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Supplementary Methods 

Algorithm development and the DLP deployment 

Multi-label classification and multi-class classification 
A two-level hierarchical classification system was used to classify fundus images. Multi-label1 classification was used 
for bigclass and multi-class classification for subclasses. As for the multi-label classification, sigmoid was used as the 
last layer’s activation function, a neural network outputted multiple probability values (one for every class), and 
weighted binary cross-entropy was used as the loss function2. Compared with multiple independent classifiers2, this 
setting can be viewed as a multi task learning with hard parameter sharing, which can reduce the risk of overfitting3. 
An explicit Non-referable class was included in the bigclasses. T-Criterion rule4 was used to deal with the 
all-negative-score cases based on the Close World Assumption, i.e., all examples belong to at least one class. As for 
the multi-class classification, softmax was used as the last layer’s activation function and weighted categorical 
cross-entropy was used as the loss function. 

The bigclass dataset was extremely imbalanced (Supplementary Fig. 5), partly because some labels were more 
frequent than the others (inter class), and partly due to sparse labels. During training, dynamic data resampling5 and 
weighted binary cross-entropy loss function were used to tackle the issue of imbalance of classes. The imbalance 
ratio values of subclass datasets were not as high as that of bigclass dataset, so only dynamic data resampling was 
used to tackle imbalance of subclasses. 
Fundus image quality assessment 
Image quality was calculated by a traditional feature engineering and machine learning method adapted from H. 
Davis’ method.6 Briefly, 7 areas were extracted from each fundus image, and then 17 features were extracted from 
each color space (RGB or CIELAB) in each area. The ultimate image quality value was a linear weighted average of 
these feature variables. 
Image preprocessing 
The algorithm of image preprocessing was in three steps. Firstly, black background areas were cropped. Secondly, a 
Hough Circle transformation was used to detect the circle of the retina. If the circle was not correctly found due to bad 
image quality, the center of the image was assumed to be the center of the circle, and the radius of the circle was 
obtained based on the pixel distribution of the middle horizontal line7. The retina area was then extracted based on 
the retina circle. Thirdly, to avoid deleting meaningful areas during image augmentation, some black areas (6% of the 
length of the shortest side of the image) were added to the four borders of a fundus image. Code for image 
preprocessing has been uploaded to Github (https://github.com/linchundan88/Fundus-image-preprocessing). 
Optic disc segmentation dataset 
The optic disc segmentation dataset were constructed using both public dataset including REFUGE8, IDRiD9, 
DRIONS-DB10 and private dataset. The dataset contained a total of 1792 samples and the private dataset contained 
700 samples. Images in the private dataset were randomly selected from the classification dataset and excluded 
images belong to bigclass 10. The private dataset was randomly split into four subsets of the same sample size. Four 
research assistants who had been trained by doctors participated in the labeling process. Each individual 
independently annotated a subset. Labelme software was used to label these images. 
Convolutional neural networks 
Four CNN groups and a Mask R-CNN11 were used (Supplementary Table 4). Group A was used in all bigclass and 
subclasses classification with the following exceptions. Group B was only used to divide bigclass 0 into “Normal” and 
“DR1”. Group C accompanied with Mask R-CNN were only used to classify bigclass 10 into possible glaucoma and 
optic atrophy. Group D was used in some very easy tasks such as distinguishing left and right eyes. To ensure the 
diversity of models, CNNs with different architecture were used in every CNN group. Ensemble learning was best 
suited for models were high accuracy and different12.  

CNNs in the group A and group D were “standard” models , the former included Inception-V313, Xception14 and 
InceptionResNet-V215, and the latter MobileNetV216 and MnasNet17. CNNs in Groups B and C were custom designed 
models. Their architecture were based on ResNet18 and ResNeXt19., To detect tiny microaneurysms in Group B, input 
image resolution was enlarged to 448x448, which was doubled as that used in standard VGG and ResNet18. To 

https://github.com/linchundan88/Fundus-image-preprocessing)�
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match the double sized input shape, an addition Conv block was added. The filters of the first convolution layer were 
reduced from 64 to 32, and the kernel size of the first convolutional layer changed from 7x7 to 5x5. In the custom 
designed ResNext model cardinality=16 was used instead of cardinality=32. Every Conv block contained a number of 
residual units (or grouped residual units). Inside every residual units, pre-activation20 and bottleneck structures were 
used. The structures of the CNNs in the group B were shown in Supplementary Fig. 3a. 

The subclass classification of bigclass10 was considered as a fine-grained classification and was implemented 
by a small pipeline. An image was firstly pre-processed to be 384x384 pixels, and then a Mask R-CNN was used to 
detect and segment the optic disc. The optic disc detection task was considered as an instance segmentation 
problem instead of a localization or object detection problem. This was because the confidence value outputted by 
Mask-RCNN was important and the mask images of optic disc were easy to obtain. After cropping the optic disc area 
to 112x112 pixels, a custom designed Resnet and ResNeXt were used to do the final classification task. Compared 
with the standard Resnet and ResNext, there were some modifications: a Conv block was removed to match half 
sized input shape and the kernel size of the first convolutional layer was reduced from 7x7 to 5x5. The structures of 
the CNNs in Group C were shown in Supplementary Fig. 3b. Instance segmentation was used instead of object 
detection and semantic segmentation because there was a large number of pixel-level annotated data samples and 
the confidence value of the detected optic disc was very important. 
Real time data augmentation 
Real time data augmentation was used during both training and inference. In general, image augmentation during 
training was much more used than during test time. However, test time image augmentation has been used in 
ImageNet21 (multi-crop) and Kaggle Data Science Bowl 2017 competitions22. It improved not only the accuracy but 
also robustness to small image perturbation23. Compared with before-hand image augmentation, real time image 
augmentation was flexible and simplified the whole training process. During training, images were randomly rotated 
(range: [-15◦, 15◦]), translated (range:[-10 %, 10 %]), scaled (range: [95%,105%]) 24, horizontally and vertically flipped, 
and image contrast were modified (multiplicative factor range:[90%,110%]). Whereas during inference, for an image, 
two other images were generated on the fly using pre-defined transformations. One image was generated by moving 
(dx=6px, dy=6px) and horizontal flipping, and the other image was generated using moving (dx=-6px, dy=-6px) and 
vertical flipping. Training time image augmentation was implemented using the imgaug25 library and Keras26 
Sequence(better than python generator in multi-process environment), and test time image augmentation was 
implemented by custom designed OpenCV codes and Keras Sequence.  
Dynamic data resampling  
During the training process, dynamic data resampling was used to resolve the problem of imbalanced classes 5. 
Compared with traditional under-sampling, it can make full use of training data because in every epoch it generates a 
different training dataset. Compared with traditional over-sampling, which simply duplicate minority class samples, it 
can avoid overfitting. Because dynamic resampling and real time augmentation were used together, different images 
were generated on the fly using real time augmentation for a minority class image. Data resampling methods were 
widely used in single label setting, however it could not be directly used in multi-label setting. When calculating the 
sampling probability of an image with multiple labels, the labels was converted to a single label, which was the class 
with the smallest data samples among the image’s multiple labels. It should be noted that this conversion was only 
used in the sampling process, when generating the training dataset, the original labels wound be used. This method 
worked well because labels of bigclass dataset were very sparse (Label cardinality = 1.098). The dynamic data 
resampling algorithm was shown in Algorithm 1. 
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Algorithm 1: Dynamic data resampling 

Let S be the original training set. 

Let epoch_num be the epoch of training. 

num_classes ←30  # set num_classes to be the number of classes of S(in this case 30).   

num_samples ← len(S)  # set num_samples to be the number of samples in S 

 

S’ = copy.deepcopy(S)  #clone a new set object S’ using S. 

FOR each sample1 in S’ 

 IF len(sample1[1])>1  #sample1 contains data and labels (x, y), determine y in sample1 has multiple labels or not. 

  select the label with the minimum class samples, and then replace the original labels by the selected label.  

