

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

Randomized trials of proton pump inhibitors for gastroesophageal reflux disease in patients with asthma: systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-043860
Article Type:	Original research
Date Submitted by the Author:	15-Aug-2020
Complete List of Authors:	Zheng, Zhoude; Peking Union Medical College Hospital, Department of Pulmonary and Critical Care Medicine Luo, Yunyun; Peking Union Medical College Hospital, Department of Endocrinology Gao, Jinming; Peking Union Medical College Hospital, Department of Pulmonary and Critical Care Medicine
Keywords:	Asthma < THORACIC MEDICINE, Oesophageal disease < GASTROENTEROLOGY, THERAPEUTICS

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Randomized trials of proton pump inhibitors for gastroesophageal reflux disease in patients with asthma: systematic review and meta-analysis

Zhoude Zheng, MD¹, Yunyun Luo, MD², Jinming Gao, MD PhD^{1*}

¹Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China;

²Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology of National Health Commission, Beijing, China

*Corresponding author: Jinming Gao, MD,PhD,

Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China.

E-mail: gjinming@yahoo.com Phone: +86 1860-1077-280

Key Words: Asthma; gastroesophageal reflux disease; proton pump inhibitors; meta-analysis

Word Count

Abstract: 245 Main Text: 3016

ABSTRACT

Objective Asthma and gastroesophageal reflux disease (GERD) commonly co-exist. The effect of proton pump inhibitors (PPIs) treatment in asthma patients with GERD remains controversial. Thus, this study aimed to assess whether PPIs improved morning peak expiratory flow (mPEF) in asthma patients with GERD.

Data Sources PubMed, MEDLINE, EMBASE, Web of Science, Cochrane Library and ClinicalTrials.gov; hand searching of reference lists; contacted with authors if necessary.

Study Selection All eligible trials were randomized clinical trials comparing PPIs with placebo in patients with asthma accompanying with GERD.

Results Fourteen randomized clinical trials (2182 participants) were included. Overall, PPIs versus placebo did not affect mPEF in patients with asthma having GERD (weighted mean difference 8.68 L/min, 95% confidence interval [-2.35, 19.37], P=0.11). Trial sequential analysis (TSA) further confirmed this finding (TSA adjusted 95% CI [-1.03, 22.25]). Subgroups analyses based on the percentage of patients with symptomatic GERD ≥95%, treatment duration >12 weeks also found no statistically significant benefit on mPEF. Similarly, analyses of secondary outcomes (evening PEF, forced expiratory volume in 1 second, asthma symptoms score, asthma quality of life score and episodes of asthma exacerbation) did not show significant difference between PPIs and placebo.

Conclusion In this meta-analysis, PPIs therapy did not show a statistically significant improvement on mPEF in patients with asthma having GERD, neither in subgroup with symptomatic GERD nor in subgroup with treatment duration >12 weeks. This analysis does not support a recommendation for PPIs therapy as empirical treatment in asthma patients with GERD.

Trial Registration: PROSPERO CRD42020177330

Strengths and limitations of this study

- This study is the first review evaluating the efficacy of proton pump inhibitors on several asthma outcomes in patients accompanying with gastroesophageal reflux disease, which was based on a comprehensive and systematic search with the largest number of participants to date.
- This study found for the first time that PPIs were ineffective on mPEF neither in asthma patients with symptomatic GERD nor in subgroup with treatment duration >12 weeks.
- Trial sequential analysis was applied in this meta-analysis, showing whether a clinical study could be terminated early when a P value is sufficiently small to show the expected effect.
- we could not extract the data from all the eligible trials with the outcomes
 of interest because of the unavailable reporting format. However, the
 overall sample size of these 3 trials was small and we do not think these
 studies would make a significant difference in our meta-analysis
- we could not perform a subgroup according to the severity of asthma or
 GERD as expected, because the severity reported inconsistently.

INTRODUCTION

Asthma is a common chronic respiratory disease affecting 1–18% of the population in different countries and approximately 300 million people worldwide.[1 2] Gastroesophageal reflux disease (GERD) develops when the reflux of gastric contents causes irritating symptoms or complications, or both.[3] GERD was considered as a trigger factor for asthma. Symptoms and/or diagnosis of GERD presented in 30% to 90% of patients with asthma.[4-6] Association between asthma and GERD has been extensively described elsewhere. However, evidence of the causal link between asthma and GERD remains controversial. Some studies have shown that asthma may facilitate the development of GERD by the various mechanisms.[7 8]

PPIs were regarded as the cornerstone of antacid therapy and have been proved effective in empiric treatment of GERD.[9] Given that GERD may be a trigger for asthma, many randomized controlled trials (RCTs) were performed to identify the efficacy of different types of PPIs in the asthma patients with GERD.[10-23] However, the efficacy of PPIs for the patients with asthma accompanying with GERD remains inconsistent. Previous meta-analyses have pooled the results of PPIs on asthma outcomes in children and adults, but all of them included a small sample size.[24-26] The most recent systematic review examined the efficacy of PPIs treatment for the adults with asthma. However, the review did not study all the asthma outcomes, only involved mPEF in subgroup of asthmatic patients diagnosed with GERD, and failed to identify the clinical characteristics of this subgroup population.[27]

Thus, we did a systematic review and meta-analyses to compare the effects PPIs versus placebo on asthma outcomes in the patients with GERD. TSA was performed to quantify the meta-analysis monitoring boundaries and required information size (RIS) for primary outcome. Asthma outcomes included mPEF (primary outcome), evening peak expiratory flow (ePEF), forced expiratory volume in 1 second (FEV₁), asthma symptoms score, asthma quality of life, episodes of asthma exacerbation.

METHOD AND ANALYSIS

The systematic review and meta-analyses were carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The protocol has been registered (CRD42020177330) with International Prospective Register of Systematic Reviews (PROSPERO).

Eligibility criteria

Types of study

All randomized clinical trials of PPIs in the patients with asthma and GERD were included. The eligible randomized trials were required to report at least one clinical asthma outcome of interest.

Types of participants

Participants with asthma and GERD were eligible for inclusion. There were no restrictions regarding age, gender, and ethnicity. Asthma were diagnosed according to doctor's diagnosis, reported ongoing asthma-related symptoms, evidence of objective measures of lung function. GERD diagnosis based on doctors' diagnosis, reported clinical symptoms of GERD, and objective documentation.

Types of intervention and control

Trials comparing beneficial and harmful effects of PPIs with those of placebo were eligible. This review was restricted to studies with treatment duration of 4 weeks and above.[27] No restrictions were imposed on drug dosage and types of PPIs which contained omeprazole, lansoprazole, pantoprazole, esomeprazole, and rabeprazole. We excluded the trials that focused on the intervention with combination of PPIs and other antacids or gastrointestinal motility regulators.

Outcome measures

This review evaluated the following outcomes: mPEF, ePEF and FEV₁, which were commonly used as evidence of variable expiratory airflow obstruction.

Other outcomes included asthma symptoms score (validated questionnaires of all types), asthma quality of life (validated instruments of all types), episodes of asthma exacerbation and adverse events.

Information sources and search

A systematic search for evidence on the efficacy of PPIs on patients with asthma was performed through electronic databases, citation search based on reference lists and hand searching of main relevant journals. We did a search in PubMed, EMBASE, Web of Science, Cochrane Library and ClinicalTrials.gov dating from inception to 18th March, 2020. No restrictions were imposed on language, publication date, publication type, or publication status. The search terms and search strategies for all databases were described in the **supplement 1**.

Study selection

Two reviewers (ZZ and YL) independently screened titles and abstracts according to the eligibility criteria in an unblinded, standardized manner. Reviews, letters, editorials, case studies, non-human studies, study protocols, non-English-language abstract were excluded during this process. The assessments of eligible full-text articles were carried out independently by two reviewers (ZZ and YL). Disagreements between reviewers were resolved by consensus or referred to a third reviewer (JG) for resolution.

Data extraction

Two independent reviewers (ZZ and YL) extracted data from each eligible study by using a pre-designed extraction form. Discrepancies were resolved by consensus or by involvement of a third author (JG). Items of characteristics of included studies were described in **supplement 1**. We contacted the corresponding authors for outcomes data if required.

Risk of bias in individual studies

Two independent reviewers (ZZ and YL) evaluated risk of bias according to version 5.1.0 of Cochrane Handbook for Systematic Review of Interventions. An agreement was reached by discussion or by consultation with a third

review author (JG). The domains of evaluation for all the outcomes were selection bias, performance bias, detection bias, attrition bias, reporting bias, and other bias. Each potential source of bias was considered as either "high risk", "low risk", or "unclear risk".

Statistical analysis

The weighted mean difference (WMD)/standardized mean difference (SMD) and 95% confidence intervals were calculated for continuous outcomes. The relative risk with 95% confidence intervals was calculated for dichotomous outcomes. Predefined subgroup analysis was undertaken in accordance with patients aged 18 years and older or patients younger than 18 years, the percentage of subjects with symptomatic GERD ≥95%, treatment duration (≤12 weeks VS >12 weeks) and types of PPIs (omeprazole, pantoprazole, lansoprazole, esomeprazole). Given the anticipated variability among patient characteristic and study design, a random effects model with 95% confidence intervals was used in the forest plots (RevMan version 5.3). Statistical heterogeneity was quantified using I² statistic, with I² cut-off value of 25%, 50%, and 75% to quantify low, moderate, and high thresholds, respectively. We conducted sensitivity analysis and Egger's test to identify data stability and publication bias, respectively (StataSE 12.0). TSA (version of 0.9.5.10 Beta) was performed in mPEF and ePEF to quantify meta-analysis monitoring boundaries and RIS using parameters of mean difference of mPEF=20 L/min, estimate variance from the meta-analysis of PEF data, α at 0.05, power of 80%, and I^2 value of 0%.

Patient and Public Involvement

There was no patient or public involvement in this study.

RESULTS

Study selection and characteristics

The search strategy yielded 2005 abstracts, of which 49 abstracts were

retrieved and under full-articles assessment for eligible articles. Of these trials, fourteen randomized controlled trials were included, six of which were cross-over studies,[10-12 14 15 20] and eight were of a parallel design.[13 16-19 21-23] The flow diagram for study inclusion is described in **Figure 1**. **Table 1** and **Supplement Table 1** summarizes the characteristics of the included studies (2182 participants) and the characteristics of the subjects, respectively. Of the 14 eligible trials, twelve included subjects aged ≥18 years, while only two aimed at patients aged <18 years (ranged from 6 to 17 years old).[17 23] Subjects were included with mild to severe asthma. The severity of GERD was reported inconsistently among the trials. Symptoms of heartburn, regurgitation and dysphagia were the common complications of GERD reported in most studies. The percentage of the subjects with symptomatic GERD was greater than 95% in 8 studies, of which 6 studies reported 100%.[10 11 14 17 20 22]

Risk of bias within studies

Each study was assessed in accordance with the Cochrane risk of bias tool (**Figure 2**).[28] Double-blinding method was adopted in all studies except one trial which used a single-blinding fashion.[20] Three trials were supported by pharmaceutical companies.[16 18 22]

Outcomes

Fourteen included studies investigated PPIs therapy on patients with asthma and GERD (2182 patients). Asthma outcomes were reported inconsistently among studies, leading to limitation of meta-analysis (**Table 2**). All studies reported one or more outcomes of lung function.

Primary outcome

Morning PEF

Three of eleven studies found a significant improvement on mPEF.[14 18 20] Eight studies containing nine groups were included in meta-analysis (1886 subjects). Among the nine groups, eight showed improvement in asthma symptoms,[10 12 13 16 18-20 22] but only one group did not cross the neutral

(zero) line.[19] The overall analysis found no statistically significant benefit on mPEF with PPIs treatment (8.68 L/min, 95% CI [-2.35, 19.37], P=0.11) (**Figure 3 A**). Heterogeneity was absent (I²=0%; P=0.73). TSA showed a heterogeneity adjusted RIS of 1240 patients without the cumulative Z curve crossing boundaries for benefit or harm (TSA adjusted 95% CI [-1.03, 22.25]), suggesting that PPIs may not show benefit on mPEF of the patients with asthma and GERD (**Figure 4 A**). No publication bias reported in mPEF, and the sensitivity analysis confirmed the robustness of these findings (**Supplement 2**).

