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Supplementary Note 1: NiPS3 single crystal characterization
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Supplementary Fig. 1 Magnetic susceptibility of our NiPS3 crystal. In-plane mag-
netic susceptibility χ as a function of temperature. The inset shows its derivative with
respect to temperature, with the anomaly indicating that TN ∼ 157 K for this crystal.
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Supplementary Fig. 2 Heat capacity of our NiPS3 crystal. Heat capacity as a function
of temperature. The curve shows an anomaly at TN like the magnetic susceptibility.



Supplementary Note 2: Data analysis procedure for the ultrafast
spectrally-resolved THz transmission measurement

In order to fully characterize the low-energy response of NiPS3 to photoexcitation at

1.55 eV, we measure the complete time- and frequency-resolved change in the THz

transmission (commonly referred to as a “two-dimensional (2D) scan”). The experi-

mental details of this technique are presented in the Methods section. Here, we describe

our data analysis procedure for extracting the pump-induced changes in the optical prop-

erties of NiPS3.

The most general approach for obtaining the complex optical parameters from a

THz transmission experiment is the transfer matrix method1, 2. This method calculates

the transmission coefficient through a multilayer structure as a product of matrices. The

transfer matrix of light at normal incidence passing through the j th layer with complex

refractive index ñj and thickness dj is given by

Mj =

 cos
(
ωñjdj
c

)
− i

ñj
sin
(
ωñjdj
c

)
−iñjsin

(
ωñjdj
c

)
cos
(
ωñjdj
c

)
 , (1)

where c is the speed of light. To obtain the total transfer matrix of the system, we take

the product of the transfer matrices of each individual layer:

Mtot =
N∏
j=1

Mj =

 m11 m12

m21 m22

 , (2)

where N is the total number of layers in the structure. We can then derive the transmis-

sion coefficient of the system in terms of the matrix elements of Mtot:

t =
2ñi

ñim11 + ñiñfm12 +m21 + ñfm22

, (3)
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where the indices i and f refer to the initial and final layers of the stack.

In our ultrafast THz measurement, we detect the THz electric field transmitted

through the photoexcited sample (Epump(t)) and compare it to that transmitted through

the sample in equilibrium (E0(t)) when the pump pulse is blocked by the optical chop-

per. By taking the difference ∆E(t) = Epump(t) − E0(t) and performing a Fourier

transform, we can relate these measured quantities to the change in the complex trans-

mission coefficient by
∆E(ω)

E0(ω)
=
tpump(ω)− t0(ω)

t0(ω)
, (4)

where tpump(ω) and t0(ω) are the transmission coefficients through the photoexcited and

equilibrium samples, respectively. From this, we obtain the measured change in the

transmission coefficient.

The next step is to calculate the transmission through the photoexcited and equilib-

rium samples using the transfer matrix method as described above. The photoinduced

change in the complex refractive index of the material is expected to decay exponen-

tially in the direction of light propagation z as ñ(ω, z) = ñ0(ω) + ∆ñ(ω)e−z/dp , where

ñ0(ω) is the index of the sample in equilibrium and dp is the penetration depth of the

pump beam. Therefore, the sample can be partitioned into N homogeneous layers of

thickness d with refractive index ñ(ω, z) determined by the distance z of each layer.

Applying the transfer matrix method, one can calculate the change in the transmission

coefficient, and by comparing this to the measured value, the change in the complex

refractive index ∆ñ(ω) = ∆n(ω)− i∆κ(ω) can be extracted for each frequency in the

THz probe spectrum. Throughout this analysis, we assume that the magnetic contribu-

tion to the refractive index is small so that we can determine quantitative parameters of

the Drude response. Therefore, from ∆ñ(ω) we can obtain the photoinduced changes
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in other relevant optical parameters such as the absorption coefficient ∆α(ω) and the

complex optical conductivity ∆σ(ω) = ∆σ1(ω) + i∆σ2(ω).

k

ni

0 dp d z

NiPS3

npump
˜ 

L

˜ n0
˜(ω) (ω) (ω)

Supplementary Fig. 3 Illustration of the length scales involved in our ultrafast THz
transmission experiment. The sample thickness is d = 1.2 mm and the penetration
depth of the 1.55 eV pump pulse is dp = 4.28 µm. We use a total thickness L = 3dp
to represent the photoexcited region, which is partitioned into 4 layers (black dashed
rectangles) and has a complex refractive index ñpump(ω). The complex index of the
sample in equilibrium is denoted by ñ0(ω). The light propagates through the multilayer
stack in the z direction at normal incidence starting from air (ñi(ω) = 1).

In the case of our ultrafast THz transmission experiment on NiPS3, the penetration

depth of the 1.55 eV pump pulse is dp = 4.28 µm, whereas the sample thickness is

d =1.2 mm and the penetration depth of the THz probe beam is > 2 mm for all fre-

quencies in our THz spectrum. A common approximation that is made in ultrafast THz

transmission measurements is to treat the photoexcited region as a single, homogeneous

layer of thickness dp3, 4. However, a recent study that analyzed various approximations

used in ultrafast THz measurements found that one should be cautious when applying

such approximations as the calculated optical quantities can deviate significantly from
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the actual ones2. Therefore, we analyzed our data with the full transfer matrix method

by partitioning the photoexcited region into multiple layers. We used a total thickness of

L = 3dp = 12.84 µm (corresponding to the distance at which the photoinduced change

in the index drops to e−3, i.e. 0.05 times its initial value) to represent the photoexcited

region rather than the entire sample thickness, as the sample thickness is much larger

than dp and it becomes computationally costly to perform the transfer matrix calcula-

tion for a large number of layers. Supplementary Fig. 3 depicts a diagram of our sample

dimensions including the photoexcited region (with index ñpump(ω)) and the unexcited

part of the sample (with index ñ0(ω), which was determined from our equilibrium time-

domain THz spectroscopy measurement). The photoinduced change in the index is

given by ∆ñ(ω) = ñpump(ω)− ñ0(ω). The transmission coefficient through the sample

following photoexcitation is

tpump(ω) =
2

m11 + ñ0m12 +m21 + ñ0m22

. (5)

The matrix elements are calculated from

Mtot =

 m11 m12

m21 m22

 =
N∏
j=1

 cos
(
ωñjdj
c

)
− i

ñj
sin
(
ωñjdj
c

)
−iñjsin

(
ωñjdj
c

)
cos
(
ωñjdj
c

)
 , (6)

where ñj = ñ0 + ∆ñe−(j−0.5)dj/dp (we use the z value at the center of each layer) and

dj = L/N = 3dp/N . The transmission coefficient in the absence of the pump pulse is

given by

t0(ω) =
2

1 + ñ0

e−iωñ0L/c. (7)

To determine the number of layers N needed to obtain a solution with minimal error,

we computed ∆σ1(ω) at a pump-probe delay of t = 1.6 ps (the time delay at which the
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Supplementary Fig. 4 Equilibrium refractive index of NiPS3. Real part of the re-
fractive index in equilibrium as a function of frequency measured by time-domain THz
spectroscopy. The index shows almost no frequency dependence throughout the mea-
sured spectrum.

