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Supplementary Note: Benchmarking Online iNMF Performance 
Across a Range of Conditions Using Real and Simulated Data  
Benchmarking Online iNMF with Simulation Studies 
We have demonstrated in the former sections the robust performance of online iNMF on 
multiple real datasets including human PBMC, human pancreas, and mouse cortex. To provide 
additional theoretical understanding, we performed extensive simulations using the Splatter 
scRNA-seq simulator. We investigated the effects of different dataset orderings, relative dataset 
sizes, and cell type compositions. To give a clearer view, these results are separated into five 
figures and organized in a similar fashion, including a schematic plot of the simulation design (a, 
Fig. S9, S10, S11, S12, S13), UMAP plots of a representative integration result (b-d, Fig. S9, 
S10, S11, S12, S13), and box or line plots of evaluation metrics (e, Fig. S9, S10, S11, S12, 
S13). 
 
Overall, we found that imbalanced cell cluster proportions and dataset sizes have very little 
effect on the results of online iNMF, although scenario 2 is slightly more sensitive to imbalances 
in cell proportions than scenario 1. We computed the Spearman correlations between the 
Shannon entropy of batch and cluster sizes and the four evaluation metrics we employed (see 
Online Methods section for details). Most of the correlation p-values are much larger than 0.05, 
indicating that online iNMF performance is not significantly affected by imbalances in dataset 
size or cluster proportions. The one exception is that for online iNMF (scenario 2), there is a 
statistically significant correlation between cluster entropy and both adjusted rand index and 
alignment, indicating that scenario 2 is slightly more sensitive to imbalances in cell proportions 
than scenario 1. Furthermore, we used random dataset arrival orders in benchmarking scenario 
2, and found that the relative order of small vs. large batches in scenario 2 makes little 
difference (Fig. S9).  
 
With missing cell clusters, the proportion of the missing cell types also has little effect on the 
results of iNMF (scenarios 1 and 2) (Fig. S11). Under the same condition, we also performed 
simulations to test whether scenario 3 will force cells into the existing feature space. These 
results showed that online iNMF does not cause spurious alignment, even if one or more cell 
types in the dataset to be projected are missing from the reference dataset. In the case of 
multiple cell types missing from the reference dataset, all of the new cell types cluster with each 
other (but not with the reference cells). This causes a decrease in overall Purity and ARI (Fig. 
S12e, red line), but a much more gradual decrease in purity and ARI for the cell types shared 
between reference and query datasets (Fig. S12e, green line). This behavior makes sense, 
because the shared metagenes (!) learned from the reference dataset cannot be expected to 
distinguish among multiple unseen cell types, which explains the poor evaluation metrics for the 
cells in the missing cell types (Fig. S12e, blue line). 
  
We also designed simulations in which no cell types occurred in every batch, but every pair of 
batches shared at least one cell type. This allowed us to test the performance of iNMF on data 
with complex biological compositions. Our results indicate that online iNMF is quite robust to 
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these situations and identifies every cluster clearly (Fig. S10). It seems that the most important 
factor determining the difficulty of identifying a particular cluster is the total number of cells in the 
cluster observed across all datasets, independent of how those cells are distributed across 
datasets. 
 
Reading Mini-Batches from Disk Adds Minimal Overhead 
One highlight of the proposed online iNMF algorithm is that it streams the mini-batches from the 
files on the disk without loading the entire data into the memory. Here we demonstrate that little 
overhead is added through this approach on the mouse frontal and posterior cortex scRNA-seq 
datasets (details are discussed in Online Methods). For a mini-batch size of 5,000 cells, 
reading each mini-batch from disk does not require significant overhead (an average of less 
than 0.56 seconds per iteration over 50 iterations) (Fig. S4). 
 
Online iNMF Is Robust to Initialization and Input Ordering 
The online iNMF algorithm starts with randomly initialized metagene factors (!	and #!). 
Therefore, we inspected the effect of random initialization on the analyses on the MOp datasets 
by assessing the agreement, as measured by ARI, between the resulting cell clusters and our 
annotations generated in scenario 2 (Fig. 6d). First, we performed online iNMF (scenario 1) on 
all eight MOP datasets with 10 different random initializations, using the same variable genes 
that we used for the scenario 2 analysis in Fig. 6. Based on the output cell clusters, the average 
ARI (vs. our annotations from scenario 2, shown in Fig. 6d) is 0.725. Similarly, we ran online 
iNMF (scenario 2) with 10 different initializations using the same set of genes (inputs ordered 
chronologically) and obtained an average ARI (vs annotations) of 0.744. These results indicate 
that online iNMF scenario 1 and 2 are both robust to the effects of random initialization.  
 