A subgroup was performed according to the percentage of subjects with symptomatic GERD ≥95%. Of eight eligible studies, five reported available data for meta-analysis.[10 12 16 20 22] No statistically significant effect was found for mPEF in this subgroup (7.07 L/min, 95% CI [-6.56, 20.69], P=0.31) (Figure 3 B). TSA showed that only 1158 (79%) of the heterogeneity adjusted RIS of 1470 patients were calculated. However, the cumulative Z curve crossed the boundaries for futility (TSA adjusted 95% CI [-5.94, 25.58]) (Figure 4 B). Next, we conducted subgroups analysis based on duration of PPIs treatment (duration ≤12 weeks VS >12 weeks). No statistically significant benefit was demonstrated in both subgroups (duration ≤12 weeks: 23.06 L/min, 95% CI [-3.40, 49.51], P=0.09, P=0.43; duration >12 weeks: 5.87 L/min, 95% CI [-5.83, 17.56], P=0.33) (**Figure 3 C**). Then we conducted TSA in the subgroup with duration >12 weeks. TSA did not alter the efficacy on mPEF with a PPIs treatment duration >12 weeks (TSA adjusted 95% CI [-4.99, 20.50]) (Figure 4 C). Also, three subgroups meta-analyses based on types of PPIs did not showed statistically significant treatment benefit (omeprazole: 4.65 L/min, 95% CI [-35.43, 44.72], P=0.27; pantoprazole: 29.18 L/min, 95% CI [-23.21, 81.56], P=0.31; esomeprazole: 5.91 L/min, 95% CI [-7.02, 18.84], P=0.37) on mPEF (**Figure 3 D**).

Secondary outcomes

Evening PEF

Ten trials reported ePEF of the subjects with asthma and GERD, of which two trials demonstrated statistically significant improvement on ePEF.[12 18] Of these 10 trials, 6 studies provided information and were included in the meta-analyses.[10 12 16 18-20] Meta-analysis did not show statistically significant effect on ePEF (5.58 L/min; 95% CI [-8.19, 19.36]; P=0.43) (**Figure 5 A**). TSA showed that the cumulative Z curve crossed boundaries for futility, suggesting no statistically significant improvement on ePEF with PPIs therapy (TSA adjusted 95% CI [-6.87, 25.35]). No publication bias reported in ePEF, and the sensitivity analysis showed solid results (**Supplement 3a**).

No statistically significant benefit was showed on ePEF by subgroups analyses of the studies in accordance with the percentage of subjects with symptomatic GERD ≥95%, length of PPIs treatment and types of PPIs (Supplement 3b).

Forced expiratory volume in 1 second

Three studies provided information of FEV₁ % predicted,[12 18 19] and only two provided available data of FEV₁ (L),[13 16] which were included in analyses, respectively. At the analysis of FEV₁ % predicted, no therapy effect was found on the patients with PPIs use (-1.25%, 95% CI [-4.9, 3.00], P=0.56) (**Figure 5 B1**). Heterogeneity was substantial (I²=61%; P=0.05). The analysis of the two studies may not demonstrated a benefit on the FEV₁ (L) in the patients with PPIs therapy (-0.09 L, 95% CI [-0.28, 0.10], P=0.36) (**Figure 5 B2**). No publication reported in FEV1 % predicted, the sensitivity analysis showed robust results (**Supplement 4**).

Asthma symptoms score

Six studies reported information of asthma symptoms score and were included in meta-analysis.[10 13 16 17 19 20] Five of six trials included the patients aged older than 18 years. The subgroup of adults showed no statistically significant effect on asthma symptoms score with PPIs treatment (SMD -0.30, 95% CI [-0.61, 0.01], P=0.06, heterogeneity I²=32%, P=0.21). However, the analysis found a small statistically significant improvement on

asthma symptoms score (SMD -0.26, 95% CI [-0.52, -0.01], P=0.04), when we pooled the studies in adults and those in children. Heterogeneity was low (I²=19%, P=0.29) (**Figure 5 C**). No publication reported in asthma symptoms score, and the sensitivity analysis showed that the results were robust (**Supplement 5**).

Asthma quality of life

Four eligible studies were included for meta-analysis.[16 18 19 23] The result showed no overall effect on the asthma quality of life (SMD 0.01, 95% CI [-0.44, 0.47], P=0.96). Heterogeneity was substantial (I²=89%, P<0.00001) (**Figure 5 D**). No publication bias was reported in this outcome (P=0.588), but sensitivity analysis showed the results were unstable (**supplement 6**). Therefore, the pooled result for asthma quality of life had limited meaning. Episodes of asthma exacerbation Only two studies provided information of episodes of asthma exacerbation

Only two studies provided information of episodes of asthma exacerbation and showed an improvement in this variance.[16 22] However, no effect was showed in meta-analysis (relative risk 0.55, 95% CI [0.21, 1.43], P=0.22). Heterogeneity was substantial (I²=81%, P<0.02) (**Figure 5 E**).

DISCUSSION

For primary outcome mPEF, we assessed 8 studies including 9 independent comparisons (1886 participants) and found no statistically significant improvement with PPIs treatment in patients with asthma and GERD compared to placebo. Subgroups analyses according to duration >12 weeks and the percentage of subjects with symptomatic GERD ≥95%, did not demonstrated statistically significant benefit with PPIs therapy. Also, no statistically significant improvement was observed on the secondary outcomes including ePEF, FEV₁, asthma symptoms, quality of life and asthma exacerbation.

To enlarge sample size, our analysis not only included trials with asthma subjects having GERD diagnosis for entry criterion, but also those reported

GERD subjects in subgroups analyses.[18 20] To the best of our knowledge, this analysis included the largest number of participants to date describing the effect of PPIs treatment in patients with asthma accompanying with GERD. The previous meta-analysis aiming to examine the efficacy of PPIs in the adult patients with asthma, reported a subgroup analysis based on GERD diagnosis for entry criterion with 7 trials (1004 patients).[27] In contrast to our study, a small statistically significant improvement was reported for mPEF in this subgroup, therefore, this analysis might overestimate the benefits on mPEF and exaggerate the effect of positive improvement, because of incomplete and inadequate population inclusion. However, in line with our results, this previous review did not show benefit on in patients with asthma with PPIs treatment on ePEF, FEV₁, asthma symptoms score and asthma quality of life.

A study reported that the minimal patient perceivable improvement differences for PEF was 18.79 L/min.[29] The minimal difference in PEF ranging from 15 to 20 L/min were summarized in a review.[30] Our analysis found that the pooled mean difference for mPEF and ePEF were 7.30 and 5.58 L/min respectively, which were far smaller than the minimal effective line, probably showing a lack of evidence to believe the efficacy of PPIs. In alignment with our study, previous meta-analysis published by Cochrane Collaboration found no statistically significant improvement on mPEF and ePEF.[25] Also, a recent large three-arms RCT was consistent with our study.[22]

Several trials have reported that PPIs played no role in asthma patients with asymptomatic GERD, whether in children or adults.[21 23] Similarly, in our subgroup meta-analysis, no statistically significant benefit appeared for mPEF in asthma patients with symptomatic GERD. This result was in keeping with a large trial including all asthma participants with symptomatic GERD.[22] Our subgroup analysis for mPEF based on duration >12 weeks was conducted, suggesting that no improvement appeared with PPIs therapy. In

agreement with our result, two large trials did not find improvement for mPEF with PPIs treatment for 24 or 26 weeks.[16 22]

Mechanistically, GERD may trigger asthma via directly damage to the respiratory tree leading to bronchoconstriction by micro-aspiration of gastric or duodenal (or both) contents.[31 32] Previous studies have reported that bile acids and pepsin were found graft failure in lung transplant patients, indicating that acid materials may not be the only one of many irritants in the aspirate during gastroesophageal reflux.[33 34]

PPIs treatment significantly improved asthma symptoms and lung function in patients with exercise-triggered asthma, with asthma and nocturnal respiratory symptoms, or taking LABAs.[18 35] It appeared that benefits of PPIs may be restricted to patients with certain types or status of asthma. Further studies are warranted to examine the pathophysiological mechanism to determine the causality between asthma and GERD. Notably, if the improvement for asthma conditions were delayed or required more time to present, then the overall effect may be underestimated. Thus, further RCTs should be conducted with a treatment period for more than 6 months. Previous RCTs combined omeprazole and domperidone therapy in patients with asthma and GERD, showing that combined therapy improved asthma symptoms and lung function with treatment period of 12 or 16 weeks.[36 37] Therefore, the efficacy of combined therapy should be further explored. Furthermore, we hopefully expect the effect of genotype-tailored PPIs in patients with asthma and co-morbid GERD.[38]

There are several limitations in the present study. Firstly, we could not extract the data from all the 11 eligible trials reporting mPEF, because of the unavailable reported form (mean difference only,[14] medians and quartiles[15]) or unavailable data in subgroup.[21] However, the overall sample size of these 3 trials was small and we do not think these studies would make a significant difference in our meta-analysis. Secondly, we could not perform a subgroup according to the severity of asthma or GERD as

expected, because the severity reported inconsistently and we could not sort out the disease status of each trial. Thirdly, only two RCTs in children were eligible in the present study, making it difficult to evaluate the effect for PPIs on all outcomes in children.[17 23] However, both trials reported no improvement for PPIs in all the asthma outcomes, which were in line with the overall effect in adults in our analysis.

CONCLUSION

Compared to placebo, PPIs therapy for asthma patients with GERD did not show statistically significant improvement in mPEF. This futility did not alter in asthma patients neither with symptomatic GERD nor with PPIs treatment for more than 12 weeks. This analysis does not support a recommendation for the empirical use of PPIs therapy in asthma patients having GERD.

Acknowledgements:

The authors would like to thank Dr. Xiaoling Li for her suggestions on grammar and vocabularies of this manuscript. We would also like to thank Dr. Xiaorui Lyu (Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College) for his advice on data analysis data extraction. This work was supported by the National Natural Science Foundation of China (Grant No. 81970025).

Author contributions

ZZ led the meta-analysis was involved at every stage, including protocol development, screening, data extraction, quality assessment, data analysis and manuscript drafting. YL was involved in screening, data extraction, quality assessment, interpretation of results and manuscript revisions. JG supervised this review and was involved in protocol preparation, consensus on disagreement in data extraction, quality assessment, data analysis, interpretation of results, manuscript drafting and revisions.

Conflicts of interests

None declared.

Funding

This work was supported by the National Natural Science Foundation of China (81970025).