Drude response is a maximum - see Fig. 2c in the main text) for several values of N .

We found that the extracted optical parameters converge rapidly with increasing values

of N . Given this and the fact that it is computationally time consuming to analyze the

entire 2D map for large values of N , we have used N = 4 to produce the plots in

Fig. 2 in the main text. We note that the real part of the refractive index in equilibrium

(n0) is nearly constant across the measured THz spectrum (Supplementary Fig. 4) and

it exhibits almost no change upon photoexcitation.

When determining the photoinduced changes in the optical parameters of the sys-

tem, it is very important to carefully take into account the mismatch between the pen-

etration depths of the pump and probe and their relation to the THz wavelengths over

the entire probe spectrum. If we neglect the penetration depth mismatch and instead

assume that the pump excitation is uniform across the entire sample thickness, we find
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that this analysis underestimates ∆σ1 by two orders of magnitude.

We note that all of the above analysis can only be applied to measure the quasi-

steady state response of the system, i.e. pump-induced changes that vary on a timescale

that is slow compared to the duration of the THz pulse (∼ 1 ps). This is indeed the situa-

tion in NiPS3, where the non-equilibrium Drude response and redshifted magnon persist

for more than 15 ps (see Fig. 2d in the main text). Moreover, the presence of coherent

magnon oscillations has been independently verified in our THz emission measurements

(see Supplementary Note 5C). When analyzing the dynamics of a system at early pump

probe delays (< 1 ps), one needs to utilize a more involved approach, such as the finite-

difference time-domain method5, which takes into account the response function of the

experimental setup. However, this method requires a model of the photoinduced carrier

dynamics to be known a priori.

Supplementary Note 3: Experimental details of the ultrafast mea-
surements

A. Photoexcitation scheme

In our ultrafast THz experiments, we photoexcite NiPS3 in the spectral region of the

spin–orbit-entangled excitons. We use a pump photon energy of 1.55 eV, which lies

well below the tail of the charge-transfer (CT) gap. To verify this, in Supplementary

Fig. 5 we show the optical absorption of NiPS3 in equilibrium over an extended energy

range compared to that of Fig. 1b in the main text. The blue curve is the data from

Fig. 1b, and the red curve is determined from ellipsometry data presented in Ref. 6. This

plot of the absorption coefficient demonstrates that our pump photon energy of 1.55 eV

is indeed well below the CT gap. From the absorbed pump fluence and photoexcited

volume, we estimate an initial density of excitons on the order of 1019 cm−3. A fraction
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(∼ 10−5) of these excitons subsequently dissociate, giving rise to itinerant carriers that

produce the Drude response (see Supplementary Note 4 for a calculation of the density

of the itinerant carriers). Therefore, in the photoinduced state there is a coexistence

of excitons (that have not dissociated) and mobile carriers. These two populations are

likely to follow independent dynamics and thus there is no contradiction between the

time evolution of the Drude response and the exciton coherence lifetime. Moreover, we

note that the exciton coherence lifetime is at least 10 ps. This lower bound is set by the

linewidth of the exciton resonance in the equilibrium optical absorption spectrum (0.4

meV)7, which is limited by the experimental resolution and also accounts for possible

inhomogeneous broadening.

B. Rise time of the pump-probe traces

Supplementary Fig. 6 shows a representative trace of the pump-induced change in the

THz electric field (∆E) in NiPS3 along with the pump-probe signal of a test sample of

high-resistivity silicon (Si). The signal of Si stems from the free-carrier absorption in

the THz range that follows above-gap excitation at 1.55 eV. The rise in both curves is

identical, indicating that the rise time is limited by the intrinsic time resolution of our

THz setup. In this plot, the absorbed fluence is 0.3 mJ/cm2 for Si and 0.5 mJ/cm2 for

NiPS3, but all fluences showed the same resolution-limited rise time.

Supplementary Note 4: Nature of the Drude response

To obtain more quantitative information about the exciton-driven conducting state in

NiPS3, we examine the pump-induced change in the optical conductivity as a function

of frequency at the pump-probe delay of the maximum Drude response. Supplemen-

tary Figs. 7a and 7b show the real (∆σ1) and imaginary (∆σ2) parts, respectively, of
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Supplementary Fig. 5 Optical absorption of NiPS3 over an extended energy range.
Absorption coefficient (α) in equilibrium. The blue curve is the absorption data shown
in Fig. 1b in the main text and the red curve is the absorption coefficient determined from
ellipsometry measurements reported in Ref. 6. The former includes the two broad on-
site d-d transitions around 1.1 and 1.7 eV and the narrow spin–orbit-entangled excitons
around 1.5 eV, and the latter shows the energy of the charge-transfer (CT) gap. The
absorption plotted over this extended energy range highlights the fact that our pump
pulse energy of 1.55 eV lies well below the tail of the CT gap.

the change in conductivity at a time delay of 1.6 ps. The conductivity values that we

observe are comparable to those reported in previous experiments on other materials in

which excitons dissociate8, 9. Ignoring the magnon part of the spectrum, the two curves

can be accurately fit simultaneously to a Drude response using the program RefFIT10.

As mentioned in the main text, we extracted a plasma frequency of ωp = 4.7 meV and a

total scattering rate of γ = 4 meV. From these values, we can estimate the carrier mobil-

ity to be µ ∼ 1800 cm2/(Vs), relying on the bare electron mass. This value changes to

µ ∼ 1100−2300 cm2/(Vs) when taking into account the carrier effective mass estimated

from electronic structure calculations (m∗ ∼ 0.78 − 1.6me)11. From the values of ωp
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Supplementary Fig. 6 Resolution-limited rise time of the THz transmission experi-
ment. Comparison of the pump-induced change in the THz electric field (∆E) in NiPS3

and a test sample of high-resistivity silicon. The rise of the pump-induced THz electric
field in both cases is identical, indicating that it is limited by the intrinsic time resolution
of our setup.

and m∗, we also estimate that the density of itinerant carriers is in the range of 3× 1014

to 6× 1014 cm−3. This density can be further increased by increasing the pump fluence.

In our ultrafast THz spectroscopy experiments, this is hindered by the constraint that the

pump spot size must be larger than the THz probe to ensure a uniform illumination.