 ENDIF 

ENDFOR 

 

class_samples← [ ]   

FOR i=0 to num_classes-1 
set class_samples[i] to be the sample size of class i in S’  

ENDFOR 

 

FOR epoch_current=0 to epoch_num–1  

#using weight_power to determine the sampling probability of each class. This parameter can change during training. 

set the weight_power parameter by reading configuration file or dynamically change it according to the predefined rule. 

p ← [ ]  #p is a list of class resampling probabilities 

FOR i=0 to num_classes–1  

 p[i] ← (max(class_samples)**weight_power)/(class_samples[i] **weight_power) 

ENDFOR 

 

Ŝ ← new set()  #generating a new set Ŝ , and it will be the training set of the current epoch. 

j ←0 
k ←0 

WHILE True 

 randomly select S[j] using probability p[class1]  

 IF S[k] is selected 

   add S[k] to Ŝ 

  k ← k + 1 

 IF k == num_samples  #The sampling process in this epoch has completed. 

  break 

 ENDIF 

ENDIF 

 

IF j == num_samples  #set the sampling index to be zero, a sample can be sampled multiple times. 

j ← 0 
ENDIF 

j ← j + 1 

END 

 

yield Ŝ  #return the training dataset of this epoch from to the training process. 

ENDFOR 
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In this study, the weight_power parameter was set to 0.65 for bigclass classification. For subclass classifications, 

dynamic data resampling ratio parameters were set case by case. There parameters were kept stable during training. 
Loss function for Multi-label classification 
A custom designed function which could be viewed as the weighted binary cross entropy loss was used in bigclass 
classification. The loss function was formally defined as follows: A single sample in the training set was denoted by (x, 
y). The No. C output of a neural network f(x) was denoted by pc, and the No. C label of ground truth was denoted by 
yc. Because of label smoothing27, the element yc was not always be 0 or 1. The loss of (x,y) was denoted by L(x, y). 
False negative and false positive weights in the cost matrix of class c were denoted by CFNc and CFPc

    L(x, y) = ∑ (−𝐶FNc𝒚𝑐 log(𝒑𝑐) − 𝐶FPc(1 − 𝒚𝑐)(1 − 𝒑𝑐))30
𝑐=1     

 respectively. 

For simplicity, CFPc was set to 1 for all classes, so only CFN needs to be set. CFN 

The algorithm of computing C

which contained 30 numbers 
were set automatically based on two hyper-parameters: positive_weight_ratio and weight_power. 

FN

    class_weight
. 

c =(max_class_samples ** weight_power) / (positive_samplesc

    positive_weight_ratio = 2.4 
 ** weight_power) 

    CFNc = positive_weight_ratio * class_weight
The class_weight parameters were used to tackle the inter-class imbalance that some labels were more frequent 

than the others. The class weight for class No. C in the loss function was denoted by class_weight

c 

c. max_class_samples 
was the positive sample number of the class with the most positive samples. The positive sample number of the class 
No. C. was denoted by positive_samplesc. The weight_power hyper-parameter was set to 0.11. 

Transfer learning and optimization methods  

Hyper-parameter 
positive_weight_ratio was used to tackle the class imbalanced between negative and positive brought by labels 
sparsity and binary relevance conversion, and it was empirically set to 2.4. 

Transfer learning28,29 was applied for training standard models in the group A and D. All custom-defined models in the 
CNN group B and C were trained from scratch (Supplementary Table 4). 

During training bigclass models in the group A and all models in the group D, weights were initialized using 
pre-trained ImageNet models (except for weights of the last fully connected layer), and then all layers were fine-tuned. 
Bigclass models were trained prior to training subclass models, the subclass models in the CNN group A were 
transferred from big class models using the method mentioned previously. The domains of subclass classification 
were subsets of that of the bigclass classification. The tasks of subclass classification and bigclass classification 
were related. The more similar the data distribution between source domain and target domain and the more related 
the source task and the target task, the better was the transferring effect. 

Adam30 with lookhead31(k=5, alpha=0.5) was used as the optimizer, and a custom learning rate scheduler was 
used to adjust learning rate dynamically. Label smoothing27 (ε=0.1) was used to calibrate predicted probabilities32. 
Prediction Process 
Model ensemble 
For an image, after being preprocessed, test time image augmentation and model ensemble were used to generate 
the final predicted probabilities (Supplementary Fig. 4). The mathematical formula: 

probs = 
∑  𝑛
𝑖=1 ∑ (𝑊𝑖 × 𝑷𝑖𝑗

𝑚
𝑗=1 )

(∑ 𝑊𝑖
𝑛
𝑖=1 )×𝑚

 

The number of CNN models involved was denoted by n and the times of test time image augmentation was 
denoted by m. Wi

33 was the weight of the model No. i. For simplicity, instead of being learned by a meta-learner , Wi 
was set as the square of the validation accuracy of model i. P ij

Generating labels from predicted probabilities 

 was the predicted probability of model i for image 
augmentation j. Both parameter n and m were set to 3. Setting n and m to be greater than 3 will not generate 
apparent performance improvement, however it will results in consuming more computing power and long response 
time. The final predicted probabilities array was denoted by probs. 

The algorithm of generating bigclass labels was shown in Algorithm 2. 
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Algorithm 2: How to generate bigclass labels 

 
Subclass classification(multi-class) algorithm: 

pred_class = probs.argmax(axis=-1) 
The predicted class was denoted by pred_class. As for bigclass classification (multi-labels), for simplicity, 

threshold-moving was not adopted and 0.5 was used as the threshold for all classes. Moreover, abovementioned 
T-Criterion rule4 was implemented in the multi-label classification algorithm. 
Visualizing and explaining CNNs  
The explainability of neural networks was very important, unfortunately all current explanation methods were fragile34. 
A modified Class Activation Maps (CAMs)35 and the DeepShap36(DeepExplainer), which can complement each other, 
were simultaneously used to generate heat-maps (Fig. 1). These heat-maps were used to explain decisions made by 
neural networks. Class Activation Maps (CAMs)35 were class discriminative and faithful to predicted values，but with 
low resolution. DeepExplainer was a combination of Deeplift37 and Shapley value. It could generate fine-grained 
heat-maps and was more efficient. Accordingly it could generate more reliable results than other approximation 
methods such as Layer-wise relevance propagation (LRP) and Integrated Gradients38. The differences between the 
original CAMs and our modified CAMs were only two RELU functions.  

The activation of unit k in the last convolutional layer at spatial location (x, y) was denoted by 𝑓𝑘(𝑥,𝑦), and the 
weight corresponding to class c for unit k was denoted by 𝑤𝑘    

𝑐 . The mathematical formula of CAM was changed from 
Mc(X, Y) = ∑ 𝑤𝑘    

𝑐
𝑘 𝑓𝑘(𝑥,𝑦)  to Mc(X, Y) = ReLU�∑ ReLU(𝑤𝑘   

𝑐
𝑘 ) 𝑓𝑘(𝑥,𝑦)� . The intuition was the same as Guided 

Backpropagation and Grad-CAM++39, i.e., only the positive gradients (or positive weights of the last fully connected 
layer) were taken into consideration. According to our experimental results, performance of the modified CAMs was 
obviously better than the original CAMs.  
The DLP deployment 
After being fully trained and validated, all the CNN models were deployed for production. The simplified architecture 
of the production platform was shown in Supplementary Fig. 1. A custom designed computer-aided diagnosis service 
(CADS) was developed instead of using standard Tensorflow Serving because generating heat-maps needs low-level 
controls on models. Trained CNN models were automatically loaded during the startup of theCADS and provided 
services through the xmlrpc server. Both web app and web service implemented an xmlrpc client that communicate 
with CADS (Supplementary Fig. 7). Web service is a restful service, doctor station communicates with it using http 
protocol. Python3 build-in xmlrpc was used to develop the RPC server, and Django framework was applied to 

Let probs be the predicted probabilities (after model ensembling) 

 

# 0.5 was used as the threshold of positive and negative classes 

list_thresholds =np.array([0.5 for _ in range(30)])   

#get predicted big classes including the non-referable class. 

list_classes = probs > list_thresholds  

 

#get predicted disease classes (non-referable class was excluded). 

list_disease_classes = list_classes[1:]  

 