To investigate the effects of different dataset orders on scenario 2 results, we repeated the 
scenario 2 analysis using each of the other five sc/snRNA-seq datasets as the initial dataset. As 
with the analysis shown in Fig. 6, we selected over 4,000 variable genes from the first dataset 
and sequentially incorporated all remaining MOp datasets. We found that initiating the analysis 
with any of the six sc/snRNA-seq datasets leads to clusters in good agreement with our 
annotation (average ARI = 0.759), indicating that the results are robust to choice of starting 
dataset. We can even select genes from the snATAC-seq dataset, and use it as the first input, 
with slightly lower agreement (ARI = 0.627). If we instead use the snATAC-seq dataset as the 
starting dataset but use the genes selected from the first RNA dataset (SMARTer cells), the ARI 
is 0.752. Because the distribution of methylation is so different from gene expression, the 
statistical model for variable gene selection reported zero variable genes, and thus we were not 
able to select genes from the methylation data. Additionally, the results from scenario 1 and 2 
are quite congruent (ARI = 0.773).  
 
Integration with RNA Data Detects More Clusters from Epigenome Data   
In the original LIGER paper, we showed that integrating single-cell methylation data with 
scRNA-seq data resolved more methylation clusters than using methylation data alone. Here we 
confirmed that this still holds true for online iNMF on the mouse primary motor cortex (MOp) 
datasets: integrating methylation (snmC-seq) or chromatin accessibility data (snATAC-seq) with 
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RNA data (snRNA-seq) better separates clusters compared to the epigenome data alone (Fig. 
S8). In the first experiment (Fig. S8a), we started by factorizing the snATAC-seq data ($ = 
54,844) and obtained 9 clusters. After incorporating the snRNA-seq data ($ = 101,647), the two 
datasets are well aligned. More importantly, we are able to observe 15 clusters, which implies 
the structure within the data is refined. Similarly, in the second experiment (Fig. S8b), the 
“resolution” of snmC-seq data ($ = 9,366) is also increased after being jointly analyzed with the 
same snRNA-seq data, where 3 additional clusters are detected.  
 
Online iNMF Identifies Rare Cell Types Present in Only a Subset of the Datasets 
We also looked into the detection of rare cell types in MOp data, L5/6_NP and L6b, in separate 
analyses (Fig. S5). In the first experiment, we held out L5/6_NP and L6b cells from the first 
input (allen_10x_cells_v2, $ = 117,382) in scenario 2. Next, we incorporated an snRNA-seq 
dataset (macosko_10x_nuclei_v3, $ = 101,647) that includes L5/6_NP cells (3.3% of all cells). 
After Louvain clustering on the learned latent space, 96.4% of the L5/6_NP cells in the snRNA-
seq dataset grouped together and formed a distinct cluster (highlighted with a red box). In the 
second experiment, we held out the L6b cells from the scRNA-seq dataset ($ = 119,183) and 
subsequently incorporated the snRNA-seq dataset ($ = 101,647), in which L6b cells make up 
1.5% of all cells. L6b is rarer than L5/6_NP, which makes this task more challenging. 
Additionally, the L6b cluster is more continuous with the L6 CT cells, and the cluster boundary is 
somewhat unstable across different clustering runs. Nevertheless, 91.8% of the L6b cells 
formed a distinct cluster. Thus, these results indicate that online iNMF in scenario 2 can still 
detect rare cell types in late arriving datasets. We observed very similar results if the rare cell 
type was missing from the first dataset (99.3% of L5/6_NP cells formed a distinct cluster, and 
94.3% of L6b cells formed a distinct cluster). Consistent with our simulation results, these 
analyses suggest that the order of dataset arrival is not strongly influential in whether rare cell 
types are detected.  
 