Next, we establish that the time evolution of the Drude signal is solely governed by

the change in ωp and not by the variation of γ. This information is encoded in ∆σ2 (Sup-

plementary Fig. 8) since the peak associated with the reactive part of the Drude response

provides an estimate of the total scattering rate γ3, 12. Supplementary Fig. 8a shows the

full spectro-temporal evolution of ∆σ2, and Supplementary Fig. 8b is a top view of

Supplementary Fig. 8a zoomed into lower energies corresponding to the Drude contri-

bution. We observe that the peak in the ∆σ2 signal remains constant around 4 meV

over time. Another visualization of this feature is offered in Supplementary Fig. 8c,
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Supplementary Fig. 7 Fit of the photoinduced Drude response. Pump-induced
change in the real (∆σ1, a) and imaginary (∆σ2, b) parts of the optical conductivity
as a function of frequency at a pump-probe delay of 1.6 ps. The blue curves represent
the data and the black dashed lines are fits to a Lorentzian centered at zero frequency.

where the ∆σ2 spectrum is compared at a few representative pump-probe delays. The

observation that γ does not vary in time indicates that the mobile carriers produced by

exciton dissociation are cold and lie around the band edges13. This is in stark contrast

to the cooling processes that are still active after 1 ps in materials where high-energy

bosons are emitted upon injection of hot carriers14. Consequently, the exciton dissoci-

ation in NiPS3 results in mobile carriers that do not possess enough excess energy to

emit hot optical phonons and high-frequency magnons, which is a crucial aspect in the

preservation of the underlying antiferromagnetic order at all time delays (signaled by

the persistence of the sharp q = 0 magnon mode). Further evidence that the decay of the

Drude response is due to a decrease in ωp is given by the depletion in the spectral weight

of ∆σ1 over time (Supplementary Fig. 14), as this quantity is directly proportional to ω2
p

by the optical sum rule.
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Supplementary Fig. 8 Time independence of the Drude scattering rate. a, Spectro-
temporal evolution of the pump-induced change in the imaginary part of the optical con-
ductivity (∆σ2). The temperature is 20 K and the absorbed pump fluence is 1.3 mJ/cm2.
The two features present are a broad peak around 4 meV associated with the Drude
response and a Lorentzian lineshape around the magnon energy. b, Top view of a show-
ing only the Drude contribution. c, Spectral dependence of ∆σ2 at a few representative
pump-probe delay times. We see that the peak of the ∆σ2 signal does not vary over
time, indicating a constant scattering rate.
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Supplementary Fig. 9 Fluence and temperature independence of the Drude decay
time. a,b, Temporal evolution of the pump-induced change in the THz electric field
(∆E) of the spectrally-integrated measurement as a function of absorbed pump fluence
at 20 K (a, same as Fig. 2d in the main text) and as a function of temperature at an
absorbed pump fluence of 1.6 mJ/cm2 (b). c,d, Dependence of the exponential decay
time on the absorbed pump fluence (c) and on temperature (d) extracted from the fits to
the data in a and b, respectively. There is almost no variation in the decay time in either
case, demonstrating that the itinerant carrier recombination dynamics is dominated by
their localization in deep traps and that carriers are not subsequently thermally activated.
The error bars in c and d represent the 95% confidence interval of the fits.
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For these reasons, we can relate the decay of the Drude conductivity to the recom-

bination dynamics of the mobile carriers. To unravel which recombination mechanisms

contribute to the decay, we measure the ultrafast THz transmission as a function of

absorbed fluence (Supplementary Fig. 9a, same as Fig. 2d in the main text) and tem-

perature (Supplementary Fig. 9b). We observe that all the temporal traces can be fit

with only one exponential function, indicating the presence of a single recombination

pathway for the mobile carriers. The fluence dependence of the exponential decay time

is shown in Supplementary Fig. 9c. The decay time is nearly independent of fluence,

which suggests that the carrier recombination dynamics is governed by their trapping

or self-trapping at deep impurity centers or defects as described by Shockley-Read-Hall

(SRH) theory15, 16. The general equation governing the lifetime τ of free carriers in

semiconductors is
1

τ
= A + Bn + Cn2, where n is the carrier density and A, B, and

C are the coefficients for nonradiative recombination (SRH), radiative recombination,

and Auger recombination, respectively17. Here, the first term is responsible for the ob-

served nearly fluence-independent decay time. In Supplementary Fig. 9d, we show the

temperature dependence of the exponential decay time. The decay time is also constant

with temperature, confirming that the trapped levels are deep and no thermal activation

of carriers occurs after their localization18. Therefore, the depletion of the THz spectral

weight is accompanied by its transfer to another spectral region outside of our measured

range, most likely in the mid- or near-infrared (i.e. where impurity centers and small

polarons absorb light)19.

We also verified that the observed Drude signal stems from the transport of quasi-

free carriers and it is not due to the band-like motion of large polaronic carriers20, 21.

In order for a large polaron to form in a deformable medium, the long-range Coulomb

potential V LR(r) between an excess carrier and the ionic lattice must be large. This
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potential can be expressed as

V LR(r) = −

[
1

εr(∞)
− 1

εr(0)

]
e2

|r|ε0
, (8)

where r is the vector between an electron and an ionic site, e is the electron charge, ε0 is

the vacuum permittivity, and εr(0) and εr(∞) are the static and high-frequency dielec-

tric constants, respectively. The form of the expression ensures that the fast electronic

contribution to the polarizability is canceled and only the nuclear contribution is taken

into account. As established in polaron theory22, large polaron formation is possible

only when εr(0) is at least twice the value of εr(∞). In NiPS3, our static THz data show

that εr(0) = 7.9. In contrast, εr(∞) can be extracted from optical spectroscopy data in

a frequency range that is above the relevant longitudinal optical phonon energies but

below the energy of the lowest interband transitions. A reasonable choice of the photon

energy in NiPS3 is in the range 0.3 − 1 eV. At these energies εr(∞) = 9.3 − 106, 23, i.e.

a value that is even larger than εr(0). For this reason, we can rule out a large polaron

origin for the coherent Drude response detected in our ultrafast THz transmission exper-

iment and conclude that the carriers involved in the itinerant transport have a quasi-free

character. This indicates that the effective mass that is relevant to estimate the carrier

mobility is the one extracted from electronic structure calculations that do not account

for electron-phonon coupling11. Indeed, no mass enhancement due to a Fröhlich-type

electron-phonon coupling is expected for NiPS3. These arguments confirm that the car-

rier mobility lies in the 103 cm2/(Vs) range, i.e. well above the typical carrier mobilities

>1 cm2/(Vs) expected from the large polaron scenario (which would require an unrea-

sonable m∗ > 1000me).