Patient consent for publication

Not required.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data sharing statement

No additional data are available.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to copy, distribute, remix, adapt, build upon this work for any purpose, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

References

- Li X, Cao X, Guo M, et al. Trends and risk factors of mortality and disability adjusted life years for chronic respiratory diseases from 1990 to 2017: systematic analysis for the Global Burden of Disease Study 2017. *Bmj* 2020;368:m234. doi: 10.1136/bmj.m234 [published Online First: 2020/02/23]
- 2. <GINA-2020-full-report_-final-_wms.pdf>. 2020
- 3. Vakil N, van Zanten SV, Kahrilas P, et al. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. *Am J Gastroenterol* 2006;101(8):1900-20; quiz 43. doi: 10.1111/j.1572-0241.2006.00630.x [published Online First: 2006/08/25]
- 4. Kiljander TO, Laitinen JO. The prevalence of gastroesophageal reflux disease in adult asthmatics. *Chest* 2004;126(5):1490-94. doi: 10.1378/chest.126.5.1490
- 5. Sandur V, Murugesh M, Banait V, et al. Prevalence of gastro-esophageal reflux disease in patients with difficult to control asthma and effect of proton pump inhibitor therapy on asthma symptoms, reflux symptoms, pulmonary function and requirement for asthma

- medications. *J Postgrad Med* 2014;60(3):282-6. doi: 10.4103/0022-3859.138754 [published Online First: 2014/08/15]
- Broers C, Tack J, Pauwels A. Review article: gastro-oesophageal reflux disease in asthma and chronic obstructive pulmonary disease. *Aliment Pharmacol Ther* 2018;47(2):176-91. doi: 10.1111/apt.14416 [published Online First: 2017/12/02]
- 7. Harding SM. Gastroesophageal reflux and asthma: insight into the association. *J Allergy Clin Immunol* 1999;104(2 Pt 1):251-9. doi: 10.1016/s0091-6749(99)70360-x [published Online First: 1999/08/19]
- Zerbib F, Guisset O, Lamouliatte H, et al. Effects of bronchial obstruction on lower esophageal sphincter motility and gastroesophageal reflux in patients with asthma. Am J Respir Crit Care Med 2002;166(9):1206-11. doi: 10.1164/rccm.200110-033OC [published Online First: 2002/10/31]
- Gyawali CP, Fass R. Management of Gastroesophageal Reflux Disease. *Gastroenterology* 2018;154(2):302-18. doi: 10.1053/j.gastro.2017.07.049 [published Online First: 2017/08/23]
- Ford GA, Oliver PS, Prior JS, et al. Omeprazole in the treatment of asthmatics with nocturnal symptoms and gastro-oesophageal reflux: a placebo-controlled cross-over study. *Postgrad Med J* 1994;70(823):350-4. doi: 10.1136/pgmj.70.823.350 [published Online First: 1994/05/01]
- 11. Meier JH, McNally PR, Punja M, et al. Does omeprazole (Prilosec) improve respiratory function in asthmatics with gastroesophageal reflux? A double-blind, placebo-controlled crossover study. *Dig Dis Sci* 1994;39(10):2127-33. doi: 10.1007/bf02090360 [published Online First: 1994/10/01]
- 12. Teichtahl H, Kronborg IJ, Yeomans ND, et al. Adult asthma and gastro-oesophageal reflux: the effects of omeprazole therapy on asthma. *Aust N Z J Med* 1996;26(5):671-6. doi: 10.1111/j.1445-5994.1996.tb02938.x [published Online First: 1996/10/01]
- 13. Boeree MJ, Peters FT, Postma DS, et al. No effects of high-dose omeprazole in patients with severe airway hyperresponsiveness and (a)symptomatic gastro-oesophageal reflux. *Eur Respir J* 1998;11(5):1070-4. doi: 10.1183/09031936.98.11051070 [published Online First: 1998/07/02]
- 14. Levin TR, Sperling RM, McQuaid KR. Omeprazole improves peak expiratory flow rate and quality of life in asthmatics with gastroesophageal reflux. *Am J Gastroenterol* 1998;93(7):1060-3. doi: 10.1111/j.1572-0241.1998.329_q.x [published Online First: 1998/07/22]
- Kiljander TO, Salomaa ER, Hietanen EK, et al. Gastroesophageal reflux in asthmatics: A double-blind, placebo-controlled crossover study with omeprazole. *Chest* 1999;116(5):1257-64. doi: 10.1378/chest.116.5.1257 [published Online First: 1999/11/13]
- 16. Littner MR, Leung FW, Ballard ED, 2nd, et al. Effects of 24 weeks of lansoprazole therapy on asthma symptoms, exacerbations, quality of life, and pulmonary function in adult asthmatic patients with acid reflux symptoms. *Chest* 2005;128(3):1128-35. doi: 10.1378/chest.128.3.1128 [published Online First: 2005/09/16]
- 17. Størdal K, Johannesdottir GB, Bentsen BS, et al. Acid suppression does not change respiratory symptoms in children with asthma and gastro-oesophageal reflux disease. *Archives of Disease in Childhood* 2005;90(9):956-60. doi: 10.1136/adc.2004.068890

- Kiljander TO, Harding SM, Field SK, et al. Effects of esomeprazole 40 mg twice daily on asthma: a randomized placebo-controlled trial. *Am J Respir Crit Care Med* 2006;173(10):1091-7. doi: 10.1164/rccm.200507-1167OC [published Online First: 2005/12/17]
- dos Santos LH, Ribeiro IO, Sanchez PG, et al. Evaluation of pantoprazol treatment response of patients with asthma and gastroesophageal reflux: a randomized prospective double-blind placebo-controlled study. *J Bras Pneumol* 2007;33(2):119-27. doi: 10.1590/s1806-37132007000200004 [published Online First: 2007/08/29]
- Susanto AD, Yunus F, Wiyono WH, et al. Asthma symptoms improvement in moderate persistent asthma patients with gastroesophageal reflux disease (GERD): The role of proton-pump inhibitor. *Medical Journal of Indonesia* 2008;17(3):169-74. doi: 10.13181/mji.v17i3.317
- 21. Mastronarde JG, Anthonisen NR, Castro M, et al. Efficacy of esomeprazole for treatment of poorly controlled asthma. *New England Journal of Medicine* 2009;360(15):1487-99. doi: 10.1056/NEJMoa0806290
- 22. Kiljander TO, Junghard O, Beckman O, et al. Effect of esomeprazole 40 mg once or twice daily on asthma: a randomized, placebo-controlled study. *Am J Respir Crit Care Med* 2010;181(10):1042-8. doi: 10.1164/rccm.200910-1537OC [published Online First: 2010/01/30]
- 23. Holbrook JT, Wise RA, Gold BD, et al. Lansoprazole for children with poorly controlled asthma: a randomized controlled trial. *JAMA* 2012;307(4):373 81. doi: 10.1001/jama.2011.2035
- 24. Coughlan JL, Gibson PG, Henry RL. Medical treatment for reflux oesophagitis does not consistently improve asthma control: a systematic review. *Thorax* 2001;56(3):198-204. doi: 10.1136/thorax.56.3.198 [published Online First: 2001/02/22]
- 25. Gibson PG, Henry RL, Coughlan JL. Gastro-oesophageal reflux treatment for asthma in adults and children. *Cochrane Database Syst Rev* 2003(2):Cd001496. doi: 10.1002/14651858.Cd001496 [published Online First: 2003/06/14]
- 26. Miceli Sopo S, Radzik D, Calvani M. Does treatment with proton pump inhibitors for gastroesophageal reflux disease (GERD) improve asthma symptoms in children with asthma and GERD? A systematic review. *Journal of Investigational Allergology and Clinical Immunology* 2009;19(1):1-5.
- 27. Chan WW, Chiou E, Obstein KL, et al. The efficacy of proton pump inhibitors for the treatment of asthma in adults: a meta-analysis. *Arch Intern Med* 2011;171(7):620-9. doi: 10.1001/archinternmed.2011.116 [published Online First: 2011/04/13]
- 28. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 2011;343:d5928. doi: 10.1136/bmj.d5928 [published Online First: 2011/10/20]
- 29. Santanello NC, Zhang J, Seidenberg B, et al. What are minimal important changes for asthma measures in a clinical trial? *Eur Respir J* 1999;14(1):23-7. doi: 10.1034/j.1399-3003.1999.14a06.x [published Online First: 1999/09/18]
- 30. Reddel HK, Taylor DR, Bateman ED, et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. *Am J Respir Crit*

- Care Med 2009;180(1):59-99. doi: 10.1164/rccm.200801-060ST [published Online First: 2009/06/19]
- 31. Hom C, Vaezi MF. Extra-esophageal manifestations of gastroesophageal reflux disease: diagnosis and treatment. *Drugs* 2013;73(12):1281-95. doi: 10.1007/s40265-013-0101-8 [published Online First: 2013/07/25]
- 32. Naik RD, Vaezi MF. Extra-esophageal gastroesophageal reflux disease and asthma: understanding this interplay. *Expert Rev Gastroenterol Hepatol* 2015;9(7):969-82. doi: 10.1586/17474124.2015.1042861 [published Online First: 2015/06/13]
- 33. Vos R, Blondeau K, Vanaudenaerde BM, et al. Airway colonization and gastric aspiration after lung transplantation: do birds of a feather flock together? *J Heart Lung Transplant* 2008;27(8):843-9. doi: 10.1016/j.healun.2008.05.022 [published Online First: 2008/07/29]
- 34. Griffin SM, Robertson AG, Bredenoord AJ, et al. Aspiration and allograft injury secondary to gastroesophageal reflux occur in the immediate post-lung transplantation period (prospective clinical trial). *Ann Surg* 2013;258(5):705-11; discussion 11-2. doi: 10.1097/SLA.0b013e3182a6589b [published Online First: 2013/10/15]
- 35. Peterson KA, Samuelson WM, Ryujin DT, et al. The role of gastroesophageal reflux in exercise-triggered asthma: a randomized controlled trial. *Dig Dis Sci* 2009;54(3):564-71. doi: 10.1007/s10620-008-0396-6 [published Online First: 2008/08/09]
- 36. Sharma B, Sharma M, Daga MK, et al. Effect of omeprazole and domperidone on adult astmatics with gastroesophageal reflux. *World Journal of Gastroenterology* 2007;13(11):1706-10. doi: 10.3748/wjg.v13.i11.1706
- 37. Bediwy AS, Al-Biltagi M, Amer HG, et al. Combination therapy versus monotherapy for gastroesophageal reflux in children with difficult-to-treat bronchial asthma. *Egyptian Journal of Chest Diseases and Tuberculosis* 2014;63(1):33-38. doi: 10.1016/j.ejcdt.2013.10.014
- 38. Tang M, Blake KV, Lima JJ, et al. Genotype tailored treatment of mild symptomatic acid reflux in children with uncontrolled asthma (GenARA): Rationale and methods. *Contemp Clin Trials* 2019;78:27-33. doi: 10.1016/j.cct.2019.01.009 [published Online First: 2019/01/20]

List of Figures

Figure 1 Flow diagram of identification of eligible studies for inclusion.

Figure 2 Risk of bias summary displaying review authors' judgements about each risk of bias item for each included study.

Figure 3 A, Forest plot for morning peak expiratory flow. B, Forest plot for morning peak expiratory flow in subgroup of the percentage of subjects with symptomatic GERD ≥95%. C, Forest plot for morning peak expiratory flow in subgroups of treatment duration ≤12 weeks and >12 weeks. D, Forest plot for morning peak expiratory flow in subgroups of different types of proton pump inhibitors.

Figure 4 A, Trial sequential analysis of morning peak expiratory flow. **B**, Trial sequential analysis of morning peak expiratory flow in subgroup of the percentage of subjects with symptomatic GERD ≥95%. **C**, Trial sequential analysis of morning peak expiratory flow in subgroup of of treatment duration >12 weeks.

Figure 5 A, Forest plot for evening peak expiratory flow. **B1**, Forest plot for FEV1 % predicted. **B2**, Forest plot for FEV1 (L). **C**, Forest plot for asthma symptoms score. **D**, Forest plot for asthma quality of life score. **E**, Forest plot for episodes of asthma exacerbation.