Online iNMF Robustly Integrates Datasets with Non-Overlapping or Partially-
Overlapping Cell Types 
First, we examined the performance of online iNMF in integrating datasets of the same modality 
that do not share any common cell types. For this evaluation in scenario 2, we selected two 
datasets generated from MOp and only retained cells of dissimilar classes. The first input in 
scenario 2 (scRNA-seq, 10x v2) consists only of interneurons ($ = 27,555), including medial 
ganglionic eminence (MGE)-derived cells and caudal ganglionic eminence (CGE)-derived cells. 
In contrast, the second input (snRNA-seq, 10x v3) only contains oligodendrocytes ($ = 21,404). 
We also performed this analysis using online iNMF (scenario 1) and batch iNMF for comparison. 
The results are visualized in 2-dimensional UMAP coordinates (Fig. S6a). As expected, there is 
very little spurious alignment between the two cell classes when implementing online learning in 
scenario 2. The corresponding alignment scores for online iNMF (scenario 2), online iNMF 
(scenario 1) and batch iNMF are 0.106, 0.034 and 0.027 respectively, while the kBET 
acceptance rates are 0.050, 0.014 and 0.002. Thus, all three approaches are quite comparable 
in their ability to avoid spurious alignment of the non-overlapping cell types. Moreover, 30 
metagenes effectively capture the structure within the interneurons. We were also interested in 
how online iNMF would perform in scenario 3 in a similar setting. In this experiment, we started 
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by creating a curated atlas of interneurons using scRNA-seq dataset ($ = 27,555) and a snRNA-
seq dataset ($ = 15,255) through scenario 1. Then we projected a snATAC-seq dataset, which 
only consists of oligodendrocytes, into this atlas ($ = 8,557). As Fig. S6b shows, the 
oligodendrocytes are clearly separated from interneurons, while the structure of interneurons 
are retained. This indicates that scenario 3 can still detect outliers even if the query sample has 
extra cell types, even across modalities. 
 
Next, we investigated cases where the cell types in the input datasets partially overlap. As was 
discussed in the previous section, online iNMF (scenario 2) performs well at identifying the rare 
cell types in partially-overlapping datasets. We anticipate that scenario 3 is most useful for 
projecting small and specialized samples onto a large and comprehensive atlas, so we 
investigated performance when the reference dataset contains more cell types than the query 
(Fig. S7). We first integrated 6 sc/snRNA-seq datasets from the MOp ($ =  344,675) using 
online iNMF in scenario 1. Afterwards, we held out the MGEs (i.e. Pvalb, Sst and Chodl cells), 
which are approximately 10.4% of all the cells, from the snATAC-seq dataset. Then we 
projected this processed ATAC dataset ($ = 49,167) into the established atlas. The UMAP 
visualization annotated by our cell class labels is exhibited for reference (Fig. S7a) and it shows 
that different cell types are effectively identified. By coloring the cells by their data sources (Fig. 
S7b), it can be observed that very few cells from snATAC-seq data are spuriously aligned to the 
clusters corresponding to Pvalb, Sst and Chodl cells (highlighted in the red boxes).  
 
Online iNMF Achieves Accurate Data Reconstruction 
Here we demonstrate online iNMF’s capability of data reconstruction by providing a 
supplementary figure showing only the reconstruction portion of the objective (Fig. S14). The 
resulting iNMF factors do indeed reconstruct the data comparably to PCA, batch iNMF, and 
regular NMF. In this experiment, we evaluated the performance of online iNMF on 
reconstructing the human PBMC dataset ($ = 13,999) along with batch iNMF, regular NMF and 
PCA, using 2,001 variable genes. Next, we implemented the listed methods on the scaled data 
using the same setting (% = 30 for all methods and & = 5 for iNMF-based methods). The metric 
for comparison is the mean squared error (MSE) between the scaled and the reconstructed 
gene expression matrices. We repeated the experiment 10 times for iNMF/NMF-based 
approaches to account for the effect of random initialization and reported the average MSE. As 
is displayed in the plot, the performances of online iNMF (mean MSE = 0.831), batch iNMF 
(mean MSE = 0.830) and batch NMF (mean MSE = 0.830) are quite similar, while PCA (mean 
MSE = 0.825) accomplishes this task slightly better. 
 
Selection of Key Parameters (! and &) 
Selecting the dimensionality of the latent space is a perennial challenge in unsupervised data 
analysis. Due to the lack of ground truth, there is no way to pick the single best value for this 
parameter. In our previous paper, we described a heuristic for guiding the selection of %, by 
identifying an “elbow” in the plot of ! vs. factor entropy. This is analogous to picking the number 
of eigenvectors for principal component analysis by inspecting a plot of the eigenvalue 
spectrum. In general, cell populations with a larger number of distinct cell types/states benefit 
from a larger !; for example, a sample of frontal cortex contains many more distinct subsets of 
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cells than a sample of peripheral blood mononuclear cells. In practice, any % value between 20 
and 40 usually gives reasonable results. Here we added analyses to demonstrate that online 
iNMF performs well across different choices of % on simulated data (Fig. S13). The results 
show that, with any % in the range of 10 to 25, online iNMF (scenario 1 or 2) successfully aligns 
the datasets and recovers the 8 true cell clusters. 
 
