPC2_F
cagacgctcgagttttggggagacgaccatATGACCGAGACCGTCACCGAGACCACCGCC	pBX_chpT_up_F
AACTAGTGGATCCCCCGGGCTGCAGCTAGCTTACTTGTAGAGTTCATCCATGCC ATGCGT	sfGFP_pXGFPC_down_R2
ACGCATGGCATGGATGAACTCTACAAGTAAGCTAGCTGCAGCCCGGGGGGATCC ACTAGTT	sfGFP_pXGFPC_down_F2
GGCGGTGGTCTCGGTGACGGTCTCGGTCATatggtcgtctccccaaaactcgagcgtctg	pBX_chpT_up_R
CTGTTTGTAACTAGTAGAGGAAGCTTCCGCATGACGGCGGCTTCGCCATGGAG C	podJ_4pQF_124
GAGCTCGGTACCTCGAGATCTTCTAGAGTCttattaTTAGCGCGCGTAGACCGACA GGCG	podJ_4pQF_last24
CATGCGGAAGCTTCCTCTACTAGT	pQF_CPEC_up
GACTCTAGAAGATCTCGAGGTACCG	pQF_CPEC_noFLAG_down
GGAATTCCATATGCGCGTACTGTTGATCGA	ctrA_Ndel_F
CTAGCTAGCTCATCAGGCGGCGTTAACCTGCT	ctrA-extrastop-NheI-R
tgtatcGCTAGCtcatcaatcaatcaccggatccc	ctrA∆3W -Nhel-R
GACGCTGTCGGTGAAACGGTC	dnaA 10681048
gcCGAGCTGGAAGGCGCGCTGAACACC	dnaA 10691095 R357A
CGGgaattcTTATTATTAGCCCCGCAGCTTGCGCG	DnaA_rev_3xTAA_EcoRI
AGATCATATGACCATGAAGGGCGGGGTTGC	Ndel_DnaA_123
GGAGACGACCATATGGTGTCCGCTAAT	pXYFP_ParA_Ndel_up_F
CGAGCTCTTATTAGGCGGCCTTGGCCTGGCG	ParA_TAATAA_Sacl_R
GCCGAACCACGATGCGAGGAAACGCATATGGTGTCCGCTAATCCTCTCCGCGT TCTGGCT	pRVMCS-6_parA_up_F
GCACCGGTACGTAGATCTTAAGAGCTCTTATTAGGCGGCCTTGGCCTGGCGAT CGCGTTC	pRVMCS-6_parA_down_R
GAACGCGATCGCCAGGCCAAGGCCGCCTAATAAGAGCTCTTAAGATCTACGTA CCGGTGC	pRVMCS-6_parA_down_F
GGTGCCCTTAAACGCCTGGTTCTACGCCTG	pRVMCS6_upcat_R
AGCCAGAACGCGGAGAGGATTAGCGGACACCATATGCGTTTCCTCGCATCGTG GTTCGGC	pRVMCS6_parA_up_R
CCCCTTTCGCCAGCAGATCCGTCGGTCCCT	pRMCS_mid_F
	parA_CFP_R
CGCGAACGCGATCGCCAGGCCAAGGCCGCCcctgcaggcgccttaattaatatgcatggt	parA_CFP_F
CTCTAGAACTAGTGGATCCCCCGGGCTGCAGCTAGCttacttgtacagctcgtccatgcc	CFP_pRVMCS6_dwn_R
ggcatggacgagctgtacaagtaaGCTAGCTGCAGCCCGGGGGATCCACTAGTTCTAGAG	CFP_pRVMCS6_dwn_F
cagacgctcgagttttggggagacgaccatATGTCCGATCAGTCTCAAGAACCTACAATG	pBX_popZ_up_F
actagtggatcccccgggctgcaggaattcTTAGGCGCCGCGTCCCCGAGAGATACGCTG	pB_popZ_down_R
CAGCGTATCTCTCGGGGACGCGGCGCCTAAgaattcctgcagcccgggggatccactagt	pB_popZ_down_F

CATTGTAGGTTCTTGAGACTGATCGGACATatggtcgtctccccaaaactcgagcgtctg	pBX_popZ_up_R
acaatttcacacaggaaacagctATGACCGAGACCGTCACCGAGACCACCG	pKNT25 chpT up F
CGGTGGTCTCGGTGACGGTCTCGGTCATagctgtttcctgtgtgaaattgt	pKNT25 chpT up R
CTCGATCGCCGCCTGGGTCCCGGCGTCGAATTCAATGACCATGCAGCAAT	pKNT25 chpT down F
ATTGCTGCATGGTCATTGAATTCGACGCCGGGACCCAGGCGGCGATCGAG	pKNT25_chpT_down_R
