A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration

¹ Andrea Raso; ¹ Ellen Dirkx; ^{1,2} Vasco Sampaio-Pinto; ^{1,3} Hamid el Azzouzi; ^{4,5} Ryan J. Cubero; ⁶ Daniel W. Sorensen; ¹ Lara Ottaviani; ¹ Servé Olieslagers; ⁷ Manon M. Huibers; ⁷ Roel de Weger; ⁸ Sailay Siddiqi; ⁹ Silvia Moimas; ⁹ Consuelo Torrini; ⁹ Lorena Zentillin; ⁹ Luca Braga; ² Diana S. Nascimento; ^{1,10} Paula A. da Costa Martins; ⁶ Jop H. van Berlo; ⁸ Serena Zacchigna; ^{9,11} Mauro Giacca and ¹ Leon J. De Windt*

¹Department of Molecular Genetics, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; ²i3S - Instituto de Investigação e Inovação em Saúde, INEB - Instituto Nacional de Engenharia Biomédica, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal.

³Department of Molecular Genetics, Erasmus University MC, 3015 GD Rotterdam, The Netherlands;

⁴The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy; ⁵IST Austria, 3400 Klosterneuburg, Austria;

⁶Stem Cell Institute and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, U.S.A.

⁷Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;

⁸Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen, the Netherlands;

⁹International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; ¹⁰Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.

¹¹School of Cardiovascular Medicine and Sciences, King's College London, London, UK.

A.R. and E.D. contributed equally to this work

Supplementary Figures 1-6 Supplementary Table 1

Supplementary Figures

Supplementary Figure 1 I *miR-106b~25* cluster expression. (a) Real-time PCR analysis of *miR-106b*, *miR-93* and *miR-25* abundance in hearts from non-transgenic (nTg) or Myh6-CnA transgenic mice or in (b) mice subjected to transverse aortic constriction (TAC) for 1, 2 or 6 weeks. (c) Indices of cardiac dilation (LVIDs), function (EF) and expression of *Nppb* and *Myh7* in mice subjected to TAC for 1, 2 or 6 weeks. (d) Real-time PCR analysis of *miR-106b*, *miR-93* and *miR-25* abundance in hearts of wild-type (WT) or *miR-106b~25* null mice, *n* refers to the number of hearts. **P* < 0.05 vs corresponding control group (error bars are s.e.m.). Statistical analysis consisted of a two-tailed Student's t-test. Source data are provided as a Source Data file.

Supplementary Figure 2 I *miR-106b~25* silencing with single antagomirs. (a) Workflow of the study. (b) Real-time PCR analysis of *miR-106b*, *miR-93* and *miR-25* expression in hearts from mice receiving control (ctrl) antagomir or antagomir against a specific miRNA. (c) Representative images of whole hearts (top panels), H&E-stained sections (second panel), Sirius Red stained sections (third panel) and WGA-stained (fourth panel) histological sections. Quantification of (d) LV/BW ratio, (e) LVPWs, (f) LVIDs, and (g) EF of mice that received indicated antagomirs. Quantification of (h) cell surface areas by WGA-staining and (i) fibrotic area by Sirius Red staining. (j) Real-time PCR analysis of *Nppa, Nppb, Acta1*, and *Myh7*; *n* refers to number of hearts. (k) Location and evolutionary conservation of hsa-miR-25 to the 3'UTR of Hand2, *n* refers to number of transfection experiments. **P* < 0.05 vs corresponding control group (error bars are s.e.m.). Statistical analysis consisted of a two-tailed Student's t-test (l) or a One-way ANOVA followed by Dunnett multiple comparison test (d-g). Source data are provided as a Source Data file.

Supplementary Figure 3 I *miR-106b~25* cluster expression in adult mouse heart cells. (a) Realtime PCR analysis of marker genes for Tropomyosin 1 (Tpm1), Platelet endothelial cell adhesion molecule (Pecam1) and Transcription factor 21 (Tcf21) in cardiomyocytes (CMs), endothelial cells (ECs) and fibroblasts (FBs) following enzymatic dissociation of adult mouse hearts followed by column-based magnetic cell isolation. Real-time PCR analysis of *miR-106b*, *miR-93* and *miR-25* abundance in (b) CMs, (c) ECs or (d) FBs, *n* refers to the number of hearts (error bars are s.e.m.). Source data are provided as a Source Data file.

Supplementary Figure 4 | Overexpression of *miR-106b~25* stimulates CM proliferation.