We also examined the effect of regularization parameter & on data alignment (Fig. S15). To do 
so, we jointly analyzed the human PBMC datasets while varying & and fixing % at 20. Similar to 
the original LIGER paper, an “elbow” shape was observed, which implies that the alignment 
quality remains robust for any & ≥ 1.  
 
ANLS Outperforms HALS for Updating Cell Factor Loadings  
We discovered an implementation detail that is crucial for achieving optimal online iNMF 
performance: using ANLS to calculate ( (cell factor loading) updates. Although in principle 
either HALS (hierarchical alternating least squares) or ANLS can be used to update !!"($) for 
each minibatch, we found empirically that the ANLS updates converge much faster than HALS 
updates (Fig. S7). This may be because ANLS gives an optimal solution for all of the cell factor 
loadings (rows of ") simultaneously, while HALS updates are only optimal for one individual 
column of " at a time, requiring multiple iterations. We note also that Mairal et al. opted for least 
angle regression (LARS), which is directly analogous to our ANLS update, rather than a HALS-
like update for ( in their implementation.  
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Supplementary Note: Figures 

 
Figure S1. Online iNMF (scenario 1) efficiently factorizes the mouse organogenesis cell 
atlas (MOCA). The MOCA dataset consists of 1,363,063 cells from embryos between 9.5 to 
13.5 days of gestation. The online iNMF analysis required 25 minutes and less than 2 GB of 
RAM on a MacBook Pro, compared to 98 minutes and 109 GB of RAM for Harmony, which 
could only be run on a large-memory server. a-b, 3D UMAP plot of the online iNMF results ($ = 
200,000 cells sampled for visualization), colored by dataset (a) and published developmental 
trajectory labels (b).  
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Figure S2. Scenario 1 and scenario 3 achieve similar results on MERFISH data. The result 
of scenario 1 on the MERFISH dataset yielded similar MERFISH (a) and RNA (b) cluster 
placement as using scenario 3 (Fig. 5). The performance of the different approaches showed 
remarkable similarity, as demonstrated by the alignment, kBET, cluster purity, and ARI scores 
shown in the table.   
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Figure S3. Comparison of methods for updating cell factor loadings (H). The training data 
are subsets (80%) of the adult mouse frontal ($ = 124,934) and posterior cortex ($ = 79,349) 
datasets. 1,111 were selected variable genes for this analysis. ANLS for H clearly outperforms 
the other in minimizing the objective.   
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Figure S4. Reading mini-batches from disk adds minimal overhead. In this study, each 
chunk in HDF5 files stores 1,000 samples (cells). Pulling data from the disk does not add 
significant overhead compared to loading the data from memory, as long as the mini-batch size 
is close to the specified chunk size. Mean time per iteration (processing one mini-batch) (±SD) 
of 50 iterations in each setting is displayed.  
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Figure S5.  Performance of online iNMF (scenario 2) with missing rare cell clusters (real 
data). The L5/6_NP and L6b cells missing from early- or late- arriving datasets are successfully 
identified. a, The rare cell types were missing from the first input (allen_10x_cells_v2). b, The 
rare cell types were missing from the second input (macosko_10x_nuclei_v3). 
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Figure S6. Online iNMF results in minimal spurious alignment for non-overlapping 
datasets (real data). a, Online iNMF (scenario 1 & 2) and batch iNMF are utilized to integrate 
one dataset containing only interneurons (scRNA-seq, $ = 27,555) and another containing only 
oligodendrocytes (snRNA-seq, $ = 21,404) using 30 metagenes. b, Projection of completely 
non-overlapping dataset into the existing latent space leads to minimal spurious alignment. An 
scRNA-seq dataset ($ = 27,555) and a snRNA-seq dataset ($ = 15,255) containing only 
interneurons are first integrated in scenario 1. Then an snATAC-seq dataset containing only 
oligodendrocytes ($ = 8,557) is projected into this aligned latent space.   
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Figure S7. Online iNMF (scenario 3) leads to little spurious alignment when integrating 
partially-overlapping datasets. Six sc/snRNA-seq datasets from the MOp ($ =  344,675) were 