Finally, we remark that the existence of the itinerant conductivity, caused by the dis-

sociation of the photogenerated excitons, is not associated with those excitons having a
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coupling to magnetic degrees of freedom. Indeed, bare excitons (regular electron-hole

bound states) that dissociate through exciton-exciton interactions or pump-induced ex-

citon photoionization can give rise to photoconductivity as has been found in a variety

of band semiconductors24–28. However, the Drude signal in NiPS3 becomes stronger

with decreasing temperature below TN (Supplementary Fig. 9b). This is due to the in-

creased exciton optical absorption (i.e. oscillator strength) as the temperature is lowered

below TN . Overall, our main result of the coexistence of the Drude response and the

long-wavelength antiferromagnetic magnon is observed only at temperatures below TN .

Supplementary Note 5: Mechanism of the coherent magnon genera-
tion

A. Pump polarization dependence

To establish that the coherent magnon is launched via the photogenerated spin–orbit-

entangled excitons, we rule out other conventional mechanisms that are involved in

coherent magnon generation in solids. This is achieved through a detailed pump polar-

ization dependence. Supplementary Fig. 10a shows the emitted THz electric field (E)

for different linear polarization directions of the pump pulse. There is no change in the

phase of the magnon oscillations, which rules out the inverse Cotton-Mouton effect as

the generation mechanism29. Supplementary Fig. 10b compares the magnon oscillations

when the pump pulse is right and left circularly polarized. The same oscillation phase

is again observed, this time ruling out the inverse Faraday effect30.

B. Pump fluence dependence of the magnon energy

In this section, we demonstrate that the dependence of the magnon energy on the ab-

sorbed pump laser fluence (shown in Figs. 3e,f in the main text) is non-thermal. Sup-
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Supplementary Fig. 10 Pump polarization dependence for NiPS3. a, Dependence of
the emitted THz electric field (E) on various linear polarization directions of the pump
beam. The temperature is 20 K and the absorbed fluence is 1.6 mJ/cm2. There is no
change in phase of the magnon oscillations, ruling out the inverse Cotton-Mouton effect
as the mechanism responsible for launching the coherent magnon. b, Dependence of the
THz emission signal on left (blue) and right (red) circularly polarized light. Again, the
oscillation phase remains unchanged, this time indicating that the magnon excitation is
not due to the inverse Faraday effect.

plementary Fig. 11 presents the data from Fig. 3f at 110 K (red points) along with the

change in energy that would occur thermally from the increase in the lattice temperature

due to the pump laser at each fluence (violet points). The change in temperature is cal-

culated from the heat deposited into the sample by the pump at a given fluence and the

heat capacity of NiPS3 (Supplementary Fig. 2). Then this calculated temperature change

is added to the starting temperature to obtain the effective temperature (x axis of Sup-

plementary Fig. 11) of the sample during the measurement at a particular fluence. The

data point at 110 K corresponds to the magnon energy in equilibrium (no pump beam)

and is obtained by interpolating the order-parameter-like dependence of the energy as a

function of temperature in equilibrium (Fig. 3d in the main text, violet points). Thus,
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Supplementary Fig. 11 Non-thermal nature of the fluence dependence of the
magnon energy. Dependence of the magnon energy on the effective temperature of
the sample. The red points are extracted from the THz emission measurements upon
photoexcitation at 110 K (same as those shown in Fig. 3f in the main text). The vio-
let points represent the thermal change in the magnon energy and are calculated from
the heat deposited in the sample for each absorbed pump fluence and the heat capacity
data. The violet data point at 110 K corresponds to the magnon energy in equilibrium
at this temperature. This confirms that our photoexcitation mechanism is non-thermal
in nature. The error bars are similarly defined as in Figs. 3d,f in the main text.

from Supplementary Fig. 11 we can see that the decrease in energy observed in the THz

emission experiment (red points) is substantially larger than what would be detected if

the action of the pump was purely thermal in nature (violet points). Further evidence

that the mechanism responsible for launching the coherent magnon is non-thermal is

that the magnon oscillations begin during the rise of the Drude, as discussed in the main

text.

C. THz transmission and THz emission comparison

In this section, we verify that the oscillations observed in the THz transmission exper-

iment (Fig. 2 in the main text) are the same magnon oscillations detected with THz
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Supplementary Fig. 12 Comparison of magnon oscillations in the THz transmis-
sion and emission experiments. Oscillations from the THz transmission experiment
(red) plotted with the THz emission signal (blue), both at 20 K and with an absorbed
fluence of 1.6 mJ/cm2. The traces are nearly identical, confirming the magnon origin of
the THz transmission oscillations.

emission (Fig. 3 in the main text). Supplementary Fig. 12 displays the THz transmis-

sion oscillations (the 1.6 mJ/cm2 curve in Fig. 2d in the main text after subtracting the

exponential background) along with the results of a THz emission measurement with

the same experimental parameters. The two traces are nearly identical, confirming the

magnon origin of the coherent oscillations present in the THz transmission data.

Supplementary Note 6: Significance of our non-equilibrium results
and comparison to band semiconductors

In this section, we describe how the current results on NiPS3 represent an anomalous

phenomenon that has no counterpart in the physics of photoexcited band semiconduc-

tors.

In pristine semiconductors devoid of strong electronic correlations, the charge gap
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arises because of band theory arguments. Photoexciting electron-hole pairs above this

band gap (up to carrier densities of 1019-1021 cm−3) typically results in the appearance

of a Drude response in the THz or far-infrared range due to free-carrier (intraband)

absorption4. Therefore, during the time that precedes complete electron-hole recombi-

nation (varying from several picoseconds to nanoseconds depending on the system), the

initially undoped band semiconductor transiently develops metallic conductivity, sig-

naled by the appearance of a Drude response31. This effect has been widely studied

in semiconductor physics to estimate the carrier transport and mobility in materials of

optoelectronic interest4, to realize switchable optical components32, 33, or to clarify the

optical nonlinearities affecting a semiconductor’s exciton resonances34.

It is well known that the above-gap photoexcitation process described above also

often results in the generation of phonons that coherently evolve as a function of time35.

These phonons can be optical or acoustic, and they can be generated at q = 0 or at finite

momentum36, 37. In band semiconductors, coherent phonons are usually triggered via

a non-thermal deformation potential coupling (i.e. the so-called displacive excitation

in the case of optical phonons)38, 39, but also other mechanisms (e.g., thermoelasticity,

piezoelectric coupling, etc.) can play a role40. These coherent phonons coexist and

interact with the electron-hole plasma created by the pump pulse. The real (frequency)

and imaginary (decay rate) parts of the self-energy are therefore profoundly affected by

this electron-phonon interaction31, 37, 41. Nevertheless, the phonons still represent well-

defined collective modes of the lattice at all momenta because the crystal has neither

undergone a structural phase transition nor has been melted by the photoexcitation.