Neonatal mice at age p1 received AAV9-MCS or AAV9-miR106b~25, at p10 administered a single EdU injection and 2 days later cardiomyocytes (CMs) from n=5 hearts in each condition were isolated, pooled and analyzed by flow cytometry. (a) Gating strategy for the detection of EdU+CMs within myocardial cells from mice that received AAV9-MCS. (b) Gating strategy for the detection of EdU+CMs within myocardial cells from mice that received AAV9-miR106b~25.

Supplementary Figure 5 I Overexpression of *miR-106b*, *miR-93* or *miR-25* induces cardiac enlargement by stimulating cardiomyocyte proliferation. (a) Design of the study. (b) Representative images of whole hearts (top panels), H&E-stained histological sections of fourchamber view (second panel) and WGA-stained (third panel) histological sections. (c) Quantification of cell surface areas. (d) Representative confocal microscopy images and (e) quantification of pH3 positive cardiomyocytes (CMs; α -actinin+, pH3+) in heart sections of mice receiving AAV9-MCS or AAV9-miR-106b~25 and stained for tropomyosin, pH3 and Hoechst. (f) Representative confocal microscopy images and (g) quantification of the number of pH3 positive CMs (α -actinin+, pH3+) in heart sections of mice receiving AAV9-MCS, AAV9-miR-106b, AAV9-miR-93 or AAV9-miR-25 and stained for α -actinin, pH3 and Hoechst, *n* refers to number of hearts. (h) Representative confocal microscopy images of heart sections of mice receiving AAV9-MCS, AAV9-miR-106b, AAV9-miR-106b, AAV9-miR-93 or AAV9-miR-25 and stained for α -actinin, Aurora B and Hoechst. **P* < 0.05 vs corresponding control group (error bars are s.e.m.). Statistical analysis consisted of a two-tailed Student's t-test (e) or a One-way ANOVA followed by Dunnett multiple comparison test (c,g). Source data are provided as a Source Data file.

Supplementary Figure 6 I *miR-106b~25* targetome validation. (a) Location and evolutionary conservation of the *hsa-miR-106b* seed region on *E2f5*. (b) Activity assay of luciferase reporter constructs shows the binding of *hsa-miR-106b* to the 3'UTR of E2f5. (c) Location and evolutionary conservation of the *hsa-miR-25* seed region on *Cdkn1c*. (d) Activity assay of luciferase reporter constructs shows the binding of *hsa-miR-25* to the 3'UTR of Cdkn1c, *n* refers to number of transfection experiments. (e) Western blot analysis of endogenous E2f5 and Cdkn1c and histone 3 (H3) as a loading control in cardiomyocytes transfected with a control antimiR, or antimiRs for *miR-106b* or *miR-25*. (f) Western blot analysis of endogenous Wee1, Ccne1 and Tubulin-a (Tuba1a) as a loading control in cardiomyocytes transfected with a control antimiR for *miR-106b*. (g) Western blot analysis of endogenous E2f5, Cdkn1c, Ccne1 and Gapdh as a loading control in hearts from WT versus *miR-106b~25* KO mice, *n* refers to the number of animals. **P < 0.05* vs corresponding control group (error bars are s.e.m.). Statistical analysis consisted of a two-tailed Student's t-test. Source data are provided as a Source Data file.

Gene name	Gene identification		sequence
Nppa	NM_008725	FW	TCTTCCTCGTCTTGGCCTTT
		RV	CCAGGTGGTCTAGCAGGTTC
Nppb	NM_008726	FW	TGGGAGGTCACTCCTATCCT
		RV	GGCCATTTCCTCCGACTTT
Acta1	NM_009606	FW	CCGGGAGAAGATGACTCAAA
		RV	GTAGTACGGCC GGAAGCATA
Myh7	NM_080728	FW	CGGACCTTGGAAGACCAGAT
		RV	GACAGC TCCCCATTCTCTGT
Tpm1	NM_001164256	FW	GTATGAAGAGGTGGCCCGTA
		RV	CGAGTTTCAGCCTCCTTCAG
Pecam1	NM_001032378	FW	AACAGAGCTGTTTCCCAAGC
		RV	GTGAAGTTGGCTACAGGTGT
Tcf21	NM_011545	FW	CTTCTCCAGGCTCAAGACCA
		RV	ATAAAGGGCCACGTCAGGTT
Rp17	NM_011291	FW	GAAGCTCATCTATGAGAAGGC
-	_	RV	AAGACGAAGGAGCTGCAGAAC

Supplementary Table 1. real-time PCR primers used in the study

All oligos are depicted in 5' --> 3' direction. FW, forward; RV, reverse.