’’’if a sample was predicted as negative for all disease classes, select the class(including the non-referable class) with the maximum probability’’’ 

IF len(list_disease_classes==True)==0             

list_disease_classes.append(probs.argmax(axis=-1)) 

ENDIF 

 

return list_disease_classes 

 

https://docs.python.org/3/library/xmlrpc.server.html#module-xmlrpc.server�
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develop web application and web service. 
Development and deployment environment 
Development environment: 
Hardware: Intel i7-770K, 64GB Memory, four GPUs (1 Nvidia GeForce GTX 1080 and 3 GTX 1080ti and 1 RTX 2080 
Ti).  
Software: Ubuntu 16.04, CUDA 9.2, cuDNN7.2.1, Tensorflow_gpu version 1.12, Keras2.2.4, MySQL Server (5.7.23), 
Anaconda5.2.0. 
Deployment environment: 
Hardware: Intel E5-2620 V4 * 2, 64GB Memory, 1 GeForce GTX 1080 Ti only used for Deep Shap) 
Software: Ubuntu 16.04, Intel MKL, intel optimization for Tensorflow_cpu 1.12, CUDA 9.2, cuDNN7.2.1, Tensorflow 
gpu version 1.12, MySQL Server (5.7.23), Anaconda5.2.0.  
Programming languages frameworks and libraries: 
Python3.5, C++, OpenCV, TensorFlow40, Keras, NumPY, Sklearn, SciPY, Matplotlib, Django, Pandas, Imgaug, Shap. 
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Supplementary Figures 
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Supplementary Fig. 1 | Architecture, training, and prediction flow of the DLP  
Dataset acquisition, model training and release are shown in the three upper rows of the flowchart. Images collected 
from JSIEC, LEDRS and EYEPACS were firstly filtered by automatic quality assessment, followed by ophthalmologist 
labeling and preprocessing. Preprocessed image datasets were applied for training and validation of deep learning 
algorithm models. Real time data augmentation and dynamic resampling were applied during the training procedures. 
After training and validation, the DLP was deployed as both a web site and a few web services, JSIEC PACS was 
integrated with the DLP though web services for internal testing. Predictions of bigclasses and subclasses are shown 
in the bottom. After preprocessing, the preprocessed images were further classified into 30 bigclasses (ID 0~29) with 
generated heatmaps (CAM and Deepshap). Images classified as bigclass ID 0, 1, 2, 5, 10, 15 and 29 would be 
further processed with subclass prediction using corresponding models trained independently. There are four 
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subclasses in bigclass 0. Therefore, three parallel binary classifiers would be applied to detect the probability of the 
three conditions (Tessellated fundus, large optic cup and DR1) against normal. Images classified as bigclass 10 
would be subsequently cropped and segmented into optic disc-centered image with small size (112x112 pixels) for 
final subclass classification. Flow of the algorithm, is depicted in Supplementary Fig. 4. 
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JSIEC 5,564 images (4,688 subjects)
LEDRS 5,874 images (4,420 subjects)
EYEPACS 9,987 images (8,845 subjects)

No

JSIEC and LEDRS in 
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JSIEC 105,109 images (52,329 subjects)
LEDRS 39,302 images (17,718 subjects)
EYEPACS 37,941 images (28,488 subjects)

Selected for Test from 
EYEPACS ?

No

Test dataset:
JSIEC 14,502 images (8,146 subjects)
LEDRS 7,052 images (3,364 subjects)
EYEPACS 6,057 images (5,262 subjects)

Validation dataset:
JSIEC 13,247 images (6,392 subjects)
LEDRS 4,787 images (2,118 subjects)
EYEPACS 4,766 images (3,475 subjects)

Training dataset:
JSIEC 74,683 images (36,156 subjects)
LEDRS 27,463 images (12,236 subjects)
EYEPACS 27,118 images (19,751 subjects)
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Subject included 
before 2018 ?

No

ExcludedYes
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JSIEC 2,677 images (1,635 subjects)

Yes
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JSIEC 119,799 images 
(61,790 subjects)

LEDRS 61,699 images 
(30,971 subjects)

EYEPACS 63,335 images 
(49,079 subjects)

Image quality score
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JSIEC 9,126 images (4,773 subjects)
LEDRS 16,523 images (8,833 subjects)
EYEPACS 15,407 images (11,746 subjects)

Yes

Included:
JSIEC 110,673 images (57,017 subjects)
LEDRS 45,176 images (22,138 subjects)
EYEPACS 47,928 images (37,333 subjects)
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Supplementary Fig. 2 | Sample selection of JSIEC, LEDRS and EYEPACS datasets.   
Images collected within year 2018 in JSIEC and LEDRS datasets were applied as test dataset. Patients had been 
imaged before 2018 were excluded from the dataset of 2018. Images in EYEPACS dataset were randomly split into 
training, validation and test dataset due to the lack of collection date information. 
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Supplementary Fig. 3 | Architecture of our custom designed CNNs.   
(a) Architecture of our custom CNN in group B, base on ResNet and ResNeXt, input image resolution 448x448, used 
to divide bigclass 0 into normal and DR1. (b) Architecture of our custom CNN in group C, base on ResNet and 
ResNeXt, input image resolution 112x112, used to divide bigclass 10 into possible glaucoma and optic atrophy. 
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Supplementary Fig. 4 | Classification flow of DLP. 
Images classified as bigclass 0, 1, 2, 5, 15 and 29 were further processed with subclass prediction with CNNs trained independently. Images classified as bigclass 10 were 
subsequently cropped and segmented into optic disc-centered image with small size (112x112 pixels) for final subclass classification. There were four subclasses in bigclass 0; 
therefore, three parallel binary classifiers applied to detect the probability of the three conditions (tessellated fundus, large optic cup and DR1) against normal. To detect 
microaneurysms (very small red dots), input image resolution 448x448 was used in custom designed CNNs for detection of subclass 0.3.  
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Supplementary Fig. 5 | Imbalance ratio of primary datasets and multihospital tests dataset. 
Imbalance ratio = ( TN + FP ) / ( FN + TP )
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Supplementary Fig. 6 | ROC and AUC of DLP for detection of subclasses in primary test dataset.  
Source data are provided as a Source Data file. 
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Supplementary Fig. 7 | Screenshot of web-based platform and PACS integration. 
a, Web-based platform. An example of detection on a possible glaucoma retinal image with the web-based DLP. Original 
image, preprocessed image and image of cropped optic disc area and image mask of optic disk are shown on the upper 
row. Bigclass analyses with probabilities, class activation maps (CAM) and Deepshap are shown on the lower row, with 
analysis of subclass 10 (optic nerve degeneration) on the right side.  
b, Picture archiving and communication systems (PACS) integration. The example was a 42-year-old patient with blurred 
vision for three months. The patient information and examination details are shown in the top-left column, the 
examination parameters, such as visual acuity (VA) and intraocular pressure (IOP), are  in the top-right column and the 
original and preprocessed images in the bottom-left column. Three columns on the right show the analyses of every 
bigclass with probability (subclass if applicable), heatmaps of CAM and Deepshap.  
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Supplementary Tables 
 
Supplementary Table 1 | Brief descriptions of features in fundus images of diseases and conditions. 