Page 21 of 51 **BMJ** Open

Table 1 Summary of participants characteristics of included studies

	Trials	Mean (SD or range) Age (Years)	Male, n (%)	Severity of asthma	Severity of GERD	Complications of GERD	Symptomatic GERD (%)	Association between asthma and GERD reported
	Ford 1994	63 (50-80)	5 (50%)	Mean PEFR before and after terbutaline use (SD), 1/minute: 253 (83) and 308 (±94)	Number per grade of esophagitis: Grade I (n=1), Grade II (n=2), Grade III(n=4); Barrett's esophagus (n=2	Heartburn, regurgitation, lack of proportion	100%	No
	Meier 1994	49 (34-63)	9 (60%)	Not stated; inclusion criteria: reversibility of FEV ₁ and/ or PEF after bronchodilator use: >15%	Number per grade of esophageal inflammation: Grade I (n=1), Grade II (n= 4), Grade III (n= 8), Grade IV (n= 2); hiatal hernia n=10; Barrett's esophagus and peptic stricture n=10	Not specified	100%	Yes
	Teichtahl 1996	46 (12)	12 960%)	Not stated, inclusion criteria: reversibility of FEV ₁ >15%; diurnal variation of PEF: >20%	GERD symptoms in all	Not specified	95%	No
	Boeree 1998	51 (10)	17 (47.2%)	Mean FEV ₁ %, pred (SD): Int 66(20); cont 75(23); mPEF mean (SD): Omeprazole group 329 (91); placebo group 321 (109)	Increased gastroesophageal reflux reported in all	Dysphagia Int n=2/1/0, Cont n=3/0/0; heartburn Int n=9/0/0, Cont n=9/3/0; regurgitation Int n=3/0/0, Cont n=4/3/0	50%	No
,	Levin 1998	57 (35–72)	6 (67%)	Mean FEV ₁ (range): 1.9 (1.0–2.9); mean PEFR (range), L/min: mPEF 376 (283–488), ePEF 381 (286–468).	24-h pH monitoring, mean % time with pH < 4 (range): total: 24.4 (4.7–64.0), supine: 17.6 (0–39.8), upright: 23.8 (5.6–74.4)	Not specified	100%	No
;))	Kiljander 1999	49 (21–75)	18(35%)	Mean PEF (range) L/min, 455 (250 to 700); FEV ₁ % of predicted (range), 81 (31 to 114)	Median % time pH < 4 (75–25% quartiles): total 9.0 (14.7–5.0), upright 10.1 (15.1–6.9), supine: 4.0 (15.7–0.8)	Not specified	65%	No
<u>?</u>	Littner 2005	47 (12)	66 (31.9%)	Moderate-to-severe persistent asthma	Mean severity score (SD): Overall reflux symptoms: Int 1.66 (0.69), Cont 1.70 (0.65) ¶	Patients with symptoms (%): heartburn Int 97%, Cont 95%; regurgitation Int 80%, Cont 80%; dysphagia: Int 32%, Cont 47%	Int 96.1±8.0%, Cont 97.3±5.2%	No
	Størdal 2005	10.2 (9.2), 11.3 (11.0)	29 (76.3%)	GINA classification of asthma severity (step 1/2/3/4): Int 4/8/7/0, Cont 3/6/10/0.	Reflux index, mean (%, SD): Int 8.8 (4.0), Cont 9.7 (5.1); reflux index≥ 10% (n): Int n=5, Cont n=6	Not specified	100%	No
5 7 8	GERD+/NOC+ (Kiljander-1) Kiljander 2006 GERD+/NOC-	46.3	80 (36.5%)	FEV ₁ , % pred: Int 67.3%, Cont 66.2%; Morning PEF, % pred: Int 73.0%, Cont 73.0% FEV ₁ , % pred: Int 65.5%, Cont 67.4%;	Abnormal 24-h esophageal pH in all	Mean number heartburn symptoms/day: (nighttime) Int 0.42, Cont 0.44; (daytime) Int 0.68, Cont 0.71 Mean number heartburn symptoms/day: (nighttime) Int	Not stated	Yes
)	(Kiljander-2)	44.3	94 (26.9%)	mPEF, % pred: Int 68.7%, Cont 69.2%.	Abnormal 24-h esophageal pH in all	0.46, Cont 0.47; (daytime) Int 0.68, Cont 0.62		
	dos Santos 2007	Int 40 (12), Cont 45 (12)	9 (22.0%)	Mean FEV ₁ % predicted (SD): Int 61.6 (19), Cont 60.4 (19); mean diurnal PEF (SD): Int 317 (13), Cont 264 (86)	Mean GERD symptoms score (SD): Int 12.9 (9), Cont 11.4 (7)	Not specified	80%	No
} } ; ;	Susanto 2008	Int 42.69 (11.11), Cont 37.88 (11.01)	9 (28.1%)	Moderate persistent asthma; mean FEV ₁ % prediction (SD): Int 72.9 (6.7), Cont 71.2 (7.7); mean PEFR, L/min (SD): Int 258.8 (33.2), Cont 269.5 (76.4)	One or more typical GERD symptoms in all. patients with histopathological esophagitis (%): 87.5%	Heartburn: Int 68%. Cont 87%; atypical chest pain: Int 81.3%, Cont 75%, regurgitation: Int 100%, Cont 100%, dysphagia: Int 12.5%, Cont 25%, water brash: Int 37.5%, Cont 37.5%	100%	No
3	Mastronarde 2009	(>18)	Not stated	Persistent and poorly controlled asthma	PH monitoring positive in all	Not specified	0%	No
)	Kiljander 2010	45 (19-70)	233 (24.3%)	Moderate-to-severe asthma	Moderate severity	Heartburn, acid regurgitation Dyspepsia	100%	No
)	Holbrook 2012	(6-17)	Not stated	Poorly controlled asthma	Abnormal 24-h esophageal pH in all	Not specified	0%	No

41 Abbreviations: FEV₁, forced expiratory volume in 1 second; mPEF, morning peak expiratory flow; PEFR peak expiratory flow; pred, predicted; PUD, peptic ulcer disease; GERD, gastroesophageal reflux disease; GINA: Global Initiative for 42 Asthma; Int, intervention; Cont, control; PPI, proton pump inhibitor; NOC, nocturnal respiratory symptoms; SD, standard deviation 41 flower assessed scale was used, as follows: 0, none; 1, mild; 2, moderate; and 3, severe.

Trials	mPEF, L/min	ePEF, L/min	FEV₁, L	FEV₁%, Pred	Asthma symptom score	AQLQ	Episodes of asthma exacerbation
Ford 1994	-	-	NA	NA	-	NA	NA
Meier 1994	NA	NA	-	NA	-	NA	NA
Teichtahl 1996	-	+	NA	-	NA	NA	NA
Boeree 1998	-	-	-	NA	-	NA	NA
Levin 1998	+	-	-	NA	NA	+	NA
Kiljander 1999	-	-	+*	NA	+	NA	NA
Littner 2005	-	-	-	-	-	+	+
Størdal 2005	NA	NA	-	NA	-	-	NA
GERD+/NOC-,	-	-	NA		-	-	NA
Kiljander-1 2006 GERD+/NOC+, Kiljander-2 2006	+	+	NA	9	-	-	NA
dos Santos 2007	-	-	NA	-	/	+	NA
Susanto 2008	+	-	NA	NA		NA	NA
Mastronarde 2009	-	NA	-	NA		-	NA
Kiljander 2010	-	-	+		- (+	+
Holbrook 2012	NA	NA	-	NA	NA	1	NA

22 Abbreviations: FEV₁, forced expiratory volume in 1 second; pred, predicted; mPEF, morning peak expiratory flow; AQLQ, Asthma Quality of Life Questionnaire; NA, not available; .Q, Asthma Quanty Cr L...

^{23 +,} significant therapy effect; -, not significant therapy effect.

^{24 *,} Decline during omeprazole use.

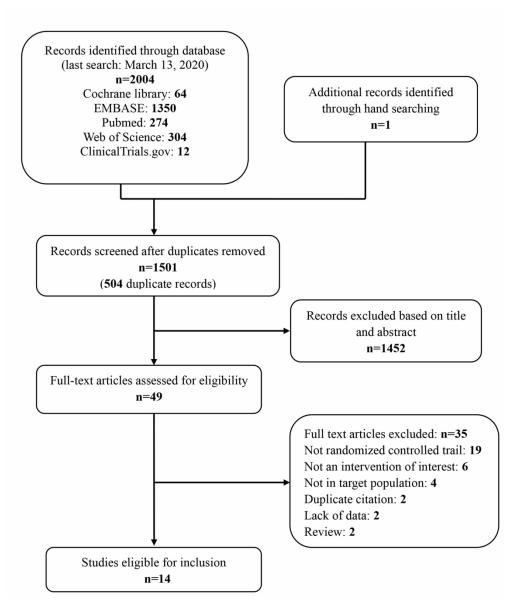


Figure 1 Flow diagram of identification of eligible studies for inclusion.

168x199mm (300 x 300 DPI)

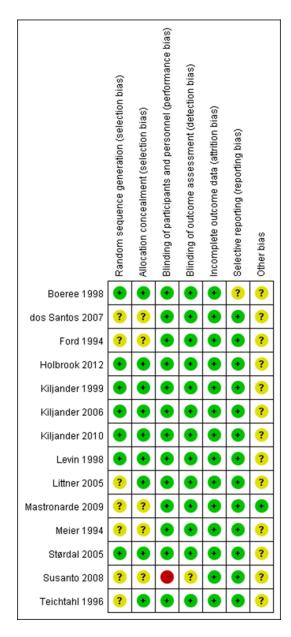


Figure 2 Risk of bias summary displaying review authors' judgements about each risk of bias item for each included study.

28x64mm (600 x 600 DPI)

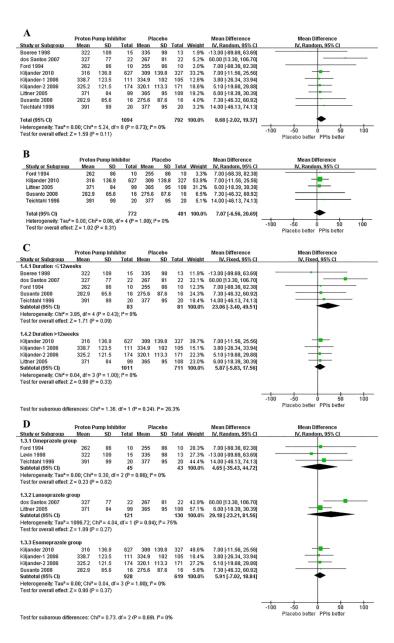


Figure 3 A, Forest plot for morning peak expiratory flow. B, Forest plot for morning peak expiratory flow in subgroup of the percentage of subjects with symptomatic GERD ≥95%. C, Forest plot for morning peak expiratory flow in subgroups of treatment duration ≤12 weeks and >12 weeks. D, Forest plot for morning peak expiratory flow in subgroups of different types of proton pump inhibitors.

72x119mm (600 x 600 DPI)

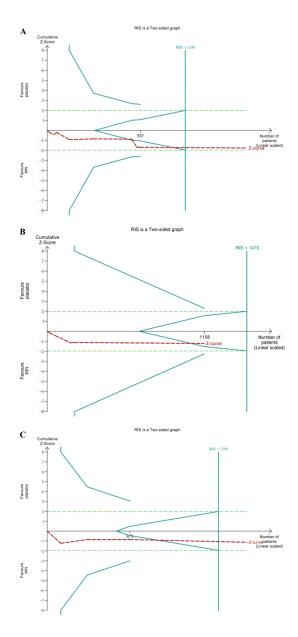


Figure 4 A, Trial sequential analysis of morning peak expiratory flow. B, Trial sequential analysis of morning peak expiratory flow in subgroup of the percentage of subjects with symptomatic GERD ≥95%. C, Trial sequential analysis of morning peak expiratory flow in subgroup of of treatment duration >12 weeks.

72x145mm (600 x 600 DPI)

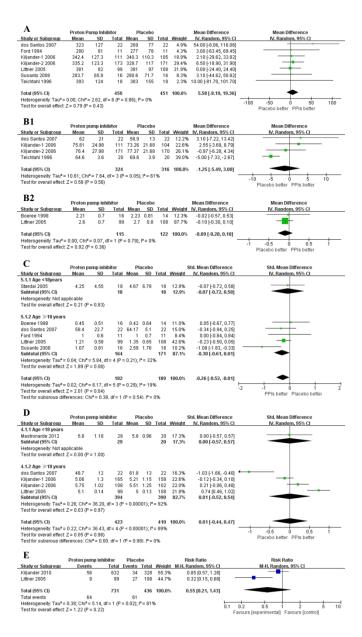


Figure 5 A, Forest plot for evening peak expiratory flow. B1, Forest plot for FEV1 % predicted. B2, Forest plot for FEV1 (L). C, Forest plot for asthma symptoms score. D, Forest plot for asthma quality of life score. E, Forest plot for episodes of asthma exacerbation.