integrated using online iNMF (scenario 1). Then an snATAC-seq dataset ($ = 49,167) without 
MGEs (i.e. Pvalb, Sst and Chodl cells) was projected (scenario 3) into the atlas already built. a, 
The UMAP visualization annotated by our cell class labels. b, UMAP plot colored by dataset.  
Almost no cells from snATAC-seq data are observed in the clusters corresponding to Pvalb, Sst 
and Chodl cells (red boxes). 
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Figure S8. Integrating methylation or chromatin accessibility data with RNA data better 
separates clusters. a, 6 more clusters are observed after joint analysis of snATAC-seq data ($ 
= 54,844) and snRNA-seq data ($ = 101,647) than analysis of snATAC-seq data alone. b, 3 
more clusters are obtained after incorporating the snRNA-seq data than investigating snmC-seq 
data ($ = 9,366) alone.   
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Figure S9. Performance of online iNMF under imbalanced cell clusters and dataset sizes 
(simulations). a, Schematic plot showing the composition of 8 clusters and 6 batches in each 
simulated dataset (with 10000 genes and 50000 cells). b-d) UMAP representations of an 
example integration result plotted using batch labels (b), LIGER cluster assignments (c), and 
ground truth cluster labels (d). e, Line plots of four evaluation metric scores for online iNMF 
(scenario 1 & 2) versus the Shannon entropy of cell type and batch size (larger ( means more 
balanced composition). The data are presented as mean values ± standard deviation (5 
random initializations for each simulated dataset, $ = 50,000 cells in each simulated dataset). 
The p-value was obtained from one sided Spearman’s rank correlation test without adjustment 
for multiple comparisons.   
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Figure S10: Performance of online iNMF with no cell types shared across all datasets 
(simulations). a, Schematic plot showing the composition of 8 clusters and 6 batches in each of 
ten simulated datasets; data were further filtered to make sure the intersection of all batches in 
each simulation is the empty set while the pairwise intersections of all batches are non-empty. 
b-d, UMAP representations of an integration example result under scenarios 1 & 2 plotted using 
batch labels (b), LIGER cluster assignments (c), and ground truth cluster labels (d). e, Bar plot 
of the two evaluation metric scores for online iNMF (scenario 1 & 2) simulated data. The data 
are presented as mean values ± standard deviation (50 runs in total for each metric, $ = 50,000 
cells in each simulated dataset).  
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Figure S11: Performance of online iNMF (scenario 1 and 2) with missing cell clusters 
(simulations). a, Schematic plot showing the equal proportions of 8 clusters and 6 batches in 
each simulated dataset (with 10,000 genes and 50,000 cells) with 1-5 cell types excluded. b-d, 
UMAP representations of an example integration result from scenario 1 from a simulation with 
three held-out cell types. The plots are colored using batch labels (b), LIGER cluster 
assignments (c), and ground truth cluster labels (d). e, Line plots of two evaluation metrics for 
online iNMF (scenario 1 & 2) versus the number of cell types excluded. The data are presented 
as mean values ± standard deviation (10 random initializations for each simulated dataset, $ = 
50,000 cells in each simulated dataset before holding out any cell clusters).  
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Figure S12: Performance of online iNMF (scenario 3) with missing cell clusters 
(simulations). a, Schematic plot showing the equal proportions of 8 clusters and 6 batches in 
each simulated dataset (with 10000 genes and 50000 cells) with 1-5 cell types excluded. b-d, 
UMAP representations of an example integration result from scenario 3 from a simulation with 3 
held-out cell types. The plots are colored using batch labels (b), LIGER cluster assignments (c), 
and ground truth cluster labels (d). e, Line plots of two evaluation metric scores for online iNMF 
(scenario 3) on all cells (red line), cells in missing clusters (blue line), and cells in shared 
clusters (green line), versus the number of cell types excluded. The data are presented as mean 
values ± standard deviation (10 random initializations for each simulated dataset, $ = 50,000 
cells in each simulated dataset before holding out any cell clusters).  



