

Supplementary Fig. 1: 4-MU treatment on metabolic fitness

- A. 4-MU HFHS diet treatment suppresses food intake after diet switch (n = 6 mice for control, n = 8 mice for 4-MU treatment group). Two-tailed t-test, p < 0.0001.
- B. Body weight loss during 1-week 4-MU pair feeding regimen (n = 6 mice for control, n = 6 mice for pair-fed, n=8 for 4-MU treatment group). One-way ANOVA followed by Bonferroni's multiple comparisons test.
- Food intake in mice treated with 0.1% 4-MU HFHS diet (n = 8 mice for control, n = 6 mice for 4-MU treatment group).
- D. Body weight gain in mice treated with 0.1% 4-MU HFHS diet for two weeks (n = 8 mice for control, n = 6 mice for 4-MU treatment group).
- E. Glucose tolerance in mice treated with 0.1% 4-MU HFHS diet for two weeks (n = 8 mice for control, n = 6 mice for 4-MU treatment group)

All data are presented as Mean ± s.e.m. ** indicates p ≤ 0.01. Two-tailed *t*-test (C) (D). Two-way ANOVA (E).

Supplementary Fig. 2: Verification and characterization of Tre-Has2 animals

- A. *Has1, Has2* and *Has3* expression levels in the adipose tissue on normal chow (NC) or 8 weeks of HFHS diet (n = 4 mice for NC, 5 mice for HFHS treatment). Multiple two-tailed *t*-test, *p* = 0.0631, 0.2101, 0.1373 for *Has1, Has2* and *Has3*, respectively.
- B. *Has2* expression in subcutaneous, gonadal and brown adipose tissues, as well as in the heart after 5-day Dox600 chow treatment (n = 2 mice).
- C. HAS2 protein levels in Apn-Has2 inguinal adipose tissue (n = 3 mice).
- Expression of *Ucp1* in Apn-*Has2* brown adipose tissue (BAT) after 5-day Dox600 chow treatment (n = 6 mice for control, n = 4 mice for Apn-*Has2* mice).
- E. Expression of *Ckmt1* and *Ckmt2* in Apn-*Has2* inguinal adipose tissue after 5-day Dox600 chow treatment (n = 8 mice for control, n = 10 mice for Apn-*Has2* mice). For *Ckmt1*, two samples in Ctrl group were not detected. Two-tailed *t*-test. a: p = 0.051.
- F. Expression of *Atp2a2* and *Pm20d1* in Apn-*Has2* inguinal adipose tissue after 8-week
 Dox600 HFHS diet treatment (n = 8 mice for control, n = 6 mice for Apn-*Has2* mice). For
 Pm20d1, three samples in Ctrl group, one sample in Apn-*Has2* group were not detected.
- G. Expression of *Gdf15* and *Fgf21* in Apn-*Has2* inguinal adipose tissue after 8-week Dox600 HFHS diet treatment (n = 8 mice for control, n = 6 mice for Apn-*Has2* mice). For *Fgf21*, one sample in Apn-*Has2* group were not detected. Multiple two-tailed *t*-test, p = 0.7699, 0.0256 for *Gdf15* and *Fgf21*, respectively.
- H. Expression of adipogenesis related gene in Apn-*Has2* inguinal adipose tissue after 5-day Dox600 chow treatment (n = 8 mice for control, n = 12 mice for Apn-*Has2* mice). Multiple two-tailed *t*-test, *p* = 0.3557, 0.0064, 0.0123, 0.0405, 0.0228 for *Ppargc1a, Adipoq, Fabp4, Cebpa, and Pparg,* respectively.

I: Body weights after 5-day Dox600 chow diet treatment (n = 4 mice per genotype).

J: Glucose tolerance after 5-day Dox600 chow diet treatment (n = 4 mice per genotype). All data are presented as Mean \pm s.e.m. * indicates p \leq 0.05, ** indicates p \leq 0.01. Two-tailed *t*-test (D). Multiple *t*-test (F). Two-way ANOVA (I) (J).