CCGAGTGGCCTTCGGCGCCTCGGATTCAATGACCATGCAGCAAT	pKNT25_chpTDHP_down_F
ATTGCTGCATGGTCATTGAATTCGAGGCCGAGGCGCCGAAGGCCACTCGG	pKNT25_chpTDHP_down_R
GGGATCCTCTAGAGTCGACCCTGCAGCCCG	pKT25_up_R
TAActaagaattcggccgtcgttttacaac	pKT25_down_F
CGGGCTGCAGGGTCGACTCTAGAGGATCCCCGCGGCTCAGCGCTTTCCGGCG GCGACGCC	pKT25_cckA_HK_up_F
gttgtaaaacgacggccgaattcttagTTAGGCGCCCGACAGGTCGCGAGCGCGCGCGG	pKT25_cckA_HK_down_R
CTAAAGGGCGAGCCGCTGGCCGAGGGCCT	R167E169E171E_short2_F
TTGGCGTCGGCGATGATCGAGAAGCGCCCG	R167E169E171E_short2_R
CGGGCGCTTCTCGATCATCGCCGACGCCAAGGGCCCGGAGGCGGAGCTGGAG CCGGAGGTGCTGGCGGGCCTAAAGGGCGAGCCGCTGGCCGAGGGCCT	R167E169E171E_ultramer
AGGCCCTCGGCCAGCGGCTCGCCCTTTAGGCCCGCCAGCACCTCCGGCTCCA GCTCCGCCTCCGGGCCCTTGGCGTCGGCGATGATCGAGAAGCGCCCG	R167E169E171E_ultramer_ R
CTGCAGGTCGACTCTAGAGGATCCCGAGTCCGTCGTGGTGGGAGAGCCCG	pUT18C_parB_up_F
CGGGCTCTCCCACCACGACGGACTCGGGATCCTCTAGAGTCGACCTGCAG	pUT18C_parB_up_R
CAACCGACTGACGCGCGGGGATCTAACTAAGTAAtatggtgcactctcagt	pUT18C_parB_down_F
actgagagtgcaccataTTACTTAGTTAGATCCCGCGCGTCAGTCGGTTG	pUT18C_parB_down_R
CTGCAGGTCGACTCTAGAGGATCCCTCCGCTAATCCTCTCCGCGTTCTGG	pUT18C_parA_up_F
CCAGAACGCGGAGAGGATTAGCGGAGGGATCCTCTAGAGTCGACCTGCAG	pUT18C_parA_up_R
ACGCGATCGCCAGGCCAAGGCCGCCTAACTAAGTAAtatggtgcactctc	pUT18C_parA_down_F
gagagtgcaccataTTACTTAGTTAGGCGGCCTTGGCCTGGCGATCGCGT	pUT18C_parA_down_R
TCGTACATGGTCAGCACAACCCCTTGGATC	ParAR195E_R
CAGCTTGTCGGAACAGGTCGCCAAGGACGT	ParAR195E_F
GATCCAAGGGGTTGTGCTGACCATGTACGACCGCGAGAACAGCTTGTCGGAAC AGGTCGCCAAGGACGT	ultramer_parAR195E_F
	ultramer parAR195F R
AGGGCAACTGTTCCACGGGGCTTGGCATTG	ParAD44A F
TCGATCAGCAGCACGCGCTCGCCGCAGGCG	ParAD44A R
CGCCTGCGGCGAGCGCGTGCTGCTGATCGACGCCGCCCCGCAGGGCAACTGT TCCACGGGGCTTGGCATTG	ParAD44A_ultramer_F
CAATGCCAAGCCCCGTGGAACAGTTGCCCTGCGGGGCGGCGTCGATCAGCAG CACGCGCTCGCCGCAGGCG	ParAD44A_ultramer_R
TGGGGAAGACCACGACCGCGATCAATCTGG	ParAG16V_F
GATTGGCGATAGCCAGAACGCGGAGAGGAT	ParAG16V_R
ATCCTCTCCGCGTTCTGGCTATCGCCAATCAAAAGGTCGGGGGGGG	ParAG16V_ultramer_F
CCAGATTGATCGCGGTCGTGGTCTTCCCCACCCCGACCTTTTGATTGGCGATAG	ParAG16V ultramer R
tATGACCATGATTACGCCAAGCTTGACCGAGACCGTCACCGAGACCACCG	pUT18 chpT up F
CGGTGGTCTCGGTGACGGTCTCGGTCAAGCTTGGCGTAATCATGGTCATa	pUT18_chpT_up_R
CTCGATCGCCGCCTGGGTCCCGGCGTCGAATTCAGCCGCCAGCGAGGCCA	pUT18_chpT_down_F