 
ID Urgency Diseases/conditions Brief descriptions of fundus images 
0  Nonreferable   

0.0 O Normal orange-red fundus with red branched curving vasculature enter the pink optic disc with sharp margins and a C/D 
ratio of approximately 0.35 

0.1 O Tessellated fundus diffuse attenuation of the RPE with visibility of large choroidal vessels 
0.2 R Large optic cup C/D>0.5, with a pink neuroretinal rim in ISNT rule, without notching or bayoneting of vessels 
0.3 R DR1 Microaneurysms only (International Classification of DR 2017) 
1  Referable DR   

1.0 S DR2 microaneurysms and other signs (dot and blot hemorrhages, hard exudates), less than severe nonproliferative 
DR, and/or with DME 

1.1 U DR3 severe nonproliferative DR and proliferative DR (neovascularization, vitreous/preretinal hemorrhage) 
2  RVO  

2.0 S BRVO tortuosity and dilatation of affected veins, with dot, blot and flame haemorrhages, sometimes with cotton wool 
spots or hard exudates 

2.1 S CRVO tortuosity and dilatation of all branches of veins, with dot, blot and flame haemorrhages, sometimes with cotton 
wool spots or hard exudates 

3 U RAO attenuation of arteries and veins, cherry red fovea, in contrast to the cloudy white oedematous retina effected by 
artery occlusion  

4 U Rhegmatogenous RD slightly opaque, convex or corrugated appearance of elevated retina, sometimes with breaks in view 
5  Posterior serous/exudative RD 

5.0 S CSCR round or oval retinal elevation with clear or trubid fluid underneath, sometimes with depigmented RPE foci or small 
patches of RPE atrophy or hyperplasia 

5.1 U VKH disease circumscribed retinal edema, multiple exudative retinal detachments of posterior retina, often with optic disc 
hyperemia and edema, obscure retina with slight radial folds can be seen with the resolving of edema 

6 U Maculopathy Lesions within macular area, such as intermediate AMD (drusen >125µm), neovascular-AMD, RAP, PCV, CNV, 
IMT, and macular atrophy, not caused by other listed categories of diseases 

7 S ERM a cellophane sheen sheet on or above the surface of the retina with macular pucker, distortion of blood vessels 
within vessel arches 

8 U MH central foveal defect , round or oval shape, maybe with multiple yellow deposits within the crater surrounded or a 
cuff of subretinal fluid 

9 S Pathological myopia tessellated fundus with focal chorioretinal atrophy, fuchs spot, lacquer cracks, CNV or subretinal haemorrhage 
10  Optic nerve degeneration   

10.0 U Possible glaucoma large C/D ratio with cup excavation, thinning of neuroretinal rim, notching and bayoneting of vessels with RNFL 
defects, disc haemorrhages, baring of circumlinear blood vessels, laminar dot sign, peripapillary atrophy 

10.1 S Optic atrophy white disc, reduction of small vessels on the disc, attenuation of peripapillary vessels and thinning of RNFL, 
sometimes with Paton lines 

11 U Severe hypertensive 
retinopathy 

cotton-wool spots, arteriolar narrowing, arteriolosclerosis, flame-shaped haemorrhages, retinal oedema, macrlar 
star and disc oedema 

12 U Disc swelling and 
elevation 

disc hyperaemia, elevation of indistinct disc margins, sometimes with peripapillary flame haemorrhages and 
cotton wool spots 

13 R Dragged disc temporal vascular straightening, retinal fold or vitreous bands extending from peripheral area to the disc 

14 R Congenital disc 
abnormality optic disc coloboma, morning glory anomaly, pit, megalopapilla and hypoplastic disc 

15  Pigmentary degeneration   

15.0 R Retinitis pigmentosa mid-peripheral RPE atrophy with bone-spicule perivascular pigmentation, arteriorlar attenuation and waxy disc 
pallor 

15.1 R Bietti crystalline dystrophy numerous fine, glistening, yellow-white crystals, atrophy of the RPE and choriocapillaris with normal optic disc and 
retinal vasculature 

16 S Peripheral retinal 
degeneration and break 

Lattice, snailtrack, pavingstone, honeycomb, peripheral drusen, microcystoid and white-without pressure, 
sometimes with retinal break 

17 R Myelinated nerve fiber whitish striated patches with feathery borders that obscure retinal vessels 
18 S Vitreous particles including asteroid hyalosis, synchysis scintillans and deposits on familial amyloidosis 
19 U Fundus neoplasm slightly elevated, dome or mushroom shaped mass in various colors 
20 S Massive hard exudates  waxy yellow lesions with distinct margins arranged in large clumps, usually caused by vessel abnormalities 
21 S Yellow-white spots/flecks multiple, discrete, yellow-white, round dot or polymorphous fleck lesions, including early AMD (drusen <125µm) 
22 S Cotton-wool spots small, whitish, fluffy superficial lesions in the post-equatorial fundus 
23 S Vessel tortuosity tortuous and sometimes dilated arteries and veins locally or spread the retina 

24 S Chorioretinal 
atrophy/coloboma focal or extensive RPE and choroidal atrophy or coloboma 

25 U Preretinal haemorrhage usually round red lesion obscures all underlying retinal landmarks, sometimes with boat-shaped crescentic 
configuration, haemorrhage may break though into the vitreous 

26 U Fibrosis irregular greyish-white opacification often with distortion of the retinal vasculature, crossing vessel arches 
27 R Laser spots multiple, uniform, round, discrete yellow-white or brown lesions caused by photocoagulation 
28 R Silicon oil in eye shiny reflection from the retina-oil interface 
29  Blur fundus   
29.0 S/P Blur fundus without PDR blur retinal landmarks caused by severe lens opacities, vitreous opacities or haemorrhage without PDR 

29.1 U/P Blur fundus with 
suspected PDR blur retinal landmarks with suspected features of PDR 

 

Abbreviations: C/D cup disc ratio, DR diabetic retinopathy, PDR proliferative diabetic retinopathy, DME diabetic macular 
edema, BRVO branch retinal vein occlusion, CRVO central retinal vein occlusion, RAO retinal artery occlusion, RD 
retinal detachment, CSCR central serous chorioretinopathy, ERM epiretinal membrane, MH macular hole, RPE retinal 
pigment epithelium, AMD age-related macular degeneration, PCV polypoidal choroidal vasculopathy, CNV choroidal 
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neovascularization, IMT idiopathic macular telangiectasis, RNFL retinal nerve fiber layer. Annotations: Lattice - spindle 
shaped areas with arborizing network of white lines and RPE hyperplasia, Snailtrack -sharply demarcated bands of 
tightly packed snowflakes, Pavingstone - discrete, yellow-white patches of focal chorioretinal atrophy, Honeycomb - fine 
network of pigmentation, Peripheral drusen - multitude of tiny pale dots that may be associated with mild pigmentary 
changes, Microcystoid - tiny vesicles with indistinct borders on a greyish-white background, Whit-without pressure - 
superficial grey area with a geographic configuration. O observation, R routine, S semi-urgent, U urgent, P repeat 
photography 

 

 
 
 

Supplementary Table 2 | Agreement of labels amongst unspecialized ophthalmologists, senior retina specialists 
and retina expert panel. 

 

Datasets 
Labelled 

images, No. 

Unspecialized 
ophthalmologists vs senior 

retina specialists, % Images 
transferred to 
retina expert 
panel, No. c 

    Unspecialized 
ophthalmologists vs retina 

expert panel, % 

 Senior retina 
specialists vs retina 

expert panel, % 

Subset 
accuracy a 

Jaccard 
index b 

Subset 
accuracy 

Jaccard 
index 

Subset 
accuracy 

Jaccard 
index 

JSIEC 102,432  84.89 89.33 15,476  28.78 48.37 53.03 69.96 

LEDRS  39,302  84.72 87.23 6,006  26.58 35.57 52.07 60.97 

EYEPACS  37,941  87.48 89.64 4,748  34 43.81 46.9 54.74 

Fujian  39,671  85.05 87.37 5,931  27.4 35.2 49.87 57.59 

Tibet  14,826  86.55 90.16 1,993  31.54 47.46 51.01 65.75 

Xinjiang 5,948  87.19 89.5 761  25.55 36.1 54.26 62.71 

a. Subset accuracy provided the average percentages of samples having identical labels among ophthalmologists of 
different level of experiences. 
b. Jaccard index, also known as Jaccard similarity coefficient, were applied to compare similarities between finite 

datasets39. For the same sample, the label sets (multiple labels) marked by two graders are set A and B, then 
Jaccard index can be calculated by this formula: J (A, B) = |A∩B | / |A∪B|. 

c. Images without identical labels between unspecialized ophthalmologists and retina specialists were transferred to the 
retina expert panel.  
 

 

 

 
Supplementary Table 3 | Summary of unclassifiable images judged by ophthalmologists. 