72x133mm (600 x 600 DPI)

BMJ Open

Page 28 of 51

Supplement Table 1 Summary of the characteristics of included studies

Trials	Location	Study	Medication/dose	Concurrent	Duration	Number of Randomized/Complet patients	d Inclusio	n criteria	Concurrent disease	Major exclusions
		design	and usage	treatment	(weeks)	Intervention Contro	Asthma diagnosis	GERD Diagnosis	-	
Ford 1994	UK	Crossover	Omeprazole 20 mg, qd	ICS 80%, ipratropium 10%	4	Total: 11/10	Doctor's diagnosis; reversibility PEFR after bronchodilator use: ≥15%; nocturnal asthma attack	Abnormal pH in 24-h pH monitoring; upper gastrointestinal endoscopy; history of esophagitis	Not stated	Not specified
Meier 1994	America	Crossover	Omeprazole 20 mg, bid	Asthma medications (lack of type), theophylline 11/15	6	Total: 15/15	ATS; reversibility of FEV ₁ and/ or PEF after bronchodilator use: >15%	Abnormal pH in 24-h pH monitoring; manometry; esophagogastroduodeno scopy; acid-perfusion (Bernstein) test	Not stated	≤18 years old. pregnancy, female unwilling to use birth contraception; unable to give informed consent
Teichtahl 1996	Australia	Crossover	Omeprazole 40 mg, qd	Other asthma medications; Iβ2A	4	Total: 25/20	Doctor's diagnosis; positive HIT; diurnal variation of PEFR ≥20%; reversibility of FEV₁ and/ or PEF after bronchodilator use: >15%	Abnormal pH in 24-h pH monitoring; endoscopy	Not stated	Other significant respiratory disease; respiratory tract infection; significant systemic, esophageal stricture
Boeree 1998	The Netherlands	Parallel	Omeprazole 40 mg, bid	ICS 0.4 mg/day used in all	12	18/16 18/14	Doctor's diagnosis; FEV ₁ >1.25 L, PC20 <2 mg/mL	Abnormal pH in 24-h pH monitoring, increased GER was defined as >4% of 24 h registration, or >3% during the supine position	COPD	Upper and/or lower respiratory tract infection, other concomitant lung diseases
Levin 1998	America	Crossover	Omeprazole 20 mg, qd	Inhaled β-agonists used in all	8	total: 11/9	Doctor's diagnosis; ≥15% reversibility in FEV₁ after bronchodilator treatment; asthma medication used daily	Symptoms of heartburn or regurgitation at least once weekly without therapy; manometry, ambulatory 24-h esophageal pH monitoring	Not stated	COPD, URTI, prior gastroesophageal surgery, acute PUD, use of omeprazole or URTI within previous 30 days
Kiljander 1999	Finland	Crossover	Omeprazole 40 mg, qd	Iβ ₂ A 91%; ICS 89%	8	total: 57/52	Doctor's diagnosis; ATS	24-h pH monitoring and manometry	Not stated	Not specified
Littner 2005	multi-center, North America	Parallel	Lansoprazole 30 mg, bid	ICS, stable doses of asthma medications for at least 4 wks	24	99/85 108/88	Doctor's diagnosis; FEV₁ pred > 50% and < 85%; ≥12% improvement in FEV₁ (in liters) after the inhalation of 180 ug of albuterol; five or more nocturnal asthma awakenings and receiving stable doses of asthma medications within previous 4 wks	Investigator judgement based on symptomatic acid reflux and acid-suppressive therapy; 24-h esophageal pH monitoring	Not stated	Smoking; receiving ipratropium bromide, immunotherapy; URTI; uncontrolled medical condition; receiving PPI within 14 days
Størdal 2005	Norway	Parallel	Omeprazole 20 mg, qd	ICS: Int n=17, Cont n=17; long acting bronchodilato rs: Int 10, Cont 12	12	19/18 19/18	Doctor's diagnosis; at least two episodes of asthma symptoms requiring medication within previous six months	24-h pH monitoring; A reflux index ≥5.0 was considered abnormal	Not stated	Previously known or treated GERD
Kilja nder 2006 GERD+/ NOC+ (Kiljan der-1)	Europe, North America, South	Parallel	Esomeprazole 40 mg, qd	ICS: 98.6%; LABAs: 49.8%	16	112/105 107/10	FEV₁% pred: 50 to 80%, ≥12% (and ≥0.20 L) reversibility; PEF pred <80%; symptom of nighttime awakening with	Heartburn ≥2 times/wk; acid regurgitation ≥once /wk within previous 3 month. erosive esophagitis or Barrett's esophagus	Not stated	Smoking; esophageal or gastric surgery; glucocorticosteroids <30 days; erosive esophagitis ≤16 wks
GERD+/ NOC-	America	Parallel	Esomeprazole 40 mg, bid	ICS: 97.7%; LABAs: 34%	16	174/174 176/17	related respiratory symptoms; or PEF	(without dysplasia) documented in the previous		and PPI use <14 days before enrollment;

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	(Kiljande r-2)								overnight variability ≥15%	12 months; abnormal 24-h esophageal pH		recurrent moderate or severe GERD symptoms
2 3 4 5 6 7 8	dos Santos-2007	Brazil	Parallel	Pantoprazole 40 mg, qd	long-acting β2 -agonists (%): Int 45%, Cont 64%; oral corticoids: Int 9%, Cont 18%	12	total: 44 (Int n=22		Asthmatic clinical history and symptoms for at least two months; airflow obstruction (FEV ₁ /FVC) < 90% of predicted; the methacholine bronchoprovocation test (+), obstruction reversibility: FEV ₁ >200 mL and 7% of predicted	24-h esophageal pH monitoring; manometry	Not stated	Smoking; receiving PPI and H-2 receptor blocker; systemic arterial hypertension
9 10 11	Susanto-2008	Indonesia	Crossover	Esomeprazole 40 mg, qd	inhaled budesonide 400 µg bid, salbutamol 100 mg/puff	8	18/16	18/16	GINA 2002	Endoscopy and or esophageal histopathologic examination; typical GERD symptoms	Not stated	Not specified
12 13 14 15	Mastronarde-20 09	Multicenter, North America	Parallel	Esomeprazole 40 mg, bid	ICS in all	24	61 /61	62 /62	Doctor's diagnosis; positive methacholine challenge test; 12% increase in FEV ₁ after bronchodilator treatment	24-h pH monitoring, mean % time with pH < 4 (range): total >5.8%, upright >8.2%, supine <3.5%	Not stated	Smoking; FEV ₁ % pred <50%; surgery; acid-suppression treatment
16 17 18 19	Kiljander-2010	Multicenter, Europe, North America, South America	Parallel	Esomeprazole 40 mg, qd/bid	ICS and LABA in all	26	40 mg, qd: 313/273; 40 mg, bid: 320/272	328/283	Doctor's diagnosis; ATS	The validated Reflux Disease Questionnaire, esophageal 24-h pH monitoring	Not stated	Alarm symptoms presented, smoking, esophageal or gastric surgery, Barrett esophagus
20 21 22 23 24	Holbrook 2012	America	Parallel	Lansoprazole, children <30 kg: 15 mg/d; children ≥30 kg: 30 mg/d	ICS in all	24	29 /29	20 /20	Doctor's diagnosis; ≥12% in FEV₁ after bronchodilator treatment; PC20 ≤16 mg/mL; positive exercise bronchoprovocation test	Ambulatory esophageal pH monitoring: time of pH <4 in 6- to 11-year-old for ≤6%, in 12- to 17-year-old for ≤4%	Not stated	Receiving PPI or other reflux medications; anti-reflux surgery or trachea-esophageal fistula repair; FEV ₁ % pred <60%

Abbreviations: LABA, long-acting β_2 -agonists, FEV₁, forced expiratory volume in 1 second; FVC, forced vital capacity; PC20, provocative concentration of methacholine bromide causing a ≥20% fall in forced expiratory volume in 1 second; β_2 A, inhaled β_2 -agonists, ICS, inhaled corticosteroid; mPEF, morning peak expiratory flow; PEFR morning peak expiratory flow; pred, predicted; PUD, peptic ulcer disease; URTI, upper respiratory tract infection; GER, gastroesophageal reflux; GERD, gastroesophageal reflux disease; GINA: Global Initiative for Asthma; ATS: American Thoracic Society; Int, intervention; Cont, control; wks, weeks; qd, once daily; bid, twice daily; PPI, proton pump inhibitor, NOC, nocturnal respiratory symptoms; SD, standard deviation; HIT histamine bronchoprovocation test; NA, not available

Appendix

Supplement 1

Information sources and search

The search terms of asthma included: "asthma", "asthma bronchiale", "asthma pulmonale", "asthmatic", "asthmatic subject", "bronchial asthma", "bronchus asthma", "childhood asthma", "chronic asthma", "lung allergy" and "asthmatics".

The search terms of gastroesophageal reflux disease contained: "gastroesophageal reflux", "gerd", "gastroesophageal reflux disease", "gord", "cardioesophageal reflux", "esophageal reflux", "esophageal regurgitation", "esophageal reflux", "gastro esophageal reflux", "gastro esophageal reflux", "gastroesophageal reflux", "oesophageal reflux", "oesophageal regurgitation", "oesophageal reflux", "oesophageal regurgitation", "oesophageal reflux", "oesophageal regurgitation", "oesophageal reflux", "and "oesophagus reflux"

The search terms of contained: "proton pump inhibitor", "proton pump inhibitors", "PPI" "pantoprazole", "omeprazole", "esomeprazole", "lansoprazole", and "rabeprazole".

(search strategies for all databases)

Medline via Ovid, 2020,3,18

#	Term	Result
#1	"randomized controlled trial".pt.	
#2	(random\$ or placebo\$ or single blind\$ or double blind\$ or triple	
	blind\$).ti,ab.	
#3	(retraction of publication or retracted publication).pt.	
#4	or/1-3	

#5	(animals not humans).sh.	
#6	((comment or editorial or meta-analysis or practice-guideline or	
	review or letter or journal correspondence) not "randomized	
	controlled trial").pt.	
#7	(random sampl\$ or random digit\$ or random effect\$ or random	
	survey or random regression).ti,ab. not "randomized controlled	
	trial".pt.	
#8	4 not (5 or 6 or 7)	
#9	(asthma\$ or bronchial asthma\$).ti,ab.	
#10	exp asthma\$/	
#11	exp "gastroesphageal reflux"/ or gastroesophageal reflux.ti,ab,kf.	
	or exp Gastric Acid Reflux/ or exp Gastric Acid Reflux Disease/	
	or exp gastro-Esophageal Reflux/ or exp Gastro Esophageal	
	Reflux/ or exp Gastroesophageal Reflux Disease/ or exp GERD/	
	or exp Esophageal Reflux/ or exp Gastro-oesophageal Reflux/ or	
	exp Gastro oesophageal Reflux/	
#12	(Gastric Acid Reflux or Gastric Acid Reflux Disease or	
	Gastro-Esophageal Refluxor Gastro Esophageal Reflux or	
	Gastroesophageal Reflux Disease or GERD or Esophageal	
	Reflux or Gastro-oesophageal Reflux or Gastro oesophageal	
	Reflux).ti,ab,kf.	
#13	9 or 10	
#14	11 or 12	
#15	13 and 14	

#16	exp proton pump inhibitor\$/	
#17	exp omeprazole/ or exp lansoprazole/ or exp pantoprazole/ or	
	exp rabeprazole/ or exp esomeprazole/ or exp ilaprazole/	
#18	(omeprazole or lansoprazole or pantoprazole or rabeprazole or	
	esomeprazole or ilaprazole or proton pump inhibitor\$).ti,ab,kf.	
#19	16 and 17 and 18	
#20	8 and 15 and 19	12