The scenario emerging in our experiments on NiPS3 is radically different and cannot

be viewed as a simple extension of the previous case to coherent magnons. In a Mott in-

sulator, the charge gap stems from strong electronic correlations and it is not a result of
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band theory42. Antiferromagnetic order typically develops at low temperature to reduce

the ground-state energy of the system, with magnons emerging as well-defined collec-

tive modes. When above-gap light excitation photodopes a Mott insulator, the presence

of the itinerant carriers is always accompanied by the melting of the long-range antifer-

romagnetic order43–45. At short timescales, this melting can proceed through different

mechanisms, such as the collapse of the magnetic moments, the quench of the exchange

interaction, or the direct injection of energy from the hot photocarriers into the spin sys-

tem46. Regardless of the detailed pathway, the long-wavelength magnon—which signals

the presence of long-range antiferromagnetic order—always collapses by broadening

and losing intensity. This is also observed in the insulator-to-metal transition realized

by chemical doping a Mott insulator47. Consequently, only short-range magnetic corre-

lations survive and are reflected in the persistence of paramagnons at short-wavelength

(finite q) and high energy43, 45. For these reasons, the coexistence of a Drude response

and a very sharp q = 0 magnon in NiPS3 is an unexpected and hitherto-unobserved

finding, markedly different from the melting dynamics reported thus far in photoexcited

Mott insulators.

Supplementary Note 7: Homogeneity of the photoinduced state

In the main text, we indicate that our results preclude an interpretation of the antifer-

romagnetic conducting state as a phase-separated state composed of metallic patches

embedded in an antiferromagnetic insulator. Below we explain in detail the features of

our data that rule out this alternative scenario.

First, we consider the lineshape of the magnon mode. The sharpness of the magnon

feature displayed in Fig. 2b in the main text and its lack of any noticeable broadening

indicates that the magnon remains a well-defined mode after the arrival of the pump
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Supplementary Fig. 13 Spectro-temporal evolution of the conductivity at later de-
lay times. Spectro-temporal evolution of the pump-induced change in the real part of
the optical conductivity (∆σ1) for pump-probe delay times ranging from 26 to 28 ps.
The temperature is 20 K and the absorbed pump fluence is 1.3 mJ/cm2. In contrast to
Fig. 2b in the main text, at these later delay times the Drude response has disappeared
and only the first-derivative-like shape around the magnon energy remains. The coher-
ent magnon oscillations as a function of time are still present as well.

pulse and it does not evolve into a paramagnon47. If we suppose that the pump cre-

ates paramagnetic metallic patches, these regions would act like impurities in the in-

sulating antiferromagnetic system, thereby disrupting the long-range antiferromagnetic

order and decreasing its correlation length. Consequently, the presence of the metallic

puddles would lead to a broadening of the long-wavelength (q = 0) magnon that would

increase with fluence as the volume of the metallic regions increases47, 48. However, the

damping of our magnon oscillations does not show any noticeable change as a function

of fluence. Moreover, the magnon lineshape retains the same sharp width at all pump-

probe time delays both while the mobile carriers are present and after they disappear
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once the Drude decays (after ∼ 15 ps). The former is shown in Fig. 2b in the main

text and the latter is presented in Supplementary Fig. 13. From Supplementary Fig. 13,

we see that the 2D map of ∆σ1 contains only the sharp, first-derivative-like shape of

the magnon without the Drude response, and the magnon is oscillating coherently as a

function of pump-probe delay. The same behavior was observed up to 80 ps after the

pump pulse arrival. To better visualize the spectra before and after the Drude decays,

in Supplementary Fig. 14 we plot ∆σ1 as a function of frequency at several representa-

tive pump-probe delay times. Comparing the traces, we see that the magnon retains its

narrow lineshape and therefore is not affected by the presence or absence of the mobile

carriers. Thus, our observations are inconsistent with the scenario of phase-separated,

paramagnetic metallic patches.

Next, we examine the fluence dependence of the magnon oscillation amplitude.

Since the coherent magnon is generated by the pump excitation due to the coupling of

the spin–orbit-entangled excitons with the magnetic order, its amplitude at times < 1 ps

should be linearly proportional to the number of excitons created. Afterwards, exciton

dissociation into free carriers through mutual collisions produces a Drude conductivity

in the system. Due to the time resolution of our ultrafast THz experiment (see Supple-

mentary Note 3B), the magnon amplitude can be evaluated only by fitting the oscillation

that emerges on top of the Drude response, i.e. after the exciton dissociation process is

complete (> 1 ps). If the dissociated excitons formed separate, paramagnetic metallic

patches, then the size of the insulating antiferromagnetic region would be reduced and

hence the magnon precession amplitude would become smaller than that initially gen-

erated by the pump. With increasing fluence, the initial magnon amplitude would rise

linearly but the volume of metallic patches would increase quadratically (as determined

by the quadratic dependence of the exponential amplitude in Fig. 2f in the main text),
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Supplementary Fig. 14 Comparison of the conductivity over time. Pump-induced
change in the real part of the optical conductivity (∆σ1) as a function of frequency
at several representative pump-probe delay times: 1.6 ps (at the peak of the Drude
response), 2.9 and 5.1 ps (during the decay of the Drude), and 26.6 ps (after the Drude
has disappeared). These traces are cuts taken from the 2D maps shown in Fig. 2b in
the main text (1.6, 2.9, and 5.1 ps) and Supplementary Fig. 13 (26.6 ps). The first-
derivative-like shape around the magnon energy remains sharp at all times, indicating
that the mobile carriers do not affect the width of the magnon lineshape.

leading to a reduction in the magnon amplitude that scales quadratically as a function

of fluence. Hence, the observed magnon amplitude (> 1 ps) would show a sublinear

trend with fluence. In contrast, as presented in Fig. 2e in the main text, the amplitude

of the magnon evaluated after 1 ps still scales linearly with fluence, as if no changes oc-

cur when the excitons dissociate compared to when the excitons are initially generated.

This feature is expected when the itinerant carriers coexist with the underlying long-

range antiferromagnetism and do not interfere with the long-wavelength precession of

the localized spins.

Thus, combining these aspects of our data, an interpretation involving phase sepa-
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ration of paramagnetic metallic patches embedded in the antiferromagnetic insulating

state can be readily ruled out, and we conclude that our data indeed demonstrates a

coexistence of a finite itinerant conductivity and antiferromagnetism.

Finally, the fact that our photoexcited state is homogeneous in nature allows us to

estimate that the itinerant charge carriers are separated by a distance of ∼120-150 nm.