 

Datasets 

No. of unclassifiable images 
Agreement of unspecialized 

ophthalmologists & senior retina 
specialists (%) a  Retina expert panel (%) 

Total unclassifiable 
images 

JSIEC 4,353 (78.2) 1,211 (21.8) 5,564  

LEDRS  5,144 (87.6) 730 (12.4) 5,874  

EYEPACS  8,633 (86.4) 1,354 (13.6) 9,987  

Total 18,130 (84.6) 3,295 (15.4) 21,425  

 
a. All images with unclassifiable agreement were also sent to the retina expert panel for final confirmation.  
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Supplementary Table 4 | Information of classifiers. 

 

Classifier Classification task 
No. of 

classes 
CNNs 
group Input image 

Input image 
resolution Architecture of CNNs model Training mode Output 

Bigclass Multi-label classification of 30 
bigclasses 30 A Preprocessed  299x299 Google Inception-V3 & Xception & 

InceptionResNet-V2 Transfer learning from ImageNet 0 ~ 29, CAM 

0.1 Multi-class classification of detection 
subclass 0.1 in bigclass 0 2 A Preprocessed  299x299 Google Inception-V3 & Xception & 

InceptionResNet-V2 Transfer learning from bigclass 0.0, 0.1 

0.2 Multi-class classification of detection 
subclass 0.2 in bigclass 0 2 A Preprocessed  299x299 Google Inception-V3 & Xception & 

InceptionResNet-V2 Transfer learning from bigclass 0.0, 0.2 

0.3 Multi-class classification of detection 
subclass 0.3 in bigclass 0 2 B Preprocessed  448x448 Custom Designed ResNet & ResNeXt Trained from scratch 0.0, 0.3 

1 Multi-class classification of detection 
subclass 1.1 in bigclass 1 2 A Preprocessed  299x299  Google Inception-V3 & Xception & 

InceptionResNet-V2 Transfer learning from bigclass 1.0, 1.1 

2 Multi-class classification of detection 
subclass 2.1 in bigclass 2 2 A Preprocessed  299x299  Google Inception-V3 & Xception & 

InceptionResNet-V2 Transfer learning from bigclass 2.0, 2.1 

5 Multi-class classification of detection 
subclass 5.1 in bigclass 5 2 A Preprocessed  299x299  Google Inception-V3 & Xception & 

InceptionResNet-V2 Transfer learning from bigclass 5.0, 5.1 

10 Multi-class classification of detection 
subclass 10.1 in bigclass 10 2 C Preprocessed  384x384  

112x112 
 Mask R-CNN, Custom Designed ResNet & 

ResNeXt Trained from scratch 10.0, 10.1 

15 Multi-class classification of detection 
subclass 15.1 in bigclass 15 2 A Preprocessed  299x299 Google Inception-V3 & Xception & 

InceptionResNet-V2 Transfer learning from bigclass 15.0, 15.1 

29 Multi-class classification of detection 
subclass 29.1 in bigclass 29 2 A Preprocessed  299x299 Google Inception-V3 & Xception & 

InceptionResNet-V2 Transfer learning from bigclass 29.0, 29.1 
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Supplementary Table 5 | Performance of DLP for detection of bigclasses in primary training dataset (n=129,264). 

 

Diseases / conditions ID 

No. of images 

F1 Sensitivity Specificity AUC (95% CI) TN FP FN TP 
Nonreferable 0 83,506 250 3,696 41,812 0.955  0.919  0.997  0.9914 (0.9910-0.9917) 

Referable DR 1 112,598 1,076 459 15,131 0.952  0.971  0.991  0.9974 (0.9971-0.9977) 

RVO 2 125,598 43 100 3,523 0.980  0.972  1.000  0.9996 (0.9993-0.9999) 

RAO 3 129,057 3 1 203 0.990  0.995  1.000  1.0000 (1.0000-1.0000) 

Rhegmatogenous RD 4 121,805 120 56 7,283 0.988  0.992  0.999  0.9998 (0.9997-1.0000) 

Posterior 
serous/exudative RD 5 127,729 264 21 1,250 0.898  0.983  0.998  0.9999 (0.9998-0.9999) 

Maculopathy 6 124,452 164 140 4,508 0.967  0.970  0.999  0.9994 (0.9991-0.9997) 

ERM 7 126,814 494 80 1,876 0.867  0.959  0.996  0.9968 (0.9954-0.9981) 

MH 8 128,523 83 12 646 0.932  0.982  0.999  0.9996 (0.9990-1.0000) 

Pathological myopia 9 123,151 168 27 5,918 0.984  0.995  0.999  1.0000 (0.9999-1.0000) 

Optic nerve degeneration 10 126,286 719 27 2,232 0.857  0.988  0.994  0.9988 (0.9984-0.9993) 

Severe hypertensive 
retinopathy 11 129,040 47 4 173 0.872  0.977  1.000  1.0000 (0.9999-1.0000) 

Disc swelling and 
elevation 12 128,116 79 12 1,057 0.959  0.989  0.999  1.0000 (0.9999-1.0000) 

Dragged disc 13 129,104 9 1 150 0.968  0.993  1.000  1.0000 (1.0000-1.0000) 
Congenital disc 

abnormality 14 129,098 31 0 135 0.897  1.000  1.000  1.0000 (1.0000-1.0000) 

Pigmentary degeneration 15 127,691 112 0 1,461 0.963  1.000  0.999  1.0000 (1.0000-1.0000) 

Peripheral retinal 
degeneration and break 16 126,878 630 14 1,742 0.844  0.992  0.995  0.9995 (0.9994-0.9996) 

Myelinated nerve fiber 17 128,747 2 2 513 0.996  0.996  1.000  1.0000 (1.0000-1.0000) 

Vitreous particles 18 128,592 129 0 543 0.894  1.000  0.999  1.0000 (1.0000-1.0000) 

Fundus neoplasm 19 129,012 26 1 225 0.943  0.996  1.000  1.0000 (1.0000-1.0000) 

Hard exudates  20 124,952 579 13 3,720 0.926  0.997  0.995  0.9989 (0.9988-0.9990) 

Yellow-white spots/flecks 21 117,755 1,978 54 9,477 0.903  0.994  0.983  0.9984 (0.9982-0.9986) 

Cotton-wool spots 22 126,431 172 111 2,550 0.947  0.958  0.999  0.9987 (0.9983-0.9991) 

Vessel tortuosity 23 126,442 511 8 2,303 0.899  0.997  0.996  0.9990 (0.9989-0.9992) 

Chorioretinal 
atrophy/coloboma 24 127,633 346 4 1,281 0.880  0.997  0.997  0.9999 (0.9999-0.9999) 

Preretinal haemorrhage 25 127,283 665 19 1,297 0.791  0.986  0.995  0.9991 (0.9989-0.9994) 

Fibrosis 26 127,510 347 83 1,324 0.860  0.941  0.997  0.9984 (0.9977-0.9991) 

Laser spots 27 123,403 122 7 5,732 0.989  0.999  0.999  1.0000 (1.0000-1.0000) 

Silicon oil in eye 28 127,079 140 15 2,030 0.963  0.993  0.999  1.0000 (1.0000-1.0000) 

Blur fundus 29 107,664 1,475 131 19,994 0.961  0.993  0.986  0.9995 (0.9994-0.9996) 

Referable,  
frequency-weighted average         0.946  0.965  0.997  0.9994 

Subset accuracy, % 91.32               
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Supplementary Table 6 | Performance of DLP for detection of bigclasses in primary validation dataset (n=22,800). 
 