Accumulative food consumption

z

Supplementary Fig. 3: Effects of Has2 overexpression on metabolic profile

- A: Starting and terminal body weight of w-Has2 mice after 8 weeks of Dox10 HFHS diet treatment (n = 8 mice for control, n = 11 mice for w-Has2 mice). 2way ANOVA followed by Sidak's multiple comparisons test, control vs. w-Has2, adjusted *p* = 0.9897 and 0.0115 for Before and After, respectively.
- B: Glucose tolerance test for w-Has2 mice after 8 weeks of Dox10 HFHS diet treatment (n = 8 mice for control, n = 11 mice for w-Has2 mice). 2way ANOVA followed by Sidak's multiple comparisons test, adjusted *p* value = 0.9914, 0.4654, 0.0063, 0.0022, 0.1910 for 0 min, 15 min, 30 min, 60 min and 120 min, respectively.
- C: Fat mass and lean mass expressed as percentage of body weight of Apn-*Has2* mice after
 7 weeks Dox600 HFHS treatment (n = 9 mice per genotype). Two-tailed *t*-test.
- D: Adipocyte PDGFRβ+ progenitor population in Apn-*Has2* inguinal adipose stromal vascular fraction after 8 weeks of Dox600 HFHS treatment (n = 8 mice per genotype).
- E: Cumulative food consumption, XT+YT activity and Z activity measured in metabolic cage experiment (n = 8 mice per genotype).
- F: 4-h fasting insulin levels between control and Apn-*Has2* mice after 8 weeks of Dox600HFHS treatment (n = 5 mice per genotype).
- G: Serum ALT/AST ratio from Apn-*Has2* on Dox600 chow diet (NC) or Dox600 HFHS diet (HFHS) for 16 weeks (under NC: n = 9 mice for control, n = 6 mice for Apn-*Has2*; under HFHS: n = 6 mice for control, n = 6 mice for Apn-*Has2*).
- H: Representative blot showing serum adiponectin levels in control and Apn-*Has2* mice after
 16 weeks Dox600 HFHS treatment.

All data are presented as Mean \pm s.e.m. * indicates p \leq 0.05, ** indicates p \leq 0.01. Two-tailed *t*-test (D) (F) (G). Two-way ANOVA (E).

Supplementary Fig. 4: Effects of HA treatment of mice

- A. Serum HA levels after HA oral gavage (n = 4 mice per treatment).
- B: Serum HA levels 2 days after an i.p. injection of HA (50 mg/kg body weight) (n = 4 mice per treatment). 2way ANOVA followed by Sidak's multiple comparisons test, adjusted *p* value = 0.9981, <0.0001, 0.9935 for 0 day, 1 day, 2 days, respectively.
- C: Body weight during 4 weeks of HA treatment. Mice were treated with HFHS diet concurrently (n = 8 mice per treatment).
- D: Food intake after initiation of the 4-week HA treatment regimen (n = 4 mice for PBS, n = 5 mice for HA treatment).

All data are presented as Mean \pm s.e.m. ** indicates p \leq 0.01. Two-tailed *t*-test (D). Two-way ANOVA (A) (C).

Supplementary Fig. 5: Hepatic Has2 overexpression on systemic metabolism

- A: Doxycycline dose-dependent increase of serum HA in Liv-Has2 mice after five days of doxycycline HFHS diet treatment. Each data point is plotted on the graph. (n = 13, 2, 2, 2, 2, 3, 1 mice for HFHS diet containing 0, 1, 2.5, 5, 10, 25, 50 mg/kg doxycycline, respectively).
- B: Body weight, fat mass and lean mass before and after the metabolic cage experiment referred in Fig 6D (n = 12 mice per genotype).
- C: Accumulative food intake and water consumption during the metabolic cage experiment referred in Fig 6D (n = 12 mice per genotype).
- D: O_2 consumption (VO₂) and CO₂ production (VCO₂) during the metabolic cage experiment referred in Fig 6D (n = 12 mice per genotype).
- E: Weight gain for Liv-Has2 mice treated with Dox50 HFHS diet for four weeks (n = 9 mice per genotype). Two-tailed *t*-test, p = 0.0013.
- F: Serum lipids levels in Liv-Has2 mice treated with Dox50 HFHS diet for four weeks (n = 4 mice for control, n = 3 mice for Liv-Has2).
- G: Glucose tolerance for Liv-*Has2* mice treated with Dox50 HFHS diet for four weeks. (n = 4 mice for control, n = 3 mice for Liv-*Has2*).
- H: Serum AST and ALT activities in Liv-*Has2* mice treated with Dox50 HFHS diet for four weeks (n = 4 mice for control, n = 3 mice for Liv-*Has2*).

All data are presented as Mean \pm s.e.m. ** indicates p \leq 0.01. Two-tailed *t*-test (F) (H). Two-way ANOVA (B) (C) (D) (G).

Supplementary Fig. 6: Additional metabolic characterization of Apn-Has2 and Liv-Has2 mice

- A: dHDL, total Cholesterol, triglyceride and total NEFA levels in Apn-*Has2* mice on Dox600 chow diet and Dox600 HFHS diet for 12 weeks. (n = 11 mice for control on normal diet, n = 4 mice for Apn-*Has2* on normal diet, n = 5 mice for control on HFHS diet, n = 6 mice for Apn-*Has2* on HFHs diet). 2way ANOVA followed by Sidak's multiple comparisons test. a = 0.1058.
- B: Gene expression in adipose tissue overexpressing *Has2* after 5 days of Dox600 chow diet treatment (n = 8 mice for control, n = 12 mice for Apn-*Has2* mice). One sample in Apn-Has2 group was not detected for *Aqp7* gene. Multiple two-tailed *t*-test.
- C: Serum total ketone body concentration after 4-week HA treatment outlined in Fig. 5E (n = 8 mice per treatment). Two-tailed *t*-test, p = 0.0005.
- D: Representative liver histology of Liv-*Has2* mice after 16 weeks Dox10 HFHS treatment.
 Scale bar = 100 µm.
- E: Hepatic triglyceride contents of Liv-*Has2* mice after 16 weeks Dox10 HFHS treatment (n = 10 per genotype). Two-tailed *t*-test, p = 0.0121.