Here we argue that this distance is much smaller than the magnetic correlation length

in the excited state, the latter being similar to the static magnetic correlation length. In-

deed, we note that the magnon mode we observe is the lowest-energy (pseudo-Goldstone)

mode at q = 0, a robust fingerprint of the long-range antiferromagnetic order. In the tran-

sient state, there is no broadening of this magnon mode, thus confirming that the static

long-range magnetic order is preserved and is not modified significantly by the presence

of the itinerant carriers. Ideally, the static correlation length can be extracted from the

linewidth of the magnetic Bragg peak in diffraction experiments. However, for single

crystals of NiPS3 there are currently no elastic neutron/x-ray scattering data from which

this static correlation length can be estimated. In practice, the static magnetic corre-

lation length is limited by the size of the magnetic domains in the crystal. In MPS3

materials (where M is a transition metal), these domains have a size on the order of a

few µm (i.e. � 120-150 nm)49.

Supplementary Note 8: MnPS3 and FePS3

To better understand the behavior observed in NiPS3, it is useful to compare the results

on NiPS3 presented in the main text to those of closely related van der Waals antiferro-

magnets. In this respect, we focus on the compounds MnPS3 and FePS3, whose Néel

temperatures are ∼ 78 K and ∼ 120 K, respectively. Inelastic neutron scattering mea-

surements show that there are no magnon resonances in our observable energy range in
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either material (the lowest-energy magnon resonances were found to be ∼ 0.5 meV50

and ∼ 15 meV51 for MnPS3 and FePS3, respectively). We confirm the absence of any

magnon modes by measuring the equilibrium THz absorption as a function of tempera-

ture.

We further note that neither MnPS3 nor FePS3 shows any pump-probe signal (Drude

absorption) when we excite each system with an ultrashort near-infrared pump pulse,

in contrast to NiPS3. The lack of a non-equilibrium response can be understood by

examining optical absorption data for these compounds. Unlike NiPS3, which exhibits

sharp spin–orbit-entangled excitons in the vicinity of our pump photon energy7, MnPS3

and FePS3 are purely transparent at 1.55 eV, with on-site d-d transitions lying elsewhere

and the optical charge-transfer gap at higher energies (Egap ∼ 2.9 eV for MnPS3 and

∼ 1.8 eV for FePS3 at low temperature)52–57.

Supplementary Note 9: Theoretical calculations

A. Model Hamiltonian for NiPS3

As mentioned in the main text, the crystal structure of NiPS3 consists of two dimen-

sional (2D) layers of Ni atoms arranged in a honeycomb lattice in the ab-plane that are

coupled in the c direction by the van der Waals interaction. Each individual layer is

invariant under a C3 rotation but the stacking pattern breaks this symmetry and induces

an anisotropy along the a-axis.

In the resulting effective spin model, the Ni sites have spin-1 and no orbital degener-

acy. Assuming the interlayer coupling is small, for each layer the effective spin Hamil-

tonian consists of XXZ terms up to third-nearest neighbors and single-ion anisotropy
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along the a-axis and along the c-axis58:

Hspin =J1

∑
〈i,j〉

(Si,xSj,x + Si,ySj,y + αSi,zSj,z)

+ J2

∑
〈〈i,j〉〉

(Si,xSj,x + Si,ySj,y + αSi,zSj,z)

+ J3

∑
〈〈〈i,j〉〉〉

(Si,xSj,x + Si,ySj,y + αSi,zSj,z)

+Dx

∑
i

S2
i,x +Dz

∑
i

S2
i,z,

(9)

where J1, J2, J3 are the nearest neighbor, second-nearest neighbor, and third-nearest

neighbor coupling, α is the anisotropic spin-spin interaction parameter, and Dx,z are the

single-ion anisotropic coefficients. A small Dx breaks U(1) down to Z2, resulting in

an Ising transition at finite temperature. In the single layer limit, the U(1) symmetry

is restored so there will be a Kosterlitz-Thouless (KT) transition at finite temperature.

We ignore interlayer couplings here since they are much smaller than the intralayer

interactions.

B. Classical ground state

When the spin operators are treated as classical variables, we can diagonalize the spin

Hamiltonian in momentum space. Note that Sx, Sy, and Sz are decoupled and there are

two atoms (A and B) in a honeycomb unit cell. We only need to diagonalize three 2× 2

matrices. We denote each block by hx(~k), hy(~k), and hz(~k):

hx(~k) = (Sx,A(~k) Sx,B(~k))

 Q2(k) +Dx Q1(k) +Q3(k)

Q∗1(k) +Q∗3(k) Q2(k) +Dx


 Sx,A(−~k)

Sx,B(−~k)


(10)
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hy(~k) = (Sy,A(~k) Sy,B(~k))

 Q2(k) Q1(k) +Q3(k)

Q∗1(k) +Q∗3(k) Q2(k)


 Sy,A(−~k)

Sy,B(−~k)


(11)

hz(~k) = (Sz,A(~k) Sz,B(~k))

 αQ2(k) +Dz α(Q1(k) +Q3(k))

α(Q∗1(k) +Q∗3(k)) αQ2(k) +Dz


 Sz,A(−~k)

Sz,B(−~k)

 ,

(12)

whereQ1(k) = J1(eiky+e−i(
√

3kx/2+ky/2)+e−i(−
√

3kx/2+ky/2)),Q2(k) = 2J2[cos(
√

3kx)+

cos(
√

3kx/2 + 3ky/2) + cos(−
√

3kx/2 + 3ky/2)], and Q3 = J3(e−2iky + ei(
√

3kx+ky) +

ei(−
√

3kx+ky)). Here, we set the distance between the nearest A and B atoms to be 1 and

the honeycomb a-axis to be aligned with the x-axis.

Since Dx < 0 and all three matrices have a similar k dependence, it follows that the

lowest-energy state will be fully polarized along the a-axis. For the given parameters,

one can show that the band bottoms are at (0,±2π/3) and all the points are related by

a C3 rotation. The eigenvector at k+ = (0, 2π/3) for the lower band is (eiπ/3, 1)T with

some normalization factor. Performing an inverse Fourier transformation, we obtain

SA,x(~r) = 2S cos(2π
3

(y + 1
2
)) and SB,x(~r) = 2S cos(2π

3
y). This is the zigzag order.

C. Symmetries of the zigzag order

The magnetic unit cell is twice as large as the original honeycomb unit cell and it con-

tains four atoms (see Supplementary Fig. 15). Apart from the lattice translation sym-

metry, we have:

• Magnetic translation T1/2T : translation along the A1 − A2 direction followed by

time reversal T ;
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• Inversion I: inversion centers at the midpoint of theA1−B1 bond and theA2−B2

bond;

• C2T : π rotation along the A1 −B2 axis followed by time reversal.