Diseases / conditions ID 

No. of images 

F1 Sensitivity Specificity AUC (95% CI) TN FP FN TP 
Nonreferable 0 14,726 40 669 7,365 0.954  0.917  0.997  0.9923 (0.9915-0.9931) 

Referable DR 1 19,882 184 91 2,643 0.951  0.967  0.991  0.9972 (0.9964-0.9980) 

RVO 2 22,148 10 20 622 0.976  0.969  1.000  0.9999 (0.9998-0.9999) 

RAO 3 22,768 0 0 32 1.000  1.000  1.000  1.0000 (1.0000-1.0000) 

Rhegmatogenous RD 4 21,408 19 11 1,362 0.989  0.992  0.999  0.9999 (0.9999-1.0000) 

Posterior 
serous/exudative RD 5 22,534 49 5 212 0.887  0.977  0.998  0.9998 (0.9997-0.9999) 

Maculopathy 6 21,948 30 32 790 0.962  0.961  0.999  0.9988 (0.9977-0.9999) 

ERM 7 22,431 75 21 273 0.850  0.929  0.997  0.9905 (0.9834-0.9977) 

MH 8 22,660 17 2 121 0.927  0.984  0.999  0.9999 (0.9998-1.0000) 

Pathological myopia 9 21,711 33 7 1,049 0.981  0.993  0.998  0.9998 (0.9996-1.0000) 

Optic nerve degeneration 10 22,277 130 7 386 0.849  0.982  0.994  0.9988 (0.9983-0.9993) 

Severe hypertensive 
retinopathy 11 22,761 15 1 23 0.742  0.958  0.999  0.9999 (0.9998-1.0000) 

Disc swelling and 
elevation 12 22,572 18 3 207 0.952  0.986  0.999  0.9999 (0.9997-1.0000) 

Dragged disc 13 22,759 3 0 38 0.962  1.000  1.000  1.0000 (1.0000-1.0000) 
Congenital disc 

abnormality 14 22,774 3 0 23 0.939  1.000  1.000  1.0000 (1.0000-1.0000) 

Pigmentary degeneration 15 22,508 27 0 265 0.952  1.000  0.999  1.0000 (1.0000-1.0000) 

Peripheral retinal 
degeneration and break 16 22,364 124 2 310 0.831  0.994  0.994  0.9994 (0.9991-0.9997) 

Myelinated nerve fiber 17 22,716 1 2 81 0.982  0.976  1.000  1.0000 (1.0000-1.0000) 

Vitreous particles 18 22,683 19 0 98 0.912  1.000  0.999  1.0000 (1.0000-1.0000) 

Fundus neoplasm 19 22,760 4 0 36 0.947  1.000  1.000  1.0000 (1.0000-1.0000) 

Hard exudates  20 22,059 120 3 618 0.909  0.995  0.995  0.9986 (0.9983-0.9990) 

Yellow-white spots/flecks 21 20,731 363 7 1,699 0.902  0.996  0.983  0.9984 (0.9982-0.9987) 

Cotton-wool spots 22 22,313 27 18 442 0.952  0.961  0.999  0.9985 (0.9973-0.9996) 

Vessel tortuosity 23 22,308 123 4 365 0.852  0.989  0.995  0.9988 (0.9985-0.9991) 

Chorioretinal 
atrophy/coloboma 24 22,499 63 0 238 0.883  1.000  0.997  0.9999 (0.9999-1.0000) 

Preretinal haemorrhage 25 22,469 116 2 213 0.783  0.991  0.995  0.9994 (0.9991-0.9997) 

Fibrosis 26 22,495 66 9 230 0.860  0.962  0.997  0.9984 (0.9964-1.0000) 

Laser spots 27 21,730 19 1 1,050 0.991  0.999  0.999  1.0000 (1.0000-1.0000) 

Silicon oil in eye 28 22,417 27 1 355 0.962  0.997  0.999  1.0000 (0.9999-1.0000) 

Blur fundus 29 19,048 279 20 3,453 0.959  0.994  0.986  0.9995 (0.9993-0.9997) 

Referable,  
frequency-weighted average         0.944  0.963  0.997  0.9994 

Subset accuracy, % 90.77               
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Supplementary Table 7 | Performance of DLP for detection of bigclasses in primary test dataset (n=27,611). 

 

Diseases / conditions ID 

No. of images 

F1 Sensitivity Specificity AUC (95% CI) TN FP FN TP 
Nonreferable 0 19,572 108 810 7,121 0.939  0.898  0.995  0.9888 (0.9878-0.9898) 

Referable DR 1 22,130 486 154 4,841 0.938  0.969  0.979  0.9936 (0.9928-0.9945) 

RVO 2 26,979 7 14 611 0.983  0.978  1.000  0.9985 (0.9965-1.0000) 

RAO 3 27,568 3 2 38 0.938  0.950  1.000  1.0000 (0.9999-1.0000) 

Rhegmatogenous RD 4 26,954 56 7 594 0.950  0.988  0.998  0.9997 (0.9994-0.9999) 

Posterior 
serous/exudative RD 5 27,334 79 2 196 0.829  0.990  0.997  0.9994 (0.9985-1.0000) 

Maculopathy 6 26,319 57 30 1,205 0.965  0.976  0.998  0.9991 (0.9989-0.9994) 

ERM 7 26,428 230 40 913 0.871  0.958  0.991  0.9972 (0.9964-0.9980) 

MH 8 27,463 19 2 127 0.924  0.984  0.999  0.9997 (0.9994-1.0000) 

Pathological myopia 9 26,476 120 3 1,012 0.943  0.997  0.995  0.9997 (0.9996-0.9998) 

Optic nerve degeneration 10 26,191 357 9 1,054 0.852  0.992  0.987  0.9964 (0.9958-0.9969) 

Severe hypertensive 
retinopathy 11 27,563 14 0 34 0.829  1.000  0.999  0.9993 (0.9990-0.9996) 

Disc swelling and 
elevation 12 27,225 71 1 314 0.897  0.997  0.997  0.9997 (0.9995-0.9998) 

Dragged disc 13 27,570 8 0 33 0.892  1.000  1.000  0.9999 (0.9998-1.0000) 
Congenital disc 

abnormality 14 27,581 5 0 25 0.909  1.000  1.000  0.9999 (0.9997-1.0000) 

Pigmentary degeneration 15 27,378 43 0 190 0.898  1.000  0.998  0.9999 (0.9999-1.0000) 

Peripheral retinal 
degeneration and break 16 27,018 136 0 457 0.870  1.000  0.995  0.9997 (0.9996-0.9998) 

Myelinated nerve fiber 17 27,484 6 6 115 0.950  0.950  1.000  0.9956 (0.9873-1.0000) 

Vitreous particles 18 27,475 25 0 111 0.899  1.000  0.999  1.0000 (0.9999-1.0000) 

Fundus neoplasm 19 27,589 4 0 18 0.900  1.000  1.000  0.9999 (0.9998-1.0000) 

Hard exudates  20 26,645 133 1 832 0.925  0.999  0.995  0.9989 (0.9985-0.9993) 

Yellow-white spots/flecks 21 24,384 436 68 2,723 0.915  0.976  0.982  0.9927 (0.9910-0.9944) 

Cotton-wool spots 22 26,764 87 12 748 0.938  0.984  0.997  0.9987 (0.9981-0.9993) 

Vessel tortuosity 23 27,231 59 6 315 0.906  0.981  0.998  0.9996 (0.9994-0.9997) 

Chorioretinal 
atrophy/coloboma 24 27,308 60 14 229 0.861  0.942  0.998  0.9962 (0.9921-1.0000) 

Preretinal haemorrhage 25 27,105 191 1 314 0.766  0.997  0.993  0.9985 (0.9979-0.9991) 

Fibrosis 26 27,164 85 2 360 0.892  0.994  0.997  0.9992 (0.9988-0.9995) 

Laser spots 27 27,068 11 24 508 0.967  0.955  1.000  0.9996 (0.9994-0.9997) 

Silicon oil in eye 28 27,225 24 3 359 0.964  0.992  0.999  0.9991 (0.9974-1.0000) 

Blur fundus 29 22,532 475 101 4,503 0.940  0.978  0.979  0.9961 (0.9953-0.9970) 

Referable,  
frequency-weighted average         0.923  0.978  0.996  0.9984 

Subset accuracy, % 87.98                
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Supplementary Table 8 | Performance of DLP for detection of bigclasses in multihospital tests dataset (n=60,445). 