Pubmed 2020,3,18

#	Term	Result
#1	Search "Asthma"[Mesh]	126238
#2	Search "asthma*"[Title/Abstract]	146574
#3	Search "Bronchial Asthma" [Title/Abstract]	18297
#4	Search ((((((("asthma bronchiale"[Title/Abstract]) OR "asthma	42241
	pulmonale"[Title/Abstract]) OR "asthmatic"[Title/Abstract]) OR	
	"asthmatics"[Title/Abstract]) OR "bronchus	
	asthma"[Title/Abstract]) OR "childhood	
	asthma"[Title/Abstract]) OR " chronic asthma"[Title/Abstract])	
	OR "lung allergy"[Title/Abstract]	
#5	#1 OR #2 OR #3 OR #4	175686
#6	Search "Gastroesophageal Reflux"[Mesh]	26315
#7	Search ((((((((((((((((((((((((((((((((((((26101
	reflux"[Title/Abstract]) OR "gerd"[Title/Abstract]) OR	

#8

#9

#10

#11

#12

"gastroesophageal reflux disease"[Title/Abstract]) OR	
"gord"[Title/Abstract]) OR "cardioesophageal	
reflux"[Title/Abstract]) OR "esophageal reflux"[Title/Abstract])	
OR "esophageal regurgitation"[Title/Abstract]) OR	
"esophagogastric reflux"[Title/Abstract]) OR "esophagus	
reflux"[Title/Abstract]) OR "gastric	
regurgitation"[Title/Abstract]) OR "gastro esophageal	
reflux"[Title/Abstract]) OR "gastro oesophageal	
reflux"[Title/Abstract]) OR "gastroesophageal	
reflex"[Title/Abstract]) OR "gastroesophageal	
regurgitation"[Title/Abstract]) OR "gastroesophagus	
reflux"[Title/Abstract]) OR "gastrooesophageal	
reflex"[Title/Abstract]) OR "gastrooesophageal	
reflux"[Title/Abstract]) OR "gastrooesophageal reflux	
disease"[Title/Abstract]) OR "gastrooesophageal	
regurgitation"[Title/Abstract]) OR "oesophageal	
reflux"[Title/Abstract]) OR "oesophageal	
regurgitation"[Title/Abstract]) OR "oesophagogastric	
reflux"[Title/Abstract]) OR "oesophagus reflux"[Title/Abstract]	
#6 OR #7	35248
#5 AND #8	2083
Search "Proton Pump Inhibitors" [Mesh]	10998
Search "proton pump inhibitors"[Title/Abstract]	8793
Search ((((("omeprazole"[Title/Abstract]) OR	12476

	"lansoprazole"[Title/Abstract]) OR	
	"pantoprazole"[Title/Abstract]) OR	
	"rabeprazole"[Title/Abstract]) OR	
	"esomeprazole"[Title/Abstract]) OR "ilaprazole"[Title/Abstract]	
#13	#10 OR #11 OR #12	23677
#14	#9 AND #10	274

Embase 3,18,2020

#	Term	Result
#1	('asthma'/exp OR 'asthma' OR 'asthma bronchiale' OR 'asthma	858
	pulmonale' OR 'asthma, bronchial' OR 'asthmatic' OR 'asthmatic	
	subject' OR 'bronchial asthma' OR 'bronchus asthma' OR	
	'childhood asthma' OR 'chronic asthma' OR 'lung allergy') AND	
	('gastroesophageal reflux'/exp OR 'gerd (gastroesophageal reflux	
	disease)' OR 'gerd (gastrooesophageal reflux disease)' OR 'gord	
	(gastrooesophageal reflux disease)' OR 'cardioesophageal reflux'	
	OR 'cardiooesophageal reflux' OR 'esophageal reflux' OR	
	'esophageal regurgitation' OR 'esophagogastric reflux' OR	
	'esophagus reflux' OR 'gastric regurgitation' OR 'gastro	
	esophageal reflux' OR 'gastro oesophageal reflux' OR	
	'gastroesophageal reflex' OR 'gastroesophageal reflux' OR	
	'gastroesophageal reflux disease' OR 'gastroesophageal	
	regurgitation' OR 'gastroesophagus reflux' OR	
	'gastrooesophageal reflex' OR 'gastrooesophageal reflux' OR	

'gastrooesophageal reflux disease' OR 'gastrooesophageal regurgitation' OR 'oesophageal reflux' OR 'oesophageal regurgitation' OR 'oesophagogastric reflux' OR 'oesophagus reflux' OR 'reflux, gastroesophageal' OR 'reflux, gastrooesophageal' OR 'regurgitation, gastric' OR 'regurgitation, gastroesophageal' OR 'regurgitation, gastrooesophageal') AND ('proton pump inhibitors':ti,ab OR 'lansoprazole'/exp OR '2 [[[3 methyl 4 (2, 2, 2 trifluoroethoxy) 2 pyridyl] methyl] sulfinyl] 1h benzimidazole' OR 'a 65006' OR 'a65006' OR 'abt 006' OR 'abt006' OR 'ag 1749' OR 'ag1749' OR 'agopton' OR 'bamalite' OR 'banilux' OR 'betalans' OR 'compraz' OR 'dakar (drug)' OR 'daxar' OR 'dostab' OR 'duomate' OR 'ilsatec' OR 'inhipraz' OR 'keval' OR 'lancid' OR 'lancopen' OR 'langaton' OR 'lanpra' OR 'lanpraz' OR 'lanprol' OR 'lanproton' OR 'lansazol' OR 'lansobene' OR 'lansol' OR 'lansone' OR 'lansop' OR 'lansopep' OR 'lansoprazol' OR 'lansoprazole' OR 'lansox' OR 'lansozole' OR 'lanster' OR 'lanston' OR 'lanvell' OR 'lanximed' OR 'lanzo' OR 'lanzol-30' OR 'lanzopral' OR 'lanzoprazole' OR 'lanzor' OR 'lanzul' OR 'lapraz' OR 'laprazol' OR 'laproton' OR 'lasgan' OR 'limpidex' OR 'lopral' OR 'monolitum' OR 'ogast' OR 'ogasto' OR 'ogastoro' OR 'ogastro' OR 'opiren' OR 'pampe' OR 'praton' OR 'prevacid' OR 'prevacid 24 hr' OR 'prevacid fastab' OR 'prevacid iv' OR 'prevacid solutab' OR 'prezal' OR 'prolanz' OR 'prosogan' OR 'pysolan' OR 'sopralan-30' OR 'suprecid' OR 'takepron' OR

'takepron od' OR 'tanzolan' OR 'ulpax' OR 'zoton' OR 'zoton fastab' OR 'omeprazole'/exp OR '5 methoxy 2 [[(4 methoxy 3, 5 dimethyl 2 pyridyl) methyl] sulfinyl] benzimidazole' OR 'aleprozil' OR 'antra' OR 'antra mups' OR 'arapride' OR 'audazol' OR 'baromezole' OR 'desec' OR 'dolintol' OR 'domer' OR 'dudencer' OR 'duogas' OR 'emeproton' OR 'epirazole' OR 'ezipol' OR 'gasec' OR 'gasec gastrocaps' OR 'gastec' OR 'gastop' OR 'gastrimut' OR 'gastrolac' OR 'gastroloc' OR 'glaveral' OR 'h 168 68' OR 'h 168-68' OR 'h-etom' OR 'h168 68' OR 'h168-68' OR 'hovizol' OR 'hyposec' OR 'inhibitron' OR 'inhipump' OR 'logastric' OR 'lomac' OR 'lopraz' OR 'losamel' OR 'losec' OR 'losec mups' OR 'losecosan' OR 'ludea' OR 'madiprazole' OR 'maxor' OR 'medoprazole' OR 'medral' OR 'meiceral' OR 'mepral' OR 'mepzol' OR 'mezzopram' OR 'miol' OR 'miracid' OR 'mopral' OR 'mopralpro' OR 'nocid' OR 'ocid' OR 'ogal' OR 'olexin' OR 'omedar' OR 'omelon' OR 'omep uno' OR 'omepral' OR 'omeprazen' OR 'omeprazol' OR 'omeprazole' OR 'omeprazole magnesium' OR 'omeprazole sodium' OR 'omeprazon' OR 'omepril' OR 'omeraz' OR 'omesec' OR 'omestad' OR 'omezin' OR 'omezol' OR 'omezolan' OR 'omezole' OR 'omezzol' OR 'omisec' OR 'omizac' OR 'omolin' OR 'ompranyt' OR 'omprazole' OR 'onexal' OR 'oprax' OR 'ozoken' OR 'parizac' OR 'penrazole' OR 'pepticum' OR 'peptidin' OR 'peptilcer' OR 'peptizole' OR 'pra-sec' OR 'prazidec' OR 'prazole'

OR 'prilosec' OR 'prilosec otc' OR 'prisolec' OR 'probitor' OR 'proceptin' OR 'protoloc' OR 'ramezol' OR 'rapinex' OR 'reglacid' OR 'result (drug)' OR 'risek' OR 'romep' OR 'roweprazol' OR 'secrepina' OR 'severon' OR 'stomacer' OR 'stomec' OR 'stozole' OR 'suifac' OR 'ulceral' OR 'ulcozol' OR 'ulnor' OR 'ulsek' OR 'ulsen' OR 'ulzol' OR 'vulcasid' OR 'wonmp' OR 'xoprin' OR 'zatrol' OR 'zefxon' OR 'zenpro' OR 'zimor' OR 'zoltum' OR 'pantoprazole'/exp OR '5 difluoromethoxy 2 [(3, 4 dimethoxy 2 pyridyl) methylsulfinyl] 1h benzimidazole' OR 'anagastra' OR 'branzol' OR 'by 1023' OR 'by1023' OR 'controloc' OR 'controloc control' OR 'eupantol' OR 'inipom' OR 'inipomp' OR 'pantecta' OR 'pantecta control' OR 'pantodac' OR 'pantodar' OR 'pantoloc' OR 'pantoloc control' OR 'pantop' OR 'pantoprazole' OR 'pantoprazole sodium' OR 'pantoprazole sodium sesquihydrate' OR 'pantozol' OR 'pantozol control' OR 'pepticus' OR 'protium' OR 'protonix' OR 'protonix iv' OR 'rifun' OR 'rifun 40' OR 'sk and f 96022' OR 'skf 96022' OR 'skf96022' OR 'somac' OR 'somac control' OR 'ulcepraz' OR 'ulcotenal' OR 'ziprol' OR 'zurcal' OR 'zurcale' OR 'zurcazol' OR 'rabeprazole'/exp OR '2 [[4 (3 methoxypropoxy) 3 methyl 2 pyridyl] methylsulfinyl] benzimidazole' OR 'aciphex' OR 'aciphex sprinkle' OR 'dexrabeprazole' OR 'e 3810 (benzimidazole derivative)' OR 'e3810 (benzimidazole derivative)' OR 'ly 307640' OR 'ly307640' OR 'pariet' OR 'pariprazole' OR 'pariprazole sodium' OR 'rabec'