All other symmetries can be generated by the above transformations. In order to facil-

itate the discussion of degeneracy in the magnon spectrum, it is useful to consider the

symmetry actions in terms of gliding planes and screw axes. There is a screw axis 21

along the y-axis and a gliding plane a lying in the xz-plane followed by time rever-

sal, denoted by aT . Furthermore, C2T and I can be combined, which yields a mirror

symmetry, labeled σ (see Supplementary Fig. 15).

D. Magnon dispersion

We perform the Holstein-Primakoff (HP) transformation to find the magnon dispersion.

The general form of the HP transformation is:

S+ = ~
√

2S − a†aa

S− = ~a†
√

2S − a†a

Sz = ~(S − a†a).

(13)

In the zigzag order, there are four atoms per magnetic unit cell labeled A1, A2, B1, and

B2 (see Supplementary Fig. 15). Let the spins on theA1 andB1 sites point in the positive

x-direction and the spins on the A2 and B2 sites point in the negative x-direction, and

we change the basis for the HP transformation. We ignore the higher order terms and
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Supplementary Fig. 15 Magnetic unit cell of NiPS3. The thick gray dashed rectangle
denotes the magnetic unit cell, which consists of four Ni atoms labeled A1, A2, B1, and
B2. The blue spheres denote Ni atoms and the red and blue arrows represent the spins,
showing the zigzag antiferromagnetic order. The thin blue dashed lines represent the
symmetries σ, aT , 21, and C2T of the zigzag order as discussed in the text.

set ~ = 1. Then we have

SA1,i,+ ≡ SA1,i,y + iSA1,i,z ≈
√

2SbA1,i

SA1,i,− ≡ SA1,i,y − iSA1,i,z ≈
√

2Sb†A1,i

SA1,i,x = S − b†A1,i
bA1,i

SB1,i,+ ≡ SB1,i,y + iSB1,i,z ≈
√

2SbB1,i

SB1,i,− ≡ SB1,i,y − iSB1,i,z ≈
√

2Sb†B1,i

SB1,i,x = S − b†B1,i
bB1,i

SA2,i,+ ≡ SA2,i,y + iSA2,i,z ≈
√

2Sb†A2,i

SA2,i,− ≡ SA2,i,y − iSA2,i,z ≈
√

2SbA2,i

SA2,i,x = −S + b†A2,i
bA2,i

SB2,i,+ ≡ SB2,i,y + iSB2,i,z ≈
√

2Sb†B2,i

SB2,i,− ≡ SB2,i,y − iSB2,i,z ≈
√

2SbB2,i

SB2,i,x = −S + b†B2,i
bB2,i.

(14)
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Plugging in the HP transformation and taking the limit 〈b†b〉 � S, we can ignore the

higher order terms and only keep the boson bilinear terms. Then we obtain

HSpin = (−2J1 + 4J2 + 6J3 − 2Dx +Dz + 2J2P2(k)(1 + α))S
∑
a

b†a,kba,k

+ J1S(1− α)P ∗1 (k)(bA1,kbB1,−k + bA2,kbB2,−k) + J1S(1 + α)P1(k)(b†A1,k
bB1,k + b†A2,k

bB2,k) + h.c.

+ (J2S(1− α)P2(k)−DzS/2)(bA1,kbA1,−k + bA2,kbA2,−k + bB1,kbB1,−k + bB2,kbB2,−k) + h.c.

+ J2S(1 + α)P3(k)(bA1,kbA2,−k + bB1,kbB2,−k) + J2S(1− α)P3(k)(b†A1,k
bA2,k + b†B1,k

bB2,k) + h.c.

+ [J1S(1 + α)P ∗4 (k) + J3S(1 + α)P ∗5 (k)](bA1,kbB2,−k + bA2,kbB1,−k)

+ [J1S(1− α)P4(k) + J3S(1− α)P5(k)](b†A1,k
bB2,k + b†A2,k

bB1,k) + h.c.,

(15)

where P1(k) = ei(
√

3kx/2+ky/2) + ei(−
√

3kx/2+ky/2), P2(k) = 2 cos(
√

3kx), P3(k) =

2 cos(
√

3kx/2 + 3ky/2) + 2 cos(−
√

3kx/2 + 3ky/2), P4(k) = e−iky , and P5(k) =

e2iky + e−i(
√

3kx+ky) + ei(
√

3kx−ky), and we ignore the constant term.

For simplicity, let us consider the α = 1, J1 = J2 = 0 case:

HSpin = (6J3 − 2Dx +Dz)S
∑
a

b†a,kba,k

+ (−DzS/2)(bA1,kbA1,−k + bA2,kbA2,−k + bB1,kbB1,−k + bB2,kbB2,−k) + h.c.

+ 2J3SP
∗
5 (k)(bA1,kbB2,−k + bA2,kbB1,−k).

(16)

The Hamiltonian is block-diagonalized into two 4× 4 matrices: A1 and B2 are coupled

and A2 and B1 are coupled. The lowest-energy magnon dispersion is

εk =
√

36J2
3 − 4J2

3 |P5(k)|2 + 12J3Dz − 4J3Dz|P5(k)| − 4Dx(Dz + 6J3) + 4D2
x

(17)

and the magnon gap is given by ε0 =
√
−4Dx(Dz + 6J3) + 4D2

x.
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Let us consider the lowest-energy magnon at k = 0, labeled by the bosonic field c0.

Projecting the b fields to the lowest mode, we obtain

bA1 = −
√
J0 − ε0

4ε0
c†0 −

√
J0 + ε0

4ε0
c0

bB2 = −bA1

(18)

where J0 = 6J3 − 2Dx +Dz. In the Heisenberg picture, we have c0(t) = c0e
−iε0t. The

precession of the spins in real space is therefore given by

SA1,y = A cos (ε0t+ φ)

SA1,z = A′ sin (ε0t+ φ)

SB2,y = −SA1,y

SB2,z = −SA1,z.

(19)

This spin precession is illustrated in Supplementary Fig. 16. There is no spatial depen-

dence since we consider the k = 0 mode. We note that A, A′, and φ depend on J0, ε0,

and c0. The matrices A2 and B1 have the same relations as A1 and B2. The minus signs

in the above equations indicate that the spins on sites A1 and B2 precess with opposite

chirality, and thus the net magnetization of the sample remains zero.