 

Diseases / conditions ID 

No. of images 

F1 Sensitivity Specificity AUC (95% CI) TN FP FN TP 
Nonreferable 0 25,417 330 2,019 32,679 0.965  0.942  0.987  0.9765 (0.9754-0.9775) 

Referable DR 1 58,373 182 35 1,855 0.945  0.981  0.997  0.9987 (0.9984-0.9990) 

RVO 2 58,576 29 80 1,760 0.970  0.957  1.000  0.9995 (0.9992-0.9998) 

RAO 3 60,429 1 1 14 0.933  0.933  1.000  0.9999 (0.9997-1.0000) 

Rhegmatogenous RD 4 59,938 69 3 435 0.924  0.993  0.999  0.9998 (0.9998-0.9999) 

Posterior 
serous/exudative RD 5 60,202 82 1 160 0.794  0.994  0.999  0.9996 (0.9995-0.9998) 

Maculopathy 6 58,903 83 80 1,379 0.944  0.945  0.999  0.9990 (0.9988-0.9992) 

ERM 7 59,382 250 50 763 0.836  0.938  0.996  0.9976 (0.9969-0.9982) 

MH 8 60,334 8 6 97 0.933  0.942  1.000  0.9996 (0.9991-1.0000) 

Pathological myopia 9 57,721 240 24 2,460 0.949  0.990  0.996  0.9994 (0.9993-0.9995) 

Optic nerve degeneration 10 58,336 504 68 1,537 0.843  0.958  0.991  0.9972 (0.9967-0.9977) 

Severe hypertensive 
retinopathy 11 60,365 4 11 65 0.897  0.855  1.000  0.9998 (0.9997-0.9999) 

Disc swelling and 
elevation 12 59,821 131 10 483 0.873  0.980  0.998  0.9992 (0.9989-0.9995) 

Dragged disc 13 60,397 12 0 36 0.857  1.000  1.000  0.9999 (0.9999-1.0000) 
Congenital disc 

abnormality 14 60,397 10 0 38 0.884  1.000  1.000  0.9998 (0.9995-1.0000) 

Pigmentary degeneration 15 59,663 112 7 663 0.918  0.990  0.998  0.9995 (0.9992-0.9999) 

Peripheral retinal 
degeneration and break 16 60,230 111 0 104 0.652  1.000  0.998  0.9995 (0.9993-0.9997) 

Myelinated nerve fiber 17 60,280 3 12 150 0.952  0.926  1.000  0.9998 (0.9996-0.9999) 

Vitreous particles 18 60,188 30 1 226 0.936  0.996  1.000  1.0000 (0.9999-1.0000) 

Fundus neoplasm 19 60,392 11 3 39 0.848  0.929  1.000  0.9999 (0.9998-1.0000) 

Hard exudates  20 59,752 97 3 593 0.922  0.995  0.998  0.9996 (0.9994-0.9997) 

Yellow-white spots/flecks 21 56,751 482 133 3,079 0.909  0.959  0.992  0.9969 (0.9965-0.9974) 

Cotton-wool spots 22 60,196 86 11 152 0.758  0.933  0.999  0.9988 (0.9983-0.9993) 

Vessel tortuosity 23 59,499 131 47 768 0.896  0.942  0.998  0.9985 (0.9982-0.9988) 

Chorioretinal 
atrophy/coloboma 24 59,096 166 79 1,104 0.900  0.933  0.997  0.9976 (0.9968-0.9983) 

Preretinal haemorrhage 25 59,989 169 4 283 0.766  0.986  0.997  0.9990 (0.9983-0.9998) 

Fibrosis 26 60,130 93 3 219 0.820  0.986  0.998  0.9995 (0.9993-0.9997) 

Laser spots 27 59,611 10 17 807 0.984  0.979  1.000  0.9999 (0.9999-1.0000) 

Silicon oil in eye 28 60,070 56 17 302 0.892  0.947  0.999  0.9969 (0.9928-1.0000) 

Blur fundus 29 50,858 908 124 8,555 0.943  0.986  0.982  0.9964 (0.9959-0.9968) 

Referable,  
frequency-weighted average         0.920  0.971  0.998  0.9990  

Subset accuracy, % 92.62                
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Supplementary Table 9 | Performance of DLP for detection of specified diseases in public test datasets (n=3,438).  
 

Datasets 

  No. of images 

F1 Sensitivity Specificity AUC (95% CI) Diseases / conditions TN FP FN TP 

messidor-2  Referable DR 1,340 5 38 365 0.944  0.906  0.996  0.9861 (0.9797-0.9924) 

IDRID Referable DR 174 19 57 266 0.875  0.824  0.902  0.9431 (0.9252-0.9610)  

PALM Pathological myopia 159 2 9 204 0.974  0.958  0.988  0.9931 (0.9870-0.9992)  

REFUGE a 

Optic nerve 
degeneration 659 61 12 68 0.651  0.850  0.915  0.9397 (0.9065-0.9728)  

Possible glaucoma  672 48 15 65 0.674  0.813  0.933  N/A 

  

a. The REFUGE dataset was applied for detection of glaucoma, which is a subclass of optic nerve degeneration id our 
DLP. Therefore, we have provided the results for detecting both optic nerve degeneration and possible glaucoma. 
Results of detecting possible glaucoma were obtained by further classification of optic nerve degeneration FP and TP 
samples by the subclass algorithm.  

 
Supplementary Table 10 | Performance of DLP for detection of bigclasses in tele-reading categorized (n=6,062). 

 

Diseases / conditions ID 

No. of images 

F1 Sensitivity Specificity AUC (95% CI) TN FP FN TP 
Nonreferable 0 3,477 15 159 2,411 0.965  0.938  0.996  0.9796 (0.9769-0.9823) 

Referable DR 1 5,632 22 25 383 0.942  0.939  0.996  0.9864 (0.9802-0.9926) 

RVO 2 5,920 5 8 129 0.952  0.942  0.999  0.9983 (0.9971-0.9995) 

RAO 3 6,055 1 0 6 0.923  1.000  1.000  0.9996 (0.9990-1.0000) 

Rhegmatogenous RD 4 5,996 7 5 54 0.900  0.915  0.999  0.9976 (0.9959-0.9994) 

Posterior 
serous/exudative RD 5 5,953 39 1 69 0.775  0.986  0.993  0.9978 (0.9965-0.9991) 

Maculopathy 6 5,966 3 13 80 0.909  0.860  0.999  0.9939 (0.9905-0.9973) 

ERM 7 5,765 41 16 240 0.894  0.938  0.993  0.9827 (0.9742-0.9911) 

MH 8 6,036 3 1 22 0.917  0.957  1.000  0.9994 (0.9987-1.0000) 

Pathological myopia 9 5,615 29 12 406 0.952  0.971  0.995  0.9985 (0.9980-0.9991) 

Optic nerve degeneration 10 5,675 62 25 300 0.873  0.923  0.989  0.9881 (0.9852-0.9909) 

Severe hypertensive 
retinopathy 11 6,059 0 0 3 1.000  1.000  1.000  0.9998 (0.9994-1.0000) 

Disc swelling and 
elevation 12 6,004 6 0 52 0.945  1.000  0.999  0.9995 (0.9990-1.0000) 

Dragged disc 13 6,057 2 0 3 0.750  1.000  1.000  1.0000 (1.0000-1.0000) 
Congenital disc 

abnormality 14 6,054 3 0 5 0.769  1.000  1.000  0.9999 (0.9998-1.0000) 

Pigmentary degeneration 15 5,977 18 1 66 0.874  0.985  0.997  0.9975 (0.9957-0.9994) 

Peripheral retinal 
degeneration and break 16 6,057 5 0 0 0.000  N/A 0.999  N/A 

Myelinated nerve fiber 17 6,047 1 3 11 0.846  0.786  1.000  0.9997 (0.9994-1.0000) 

Vitreous particles 18 5,992 17 2 51 0.843  0.962  0.997  0.9984 (0.9956-1.0000) 

Fundus neoplasm 19 6,059 0 1 2 0.800  0.667  1.000  0.9703 (0.9121-1.0000) 

Hard exudates  20 5,946 8 0 108 0.964  1.000  0.999  0.9996 (0.9991-1.0000) 

Yellow-white spots/flecks 21 5,224 59 36 743 0.940  0.954  0.989  0.9854 (0.9806-0.9902) 

Cotton-wool spots 22 6,012 8 3 39 0.876  0.929  0.999  0.9987 (0.9974-1.0000) 

Vessel tortuosity 23 6,005 3 3 51 0.944  0.944  1.000  0.9990 (0.9982-0.9998) 

Chorioretinal 
atrophy/coloboma 24 6,031 3 3 25 0.893  0.893  1.000  0.9986 (0.9972-1.0000) 

Preretinal haemorrhage 25 5,987 28 0 47 0.770  1.000  0.995  0.9988 (0.9980-0.9997) 

Fibrosis 26 5,988 11 3 60 0.896  0.952  0.998  0.9922 (0.9822-1.0000) 

Laser spots 27 6,037 0 1 24 0.980  0.960  1.000  0.9999 (0.9998-1.0000) 

Silicon oil in eye 28 6,050 4 1 7 0.737  0.875  0.999  0.9926 (0.9851-1.0000) 

Blur fundus 29 5,151 116 44 751 0.904  0.945  0.978  0.9795 (0.9736-0.9854) 

Referable,  
frequency-weighted average     0.913  0.948  0.997  0.9949 

Subset accuracy, % 91.41            
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Supplementary Table 11 | Performance of DLP for detection of subclasses in primary test dataset. 
 