18 

 
 
Figure S13. Performance of online iNMF (scenario 1 and 2) varying % (number of 
metagenes) (simulations). a, Schematic plot showing the composition of 8 clusters and 6 
batches in each simulated dataset (with 10000 genes and 50000 cells). b-d, UMAP 
representations of an example result plotted using batch labels (b), LIGER cluster assignments 
(c), and ground truth cluster labels (d). e, Line plots of four evaluation metric scores for online 
iNMF (scenario 1 & 2) versus % varying from 10 to 40 incremented by 5. The data are presented 
as mean values ± standard deviation (10 random initializations for each %, $ = 50,000 cells in 
each simulated dataset).  
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Figure S14. Comparison of data reconstruction among iNMF, NMF and PCA. Human 
PBMC dataset ($ = 13,999) was used for this analysis. Average mean squared error (MSE) is 
shown and error bars indicate the standard deviation (10 random initializations for each method 
except for PCA, which is deterministic). Individual data points are shown for the NMF 
approaches.  
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Figure S15. Selecting & on human PBMC dataset. The human PBMC datasets ($ = 13,999) 
were used to demonstrate the effect of & on the data integration. Alignment score (a) and kBET 
(b) are reported to quantitatively assess dataset integration.   
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Supplementary Note: Tables 

Corres. figure  Integration 
Strategy " # 

Mini-batch 
size Variable Genes # of iNMF 

initializations 
# of 

simulations  
# of total 

runs 

Figure S13 

Scenario 1 20 5 5000 ~3000, selected from all 
batches 5 20 100 

Scenario 2 20 10 1000 3000, selected from the 
first batch 5 20 100 

Figure S14 

Scenario 1 20 5 5000 ~3000, selected from all 
batches 5 10 50 

Scenario 2 20 10 1000 3000, selected from the 
first batch 5 10 50 

 
 

Figure S15 
Scenario 1 20 5 5000 ~3000, selected from all 

batches 10 5 50 

Scenario 2 20 10 1000 3000, selected from the 
first batch 10 5 50 

Figure S16 Scenario 3 20 5 5000 
~3000, selected from 

batches with missing cell 
types 

10 5 50 

Figure S17 

Scenario 1 10-
40 5 5000 ~3000, selected from all 

batches 1 70 70 

Scenario 2 10-
40 10 1000 3000, selected from the 

first batch  1 70 70 

Table S1. Key parameter settings for integrated analysis on simulated data 
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Note that the nonnegativity constraint is enforced by thresholding, where [a]+ = max(a, 0), assuming a is a

scalar. As shown above, we have

@g
⇤
(wj)

@wj

= 2

X

i

wj(h
i>
j
hi

j
)�Q

i

j
hi

j

Then for mth element in wj

g
⇤
((wj)m) =

X

i

(hi>
j
hi

j
)(wj)

2
m
� 2(Q

i

j
hi

j
)m(wj)m

Here we assume hi

j
is not a zero-vector, therefore

P
i
hi>
j
hi

j
> 0.

@g
⇤
((wj)m)

@(wj)m
= 2

X

i

(wj)m(hi>
j
hi

j
)� (Q

i

j
hi

j
)m

If (Q
i

j
hi

j
)m � 0, then the minimal value of the function is achieved when (wj)m =

(Qi
jh

i
j)m

hi>
j hi

j
.

If (Q
i

j
hi

j
)m < 0, then the value of function increases as (wj)m gets larger when (wj)m � 0. Hence the

minimal value of the function is achieved at (wj)m = 0.

Combining both cases, [·]+ is used in expressing the resulting updates.
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4 V update

For each V
i
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Let S
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j
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P
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k
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; then we have
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j
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Then

vi⇤
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Since R
i>
k
R

i

j
and S

i>
k

S
i

j
are constant, minimizing (10) is equivalent to minimizing the following
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Based on the property of matrix trace, we have the following,
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By setting
@h

⇤(vi
j)

@vi
j

= 0 we can solve for vi⇤
j
, as shown below.
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)
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5 H update

For each H
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Let zi

j
= wj + vi

j

S
i

j
=

P
K

k 6=j
vi

k
hi>
k

= V
i
H

i> � vi

j
hi>
j

U
i

j
= X

i �
P

K

k 6=j
(wk + vi

k
)hi>

k
; then we have

l(hi

j
) =

��zi

j
hi>
j

� U
i

j

��2
F
+ �

��vi

j
hi>
j

+ S
i

j

��2
F

(16)
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Because U
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Based on the property of matrix trace, we have the following,
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By setting
@l

⇤(hi
j)

@hi
j

= 0 we can solve for hi⇤
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, as shown below.
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6 Appendix

Equivalently, we have
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