By diagonalizing the full spin Hamiltonian, we obtain the magnon dispersion. Fol-

lowing the model in Ref. 59, we have J1 = −1.9 meV, J2 = 0.1 meV, J3 = 6.9 meV,

α = 1, Dx = −0.3 meV, and Dz = 0 meV. Note that the model has SO(2) symmetry

corresponding to a spin rotation along the x-axis. As a result, the magnon dispersion

has at least a two-fold degeneracy. However, the SO(2) symmetry is only approximate

and we expect the symmetry breaking terms in the spin Hamiltonian to be nonzero in

general so that the two-fold degeneracy will be lifted. The dispersion along a certain cut

in the magnetic Brillouin zone (see Supplementary Fig. 17) is shown in Supplementary
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Supplementary Fig. 16 Spin precession of the lowest-energy magnon. Pictorial rep-
resentation of the spin precession corresponding to the lowest-energy magnon mode.
This magnon has zero wavevector, which implies that all the spins precess in phase
with each other. The net magnetization remains zero since opposite spins precess with
opposite chirality.

Fig. 18. There is a four-fold degeneracy along X-C in the magnetic Brillouin zone. The

band minimum is at the zone center with EΓ ≈ 6.81 meV. There is another magnon at

the zone corner with energy EC ≈ 7.39 meV, which is close to EΓ. We remark that the

discrepancy between the calculated (6.81 meV) and experimental (5.3 meV) value of the

magnon gap at Γ lies in the uncertainties affecting the parameters of the Hamiltonian.

Inelastic neutron scattering measurements covering a large energy-momentum window

and high energy resolution would allow us to optimize these parameters and refine our

estimate.

The four-fold degeneracy can be explained by the space group symmetry of NiPS3.

We first examine the two-fold degeneracy of each magnon band. The SO(2) spin ro-
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Supplementary Fig. 17 Magnetic Brillouin zone. The gray rectangle denotes the mag-
netic Brillouin zone. The blue arrows represent cuts along which the magnon dispersion
is determined (see Supplementary Figs. 18 and 19).

tation acts on the HP boson as a U(1) rotation, i.e. bA1,B1 → eiθbA1,B1 and bA2,B2 →

e−iθbA2,B2 . The Hamiltonian is block-diagonalized into two 4×4 matrices, and the mag-

netic translation T1/2T acts as (bA1 , bA2 , bB1 , bB2)→ (bA2 , bA1 , bB2 , bB1), which ensures

that the two blocks in the spin Hamiltonian are identical. The odd and even parity under

exchanging A1, A2 and B1, B2 are essentially degenerate.

Now, we consider the screw axis 21 and magnetic translation T1/2T . Note that

acting on the lattice, we have 21 = {( −1 0
0 1 )|(1

2
, 1

2
)} and T1/2T = {( 1 0

0 1 )|(1
2
, 1

2
)}. Here,

the notation {M |~b} means that a symmetry acts on the coordinates in the 2D plane as

~x→M~x+~b, where M is a 2×2 matrix and~b is a 2D vector. We find that 21 and T1/2T

do not commute with each other. Also, we have Tx(21)(T1/2T ) = (T1/2T )(21), where

Tx denotes a translation along the x-axis by one unit cell. At kx = π (the Brillouin

zone boundary along the x-axis) Tx = −1 so −(21)(T1/2T ) = (T1/2T )(21). Note that

21 does not alter the parity of exchanging A1A2 and B1B2 so its action is within one

4× 4 block of the spin Hamiltonian. There will be an extra degeneracy, i.e. a four-fold
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Supplementary Fig. 18 Magnon dispersion with SO(2) symmetry. Magnon dis-
persion along certain cuts in the magnetic Brillouin zone (see Supplementary Fig. 17)
when SO(2) symmetry is preserved. There is a four-fold degeneracy along X-C. The
band minimum is at the zone center with EΓ ≈ 6.81 meV. There is another magnon at
the zone corner with energy EC ≈ 7.39 meV, which is close to EΓ.

degeneracy, along the X-C path.

Let us further consider what happens to the magnon spectrum if the SO(2) spin

rotation is broken. We use the parameters in Ref. 58: J1 = 1.59 meV, J2 = 2.41 meV,

J3 = 4.54 meV, α = 0.66, Dx = −0.89 meV, and Dz = 2.85 meV. We can see that

in general the magnon bands split into four bands but there are two-fold degeneracies

along X-C and C-Y (Supplementary Fig. 19). These degeneracies can be explained by

the space group symmetry. First, let us consider 21 and C2T . These symmetry actions

yield 21 = {( −1 0
0 1 )|(1

2
, 1

2
)} and C2T = {( −1 0

0 1 )|(1
2
, 1

2
)}, and they do not commute with

each other. We have Tx(21)(C2T ) = (C2T )(21) so at kx = π, we have −(21)(C2T ) =

(C2T )(21). This yields at least two-fold degeneracy along X-C in the Brillouin zone.

Similar arguments can be carried out for ky = π (the Brillouin zone boundary along the
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Supplementary Fig. 19 Magnon dispersion without SO(2) symmetry. Magnon dis-
persion along certain cuts in the magnetic Brillouin zone (see Supplementary Fig. 17)
when SO(2) symmetry is broken. In general, the magnon bands split into four bands
but there are two-fold degeneracies along X-C and C-Y. These degeneracies can be ex-
plained by the space group symmetry of NiPS3.

y-axis) if we consider the symmetries aT and σ. Note that aT = {( 1 0
0 −1 )|(1

2
, 1

6
)} and

σ = {( 1 0
0 −1 )|(0, 2

3
)} and we have Ty(aT )(σ) = (σ)(aT ), where Ty denotes a translation

along the y-axis by one unit vector. The anticommutation of the symmetries aT and

σ along the Brillouin zone boundary in the y-direction gives the two-fold degeneracy

along C-Y.

Note that a previous study on NiPS3 has also observed the magnetization axis slightly

tilted away from the honeycomb plane58. This will not change the symmetry properties

and our arguments about the extra degeneracies still hold.
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E. Effect of photoexcitation on the magnon energy

In the main text, we discuss the dynamics of the photoexcitation mechanism in which

the pump photon energy is in the vicinity of the spin–orbit-entangled excitons. Here, we

provide a rough estimate of the scale of the magnon energy redshift. The magnon gap

is given by ε0 =
√
−4Dx(Dz + 6J3) + 4D2

xS in the simplified model of the previous

section. The reduction in the magnetization is ∆S = ∆n/N , where ∆n is the photo-

generated exciton density, which is proportional to the absorbed pump laser fluence, and

N is the total number of Ni sites. Therefore, qualitatively the redshift of the magnon

energy is given by ∆ε0/ε0 = ∆n/N . Note that we have neglected the potential change

in the spin-spin exchange coupling and the quantum fluctuation of spin-1/2, so the result

we obtain above only provides a qualitative understanding of the linear dependence of

the magnon energy on the absorbed fluence.
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