ID 

  No. of images 

F1 Sensitivity Specificity AUC (95% CI) Diseases / conditions TN FP FN TP 

0 Nonreferable, detection of Tessellated fundus 5,461 177 402 1,891 0.867 0.825 0.969 0.9936 (0.9926-0.9946) 

0 Nonreferable, detection of Large optic cup 5,636 256 228 1,811 0.882 0.888 0.957 0.9860 (0.9840-0.9879) 

0 Nonreferable, detection of DR1 6,083 556 710 582 0.479 0.45 0.916 0.6644 (0.6459-0.6829) 

1 Referable DR, detection of DR3 3,657 165 121 1,052 0.88 0.897 0.957 0.9754 (0.9712-0.9796) 

2 RVO, detection of CRVO 379 6 5 235 0.977 0.979 0.984 0.9984 (0.9971-0.9998) 

5 Posterior serous/exudative RD, detection of VKH disease 96 5 2 95 0.964 0.979 0.95 0.9981 (0.9956-1.0000) 

10 Optic nerve degeneration, detection of Possible glaucoma 541 56 38 428 0.901 0.918 0.906 0.9647 (0.9545-0.9750) 

15 Pigmentary degeneration, detection of Retinitis pigmentosa 180 1 1 8 0.889 0.889 0.994 0.9963 (0.9889-1.0000) 

29 Blur fundus, detection of Blur fundus with suspected PDR 4,214 108 17 265 0.809 0.94 0.975 0.9904 (0.9865-0.9942) 
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Supplementary Table 12 | Performance of DLP in JSIEC comparative test dataset compared to experts (n=711). 
 

    Average expert (fundus only) Average expert (fundus + note) DLP (fundus only) 

    F1 Sensitivity Specificity F1 Sensitivity Specificity F1 Sensitivity Specificity AUC (95% CI) 
Nonreferable 0 0.890  0.941  0.991  0.936  0.984  0.993  0.986  0.973  1.000  0.9954 (0.9875-1.0000) 

Referable DR 1 0.950  0.935  0.991  0.966  0.953  0.994  0.969  0.951  0.996  0.9935 (0.9883-0.9987) 

RVO 2 0.954  0.945  0.996  0.957  0.939  0.998  0.977  0.985  0.997  0.9982 (0.9956-1.0000) 

RAO 3 0.929  0.920  0.999  0.931  0.940  0.999  1.000  1.000  1.000  1.0000 (1.0000-1.0000) 

Rhegmatogenous RD 4 0.985  1.000  0.999  0.985  1.000  0.999  0.962  0.962  0.999  0.9997 (0.9991-1.0000) 

Posterior serous/exudative RD 5 0.949  0.936  0.999  0.954  0.945  0.999  0.957  1.000  0.997  0.9988 (0.9972-1.0000) 

Maculopathy 6 0.957  0.953  0.996  0.955  0.950  0.996  0.958  0.950  0.997  0.9954 (0.9903-1.0000) 

ERM 7 0.967  0.957  0.998  0.972  0.965  0.998  0.968  0.978  0.997  0.9974 (0.9937-1.0000) 

MH 8 0.943  0.928  0.999  0.951  0.936  0.999  0.920  0.920  0.997  0.9615 (0.8869-1.0000) 

Pathological myopia 9 0.959  0.940  0.998  0.961  0.948  0.998  0.990  0.980  1.000  0.9998 (0.9995-1.0000) 

Optic nerve degeneration 10 0.961  0.959  0.998  0.961  0.959  0.998  0.963  1.000  0.996  0.9995 (0.9985-1.0000) 

Severe hypertensive 
retinopathy 11 0.900  0.900  0.997  0.930  0.956  0.997  0.837  1.000  0.990  0.9939 (0.9869-1.0000) 

Disc swelling and elevation 12 0.966  0.949  0.999  0.974  0.959  0.999  0.975  1.000  0.997  0.9998 (0.9994-1.0000) 

Dragged disc 13 0.937  0.893  1.000  0.952  0.933  0.999  0.966  0.933  1.000  0.9843 (0.9536-1.0000) 

Congenital disc abnormality 14 0.849  0.886  0.998  0.925  0.886  1.000  0.923  0.857  1.000  0.9816 (0.9455-1.0000) 

Pigmentary degeneration 15 0.982  0.964  1.000  0.982  0.964  1.000  1.000  1.000  1.000  1.0000 (1.0000-1.0000) 

Peripheral retinal degeneration 
and break 16 0.969  0.946  1.000  0.976  0.954  1.000  1.000  1.000  1.000  1.0000 (1.0000-1.0000) 

Myelinated nerve fiber 17 0.993  1.000  1.000  0.993  1.000  1.000  1.000  1.000  1.000  1.0000 (1.0000-1.0000) 

Vitreous particles 18 1.000  1.000  1.000  1.000  1.000  1.000  0.923  1.000  0.999  1.0000 (1.0000-1.0000) 

Fundus neoplasm 19 0.938  1.000  0.999  0.938  1.000  0.999  1.000  1.000  1.000  1.0000 (1.0000-1.0000) 

Hard exudates  20 0.979  1.000  0.998  0.982  1.000  0.999  0.966  1.000  0.997  0.9998 (0.9994-1.0000) 

Yellow-white spots/flecks 21 0.922  0.932  0.994  0.924  0.936  0.994  0.865  0.957  0.982  0.9897 (0.9818-0.9977) 

Cotton-wool spots 22 0.964  0.940  0.998  0.968  0.950  0.998  0.985  0.971  1.000  0.9995 (0.9987-1.0000) 

Vessel tortuosity 23 0.824  0.754  0.999  0.852  0.800  0.999  0.870  0.769  1.000  0.9910 (0.9789-1.0000) 
Chorioretinal 

atrophy/coloboma 24 0.934  0.904  0.999  0.931  0.912  0.998  0.926  1.000  0.994  0.9977 (0.9951-1.0000) 

Preretinal haemorrhage 25 0.941  0.952  0.997  0.941  0.952  0.997  0.980  0.960  1.000  0.9903 (0.9711-1.0000) 

Fibrosis 26 0.956  0.941  0.999  0.953  0.935  0.999  0.974  1.000  0.997  0.9989 (0.9971-1.0000) 

Laser spots 27 0.972  0.946  1.000  0.972  0.946  1.000  0.960  0.923  1.000  0.9894 (0.9761-1.0000) 

Silicon oil in eye 28 0.993  0.993  1.000  0.993  0.993  1.000  1.000  1.000  1.000  1.0000 (1.0000-1.0000) 

Blur fundus 29 0.769  0.667  1.000  0.769  0.667  1.000  0.667  0.667  0.999  0.9419 (0.8296-1.0000) 
Referable,  

frequency-weighted average 0.955  0.943  0.998  0.960  0.950  0.998  0.961  0.968  0.998  0.9956 

Subset accuracy, % 92.01      92.91      91.28        
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