	OR 'rabeloc' OR 'rabeprazole' OR 'rabeprazole sodium' OR	
	'esomeprazole'/exp OR 'esomeprazole' OR 'esomeprazole' OR	
	'esomeprazole magnesium' OR 'esomeprazole potassium' OR	
	'esomeprazole sodium' OR 'esoprax' OR 'h 199 18' OR 'h 199-18'	
	OR 'h 19918' OR 'h199 18' OR 'h199-18' OR 'h19918' OR	
	'inexium' OR 'nexium' OR 'nexium 24hr' OR 'nexium control'	
	OR 'nexium iv' OR 'nexium-mups' OR 'perprazole' OR 'sompraz'	
	OR 'ilaprazole'/exp OR '2 [(4 methoxy 3 methyl 2 pyridyl)	
	methylsulfinyl] 5 (1 pyrrolyl) 1h benzimidazole' OR 'ilaprazole'	
	OR 'iy 81149' OR 'iy81149')	
#2	'asthma*':ab,ti OR 'asthma bronchiale':ab,ti OR 'asthma	230139
	pulmonale':ab,ti OR 'asthmatic':ab,ti OR 'asthmatics':ab,ti	
	OR 'asthmatic subject':ab,ti OR 'bronchial asthma':ab,ti	
	OR 'bronchus asthma':ab,ti OR 'childhood asthma':ab,ti	
	OR 'chronic asthma':ab,ti OR 'lung allergy':ab,ti	
#3	'asthma'/exp OR asthma	321680
#4	#2 OR #3	324305
#5	'gastroesophageal reflux'/exp OR 'gastroesophageal reflux'	66642
#6	'gastroesophageal reflux':ab,ti OR 'gerd':ab,ti	41444
	OR 'gastroesophageal reflux disease':ab,ti OR 'gord':ab,ti	
	OR 'cardioesophageal reflux':ab,ti OR 'esophageal reflux':ab,ti	
	OR 'esophageal regurgitation':ab,ti OR 'esophagogastric	
	reflux':ab,ti OR 'esophagus reflux':ab,ti OR 'gastric	
	regurgitation':ab,ti OR 'gastro esophageal reflux':ab,ti	

	OR 'gastro oesophageal reflux':ab,ti OR 'gastroesophageal	
	reflex':ab,ti OR 'gastroesophageal regurgitation':ab,ti	
	OR 'gastroesophagus reflux':ab,ti OR 'gastrooesophageal	
	reflex':ab,ti OR 'gastrooesophageal reflux':ab,ti	
	OR 'gastrooesophageal reflux disease':ab,ti	
	OR 'gastrooesophageal regurgitation':ab,ti OR 'oesophageal	
	reflux':ab,ti OR 'oesophageal regurgitation':ab,ti	
	OR 'oesophagogastric reflux':ab,ti OR 'oesophagus reflux':ab,ti	
#7	#5 OR #6	70399
#8	#4 AND #7	5602
#9	'omeprazole'/exp OR 'proton pump inhibitor'/exp	76773
	OR 'lansoprazole'/exp OR 'pantoprazole'/exp	
	OR 'rabeprazole'/exp OR 'esomeprazole'/exp	
	OR 'ilaprazole'/exp	
#10	'omeprazole':ab,ti OR 'proton pump inhibitor':ab,ti	27726
	OR 'lansoprazole':ab,ti OR 'pantoprazole':ab,ti	
	OR 'rabeprazole':ab,ti OR 'esomeprazole':ab,ti	
	OR 'ilaprazole':ab,ti	
#11	#9 OR #10	78726
#12	#8 AND #11	1328
#13	#1 OR #12	1350

Note: #1 Retrieval strategy was through "PICO" in Embase.

#	Term	Result
#1	TS=("gastroesophageal reflux") OR TS=("gerd ':ab,ti OR	
	'gastroesophageal reflux disease") OR TS=("gord ':ab,ti OR	
	'cardioesophageal reflux'') OR TS=("esophageal reflux") OR	
	TS=("esophageal regurgitation") OR TS=("esophagogastric	
	reflux") OR TS=("esophagus reflux") OR TS=("gastric	
	regurgitation") OR TS=("gastro esophageal reflux") OR	
	TS=("gastro oesophageal reflux") OR TS=("gastroesophageal	
	reflex") OR TS=("gastroesophageal regurgitation") OR	
	TS=("gastroesophagus reflux") OR TS=("gastrooesophageal	
	reflex") OR TS=("gastrooesophageal reflux") OR	
	TS=("gastrooesophageal reflux disease") OR	
	TS=("gastrooesophageal regurgitation") OR TS=("oesophageal	
	reflux") OR TS=("oesophageal regurgitation") OR	
	TS=("oesophagogastric reflux") OR TS=("oesophagus reflux")	
#2	TS=("asthma*") OR TS=("asthma bronchiale") OR	
	TS=("asthma pulmonale") OR TS=("asthmatic") OR	
	TS=("asthmatics") OR TS=("asthmatic subject") OR	
	TS=("bronchial asthma") OR TS=("bronchus asthma") OR	
	TS=("childhood asthma") OR TS=("chronic asthma") OR	
	TS=("lung allergy")	
#3	#2 AND #1	
#4	TS=("omeprazole") OR TS=("proton pump inhibitor*") OR	
	TS=("lansoprazole") OR TS=("pantoprazole") OR	

	TS=("rabeprazole") OR TS=("esomeprazole") OR	
	TS=("ilaprazole")	
#5	#4 AND #3	304

Cochrane library 18,3,2020

#	Term	Result
#1	MeSH descriptor: [Asthma] explode all trees	
#2	MeSH descriptor: [Gastroesophageal Reflux] explode all trees	
#3	("asthma" OR "asthma bronchiale" OR "asthma pulmonale" OR	
	"asthmatic" OR "asthmatic subject" OR "bronchial asthma" OR	
	"bronchus asthma" OR "childhood asthma" OR "chronic	
	asthma" OR "lung allergy" OR "asthmatics"):ti,ab,kw	
#4	("gastroesophageal reflux" OR "gerd " OR "gastroesophageal	
	reflux disease" OR "gord " OR "cardioesophageal reflux" OR	
	"esophageal reflux" OR "esophageal regurgitation" OR	
	"esophagogastric reflux" OR "esophagus reflux" OR "gastric	
	regurgitation" OR "gastro esophageal reflux" OR "gastro	
	oesophageal reflux" OR "gastroesophageal reflex" OR	
	"gastroesophageal regurgitation" OR "gastroesophagus reflux"	
	OR "gastrooesophageal reflex" OR "gastrooesophageal reflux"	
	OR "gastrooesophageal reflux disease" OR "gastrooesophageal	
	regurgitation" OR "oesophageal reflux" OR "oesophageal	
	regurgitation" OR "oesophagogastric reflux" OR "oesophagus	
	reflux"):ti,ab,kw	

#5	#1 OR #3	
#6	#2 OR #4	
#7	#5 AND #6	
#8	MeSH descriptor: [Proton Pump Inhibitors] explode all trees	
#9	("proton pump inhibitors"):ti,ab,kw	
#10	MeSH descriptor: [Esomeprazole] explode all trees	
#11	("esomeprazole"):ti,ab,kw	
#12	("omeprazole" OR "lansoprazole" OR "pantoprazole" OR	
	"rabeprazole" OR "esomeprazole" OR "ilaprazole"):ti,ab,kw	
#13	MeSH descriptor: [Lansoprazole] explode all trees	
#14	MeSH descriptor: [Pantoprazole] explode all trees	
#15	MeSH descriptor: [Rabeprazole] explode all trees	
#16	#8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15	
#17	#7 AND #16	63

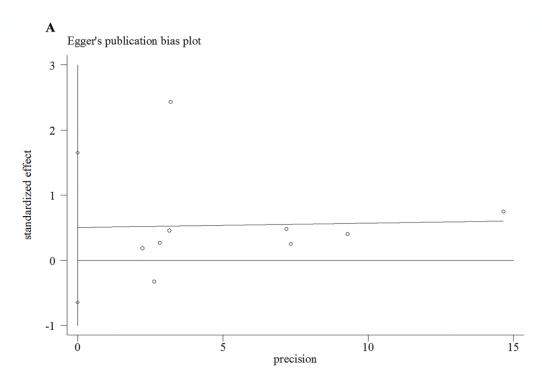
Clinical trail (US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov)18,3,2020

Retrieval strategy:

"Proton Pump Inhibitors" OR "omeprazole" OR "lansoprazole" OR "pantoprazole" OR "rabeprazole" OR

"esomeprazole" OR "ilaprazole" | Completed Studies | "asthma" and "gastroesophageal reflux"

Applied Filters: Completed

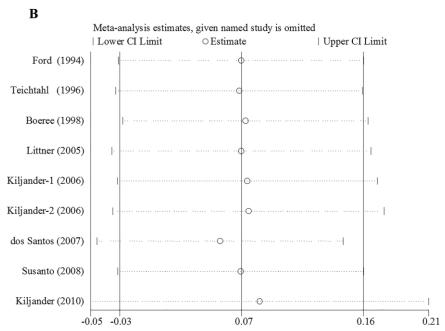

Results: 12

Data extraction

Data of the included studies characteristics were collected if available. (a) Items of characteristics of included studies contained study location, study design, medication type/dose/usage, concurrent treatment, treatment duration, randomized and completed sample size, diagnostic inclusion criteria of asthma and GERD, concurrent diseases, major exclusions; (b) items of subject characteristics included age, male proportion, severity of asthma and GERD, complications of GERD, proportion of symptomatic GERD, and whether the association between asthma and GERD were reported; (c) items of effect of each outcome mentioned above included mean, standard deviation (SD), 95% confidence interval, median, interquartile range, and/or range.

If trials reported more than one eligible comparison group (for example, intervention group-1 VS control group-1 and intervention group-2 VS control group-2), these were considered independent studies and these data were extracted respectively if available. Three-arm trials (for example, two intervention groups VS control group) were combined appropriately into one PPI group and one placebo group.

No publication bias reported in mPEF (P=0.342). Both sensitivity analysis and egger's test further supported the overall results were stable.



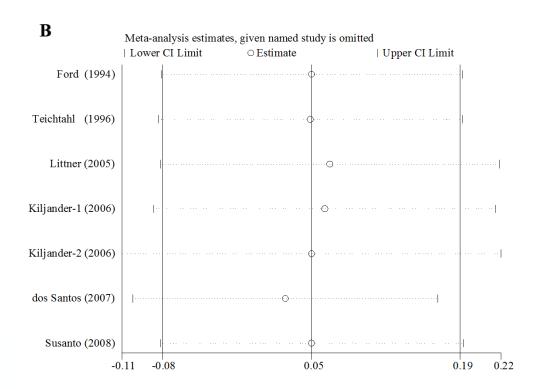


Fig S2 A, Egger's publication bias plot for mPEF (P=0.336). B, Sensitivity analysis for mPEF.

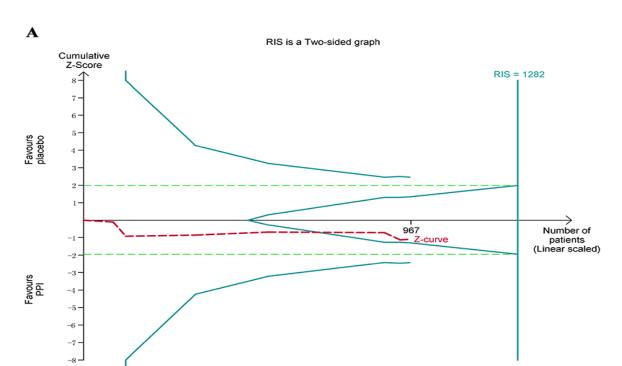
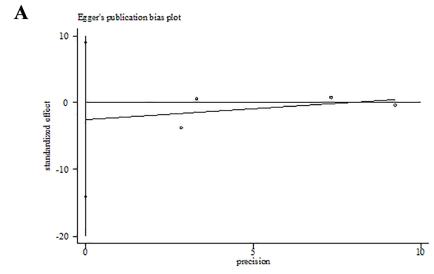
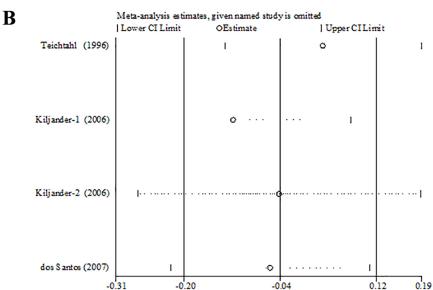

a. No publication bias reported in ePEF (P=0.342). Both sensitivity analysis and egger's test further supported the overall results were stable.