TGGCCTCGCTGGCGGCTGAATTCGACGCCGGGACCCAGGCGGCGATCGAG	pUT18_chpT_down_R

CTGCAGGTCGACTCTAGAGGATCCCCGCATCCTGTTCGTCGAGGACGAGG	pUT18C cckA RD up F
CCTCGTCCTCGACGAACAGGATGCGGGGATCCTCTAGAGTCGACCTGCAG	pUT18C cckA RD up R
CAAGCAGCAGCTGCAGGCGGCGTAACTAAGTAAtatggtgcactctcagt	pUT18C cckA RD down F
actgagagtgcaccataTTACTTAGTTACGCCGCCTGCAGCTGCTGCTTG	pUT18C cckA RD down R
CTGCAGGTCGACTCTAGAGGATCCCGCCGAAACGCGCGTTATCGTCGTCG	pUT18C mipZ up F
CGACGACGATAACGCGCGTTTCGGCGGGATCCTCTAGAGTCGACCTGCAG	pUT18C mipZ up R
CGAGACGATGCTGGCGGCGCAGTAACTAAGTAAtatggtgcactctcagt	pUT18C mipZ down F
actgagagtgcaccataTTACTTAGTTACTGCGCCGCCAGCATCGTCTCG	pUT18C mipZ down R
AAGCGTCTGGAGGACCGCCTCAACGCTTTG	mipZR194A F
TGGTGGCCAGGCGGTTGCGCAGCACCACCC	mipZR194A R
GGGTGGTGCTGCGCAACCGCCTGGCCACCACCGAGGCGGCCAACCGCAAGCG	
	ultramer_mipZR194A_F
GCCAGGCGGTTGCGCAGCACCACCC	ultramer mipZR194A R
GAGCAATGCGACCGTTGATC	Cori_2_F
CGGTTGCTTAACCACTTGCC	Cori_2_R
GGGCATGTCGTTGTAGTGGA	CCNA_03518_F
AACAAGAAGGCGAATCCGGT	CCNA_03518_R
GACGACGGAATGCTCGAGAT	CCNA_00623_F
GTGTCATCCACCTGCGAGAA	CCNA_00623_R
CGGCCATAGATGTCGAAGCT	CCNA_02846_F
TCGCAATCTGAACGACACCA	CCNA_02846_R
ATGGGCTTTGAGACCTCTGC	CCNA_02189_F
CGAAGCGCCTCATAGATCGT	CCNA_02189_R
ACTATCGCAGCGTCTTCTCG	CCNA_02567_F
GTCCATCATTTCGGCTTCGC	CCNA_02567_R
TTCGTCTGGTTCTGGCTGTC	CCNA_01869_F
CGTCAGCGTCTACGACTACC	CCNA_01869_R
ACATCGTCTACATCGGCGAC	rpoA_qPCR_1
GGCGAGCACTTCCTTGATCT	rpoA_qPCR_2
GTACGACCCTGACCAAGGAA	ctrA_qPCR_1
GCAGATGAAGACGTCGATGA	ctrA_qPCR_5
GTTACGAGACCCTGCAGACC	divK_qPCR_1
TCGTCTTCCTTCAGCCACTT	divK_qPCR_2
GGATCTGGATCTGGAAGTCG	pdeA_qPCR_3
AAGCCTTGGCCATAGTCACA	pdeA_qPCR_5
ATCACCGGCATCGATCACTC	podJ_qPCR_1
CTGCTCGGTCTTCAGTTCGT	podJ_qPCR_2

Supplementary Table S3, related to STAR Methods, plasmid construction: Plasmids used in this study

Plasmids		
ML3401	pYFPC-2-chpT-sfgfp	This study
ML3402	p RVMCS-5- $ctrA\Delta 3\Omega$	This study
ML3403	pQF-podJ	This study
ML3405	pRVMCS-5-ctrA	This study
ML3406	pBXMCS-2-dnaA(R357A)	This study
ML3407	pRVMCS-6-parA	This study
ML3408	pRVMCS-6-parA(K20R)	This study
ML3409	pRVMCS-6-parA(K20R)-cfp	This study
ML3410	pBXMCS-2-popZ	This study
ML3411	pBXMCS-4-popZ	This study
ML3412	pXGFPC-2-chpT-sfgfp	This study
ML3413	pXGFPC-2-chpT(R167E)(R169E)(R171E)-sfgfp	This study