All data are presented as Mean \pm s.e.m. * indicates p \leq 0.05, ** indicates p \leq 0.01.

Supplementary Fig. 7: Chronic HFHS treatment on serum HA and adipose tissue HA levels

- A: Serum HA levels after 16 weeks of dietary treatment. (n = 5 mice for normal chow, n = 8 mice for HFHS diet). Two-tailed *t*-test, p = 0.0311.
- B: Inguinal adipose tissue HA levers after 16 weeks of dietary treatment. (n=7 for normal chow, n=6 for HFH diet). Two-tailed *t*-test, p = 0.0004.

All data are presented as Mean \pm s.e.m. * indicates p \leq 0.05, ** indicates p \leq 0.01.

Supplementary Table 1: List of primers used in the paper.

Name of the Gene Has1	Name of the primer Has1-f Has1-r	Sequence (5' to 3') GGCGAGCACTCACGATCATC AGGAGTCCATAGCGATCTGAAG
Has2	Has2-f Has2-r	TGTGAGAGGTTTCTATGTGTCCT ACCGTACAGTCCAAATGAGAAGT
Has3	Has3-f Has3-r	CTAGCCTTCCTAGTCTCTGG GGCTATACTGTTCTGGCTTC
Col1a1	Col1a1-f Col1a1-r	GATGGATTCCCGTTCGAGTA ATGTAGGCTACGCTGTTCTT
Col1a2	Col1a2-f Col1a2-r	TACAACGTAGAAGGGGTGTC GTGATGTTCTGAGAAGCACG
Col4a1	Col4a1-f Col4a1-r	TGTGGATCGGCTATTCCTTC GCTTCTTGAACATCTCGCTT
Col4a3	Col4a3-f Col4a3-r	CACTGGTACAAGAATGCGAG ATGTGCACGTTTGTTTCCTT
Col4a5	Col4a5-f Col4a5-r	TCAAACAACAGAAGCACCAC GAAAGGCATGGTACTGAAGC
Aqp7	Aqp7-f Aqp7-r	GTTTTGGATTCGGAGTGACC CCCAGCACATATACAGGGAA
Ucp1	UCP1-f UCP1-r	ACTGCCACACCTCCAGTCATT CTTTGCCTCACTCAGGATTGG
Adrb1	Adrb1-f Adrb1-r	GAACCCTGCAACCTGTCGTC CCAGCAGTAGGCCCATACC
Adrb2	Adrb2-f Adrb2-r	GGGAACGACAGCGACTTCTT GCCAGGACGATAACCGACAT
Adrb3	Adrb3-f Adrb3-r	CCTTGGGCGAAACTGGTTG GTTGGTGACAGCTAGGTAGCG
Pde3b	Pde3b-f Pde3b-r	AAAGCGCAGCCGGTTACTAT CACCACTGCTTCAAGTCCCAG
Pnpla2	Atgl-f	CAACGCCACTCACATCTACGG

	Atgl-r	GGACACCTCAATAATGTTGGCAC
Lipe	Hsl-f Hsl-r	
Ckmt1	Ckmt1-f	TGAGGAGACCTATGAGGTATTTGC
Ckmt2	Ckmt2-f	GCATGGTGGCTGGTGATGAG
	Ckmt2-r	AAACTGCCCGTGAGTAATCTTG
Atp2a2	Atp2a2-f Atp2a2-r	GAGAACGCTCACACAAAGACC CAATTCGTTGGAGCCCCAT
Pm20d1	Pm20d-f Pm20d-r	CTTCTCTTTTTCGCTACGGTCT CACCTTTCAGCGCCTCTTTTAT
Gdf15	Gdf15-f Gdf15-r	CTGGCAATGCCTGAACAGCG GGTCAGGACTTGGTTCTGAG
Fgf21	Fgf21-f Fgf21-r	CTGCTGGGGGTCTACCAAG CTGCGCCTACCACTGTTCC
Ppargc1a	PGC1a-f PGC1a-r	AGCCGTGACCACTGACAACGAG GCTGCATGGTTCTGAGTGCTAAG
Adipoq	Apn-f Apn-r	TGTTCCTCTTAATCCTGCCCA CCAACCTGCACAAGTTCCCTT
Fabp4	Fabp4-f Fabp4-r	AAGGTGAAGAGCATCATAACCCT TCACGCCTTTCATAACACATTCC
Серра	Cebpa-f Cebpa-r	CAAGAACAGCAACGAGTACCG GTCACTGGTCAACTCCAGCAC
Pparg	Pparg-f Pparg-r	TCGCTGATGCACTGCCTATG GAGAGGTCCACAGAGCTGATT