Figure S3a A, Egger's publication bias plot for ePEF (P=0.342). **B,** Sensitivity analysis for ePEF.

b.

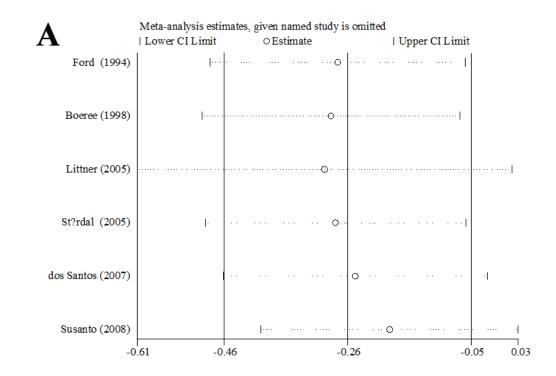
В	Proton P	ump Inhi	bitor	Pla	acebo			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Ford 1994	280	81	11	277	78	11	9.2%	3.00 [-63.45, 69.45]	
Littner 2005	381	82	99	381	97	108	68.2%	0.00 [-24.40, 24.40]	
Susanto 2008	283.7	65.9	16	280.6	71.7	16	17.8%	3.10 [-44.62, 50.82]	
Teichtahl 1996	393	124	18	383	155	18	4.8%	10.00 [-81.70, 101.70]	
otal (95% CI)			144			153	100.0%	1.31 [-18.84, 21.46]	-


C	Proton F	ump Inhi	bitor	P	lacebo			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
2.4.1 Duration ≤12 v	weeks										
dos Santos 2007	323	127	22	269	77	22	24.9%	54.00 [-8.06, 116.06]		+	
Ford 1994	280	81	11	277	78	11	21.7%	3.00 [-63.45, 69.45]			
Susanto 2008	283.7	65.9	16	280.6	71.7	16	42.1%	3.10 [-44.62, 50.82]			
Teichtahl 1996	393	124	18	383	155	18	11.4%	10.00 [-81.70, 101.70]			
Subtotal (95% CI)			67			67	100.0%	16.52 [-14.43, 47.47]			
2.4.2 Duration >12w	eeks										
Kiljander-1 2006	342.4	127.3	111	340.3	110.3	105	23.5%	2.10 [-29.62, 33.82]			
Kiljander-2 2006	335.2	123.3	173	328.7	117	171	36.7%	6.50 [-18.90, 31.90]		- 	
Littner 2005	381	82	99	381	97	108	39.8%	0.00 [-24.40, 24.40]			
Subtotal (95% CI)			383			384	100.0%	2.88 [-12.51, 18.27]		-	
Heterogeneity: Tau ² =	= 0.00; Chi2	= 0.13, df	= 2 (P =	0.94); P	= 0%						
Test for overall effect	Z = 0.37 (P	= 0.71)									
									-100	-50 0 50	10
										Placebo better PPIs better	


Test for subaroup differences: $Chi^2 = 0.60$. df = 1 (P = 0.44). $I^2 = 0\%$

D											
	Proton F	ump Inhi	bitor	P	lacebo			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
2.3.1 Omeprazole gro	oup										
Ford 1994	280	81	11	277	78	11	65.6%	3.00 [-63.45, 69.45]			
Teichtahl 1996	393	124	18	383	155	18	34.4%	10.00 [-81.70, 101.70]	_		_
Subtotal (95% CI)			29			29	100.0%	5.41 [-48.40, 59.22]			
Heterogeneity: Tau2=	0.00; Chi2	= 0.01, df	= 1 (P =	0.90); P	= 0%						
Test for overall effect:	Z = 0.20 (P	= 0.84)									
2.3.2 Lansoprazole g	гоир										
dos Santos 2007	323	127	22	269	77	22	35.5%	54.00 [-8.06, 116.06]		+	
Littner 2005	381	82	99	381	97	108	64.5%	0.00 [-24.40, 24.40]			
Subtotal (95% CI)			121			130	100.0%	19.15 [-31.48, 69.79]			
Heterogeneity: Tau2=	879.16; CI	ni ² = 2.52,	df = 1 (F	P = 0.11	$ \cdot ^2 = 60$	1%					
Test for overall effect:	Z = 0.74 (P	= 0.46)									
2.3.3 Esomeprazole g	јгоир										
Kiljander-1 2006	342.4	127.3	111	340.3	110.3	105	33.3%	2.10 [-29.62, 33.82]			
Kiljander-2 2006	335.2	123.3	173	328.7	117	171	52.0%	6.50 [-18.90, 31.90]			
Susanto 2008	283.7	65.9	16	280.6	71.7	16	14.7%	3.10 [-44.62, 50.82]			
Subtotal (95% CI)			300			292	100.0%	4.53 [-13.77, 22.84]		-	
Heterogeneity: Tau ² =	0.00; Chi2	= 0.05, df	= 2 (P =	0.98); P	= 0%						
Test for overall effect:	Z = 0.49 (P	= 0.63)									
									-100	-50 0 50	100
										Placebo better PPis better	100
Test for subaroup diff	erences: C	hi² = 0.28	. df = 2 (P = 0.87	$^{\circ}$). $I^{2} = 0^{\circ}$	%				Tavoro rotto. Ti io retto	

Figure S3b A, Trial sequential analysis of evening peak expiratory flow. Heterogeneity adjusted required information size of 1470 subjects calculated in accordance with mean difference of mPEF=20 L/min, "empirical" variance from the meta-analysis of PEF data, α at 0.05, power of 80%, I^2 value of 0%. Dashed red cumulative Z curve does not cross solid blue trial sequential monitoring boundaries for benefit or harm, but cross boundaries for futility (blue inner wedge boundaries). Horizontal dotted green lines illustrate traditional level of statistical significance (P=0.05). **B** Forest plot for evening peak expiratory flow in subgroup of the percentage of subjects with symptomatic GERD \geq 95%. **C** Forest plot for morning peak expiratory flow in subgroups of treatment duration \leq 12 weeks and \geq 12 weeks. **D** Forest plot for evening peak expiratory flow in subgroups of different types of proton pump inhibitors.


No publication reported in FEV₁ % predicted (P=0.445). Both sensitivity analysis and egger's test further supported the overall results were stable.

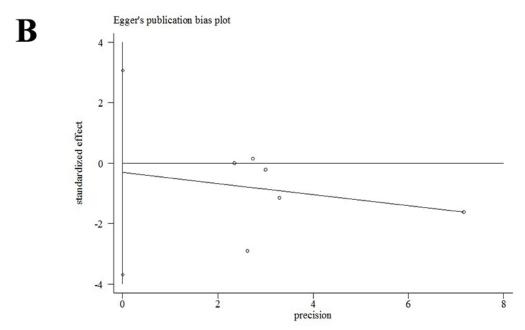


Figure S4 A, Egger's publication bias plot for FEV₁ % predicted (P=0.445). **B,** Sensitivity analysis for FEV₁ % predicted.

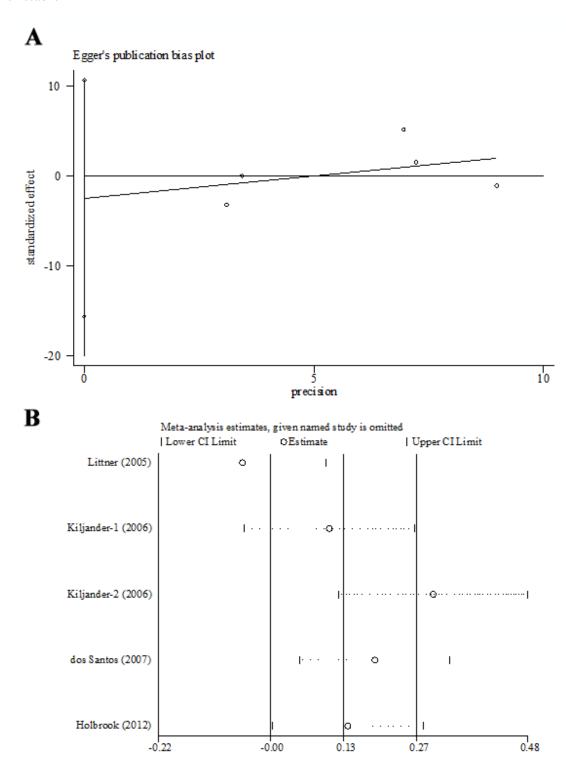

No publication reported in asthma symptoms score (P=0.809). Both sensitivity analysis and egger's test further supported the overall results were stable (**supplement 5**).

Figure S5 A, Egger's publication bias plot for asthma symptoms score (P=0.809). **B,** Sensitivity analysis for asthma symptoms score.

No publication reported in asthma quality of life (P=0.588), but sensitivity analysis showed the results were unstable

Figure S6 A, Egger's publication bias plot for asthma quality of life (P=0.588). **B,** Sensitivity analysis for asthma quality of life.

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6, appendix
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6, appendix
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
, Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Appendix
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6-7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

41

43 44

45 46 47

PRISMA 2009 Checklist

Page 1 of 2						
Section/topic	#	Checklist item	Reported on page #			
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7			
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7			
RESULTS	•					
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	7-8			
6 Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8, appendix			
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8			
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8-11			
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-11			
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Appendix			
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Appendix			
DISCUSSION						
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	11-13			
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	13			
24 Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	13-14			
FUNDING	•					
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	14			

40 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

BMJ Open

Randomized trials of proton pump inhibitors for gastroesophageal reflux disease in patients with asthma: an updated systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-043860.R1
Article Type:	Original research
Date Submitted by the Author:	29-May-2021
Complete List of Authors:	Zheng, Zhoude; Peking Union Medical College Hospital, Department of Pulmonary and Critical Care Medicine Luo, Yunyun; Peking Union Medical College Hospital, Department of Endocrinology Li, Jia; Peking Union Medical College Hospital, Department of Pulmonary and Critical Care Medicine Gao, Jinming; Peking Union Medical College Hospital, Department of Pulmonary and Critical Care Medicine
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Geriatric medicine, Respiratory medicine
Keywords:	Asthma < THORACIC MEDICINE, Oesophageal disease < GASTROENTEROLOGY, THERAPEUTICS

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Randomized trials of proton pump inhibitors for gastroesophageal reflux disease in patients with asthma: an updated systematic review and meta-analysis

Zhoude Zheng¹, Yunyun Luo², Jia Li¹, Jinming Gao^{1*}

¹Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China;

²Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology of National Health Commission, Beijing, China

These authors contributed equally: Zhoude Zheng, Yunyun Luo

*Corresponding author: Jinming Gao, MD, PhD,

Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China.

E-mail: gjinming@yahoo.com Phone: +86 010 69155049

Key Words: Asthma; gastroesophageal reflux disease; proton pump inhibitors; meta-analysis

Word Count

Abstract: 244 Main Text: 3153

ABSTRACT

Objective Asthma often co-exists with gastroesophageal reflux disease (GERD). The effect of proton pump inhibitors (PPIs) treatment on asthma concomitted with GERD was inconsistent. This study aimed to assess whether PPIs treatment improved morning peak expiratory flow (mPEF) in asthma patients with GERD.

Data Sources PubMed, MEDLINE, EMBASE, Web of Science, Cochrane Library and ClinicalTrials.gov; hand searching for reference lists; contacted with authors if necessary.

Study Selection All eligible trials were randomized clinical trials comparing PPIs with placebo in asthma patients accompanying with GERD.

Results Fourteen randomized clinical trials (2182 participants) were included. Overall, PPIs versus placebo did not affect mPEF in patients with asthma having GERD (weighted mean difference 8.68 L/min, 95% confidence interval [-2.35, 19.37], P=0.11). Trial sequential analysis (TSA) further confirmed this finding (TSA adjusted 95% CI [-1.03, 22.25]). Subgroups analyses based on the percentage of patients with symptomatic GERD ≥95%, treatment duration >12 weeks also found no statistically significant benefit on mPEF. Similarly, analyses of secondary outcomes (evening PEF, forced expiratory volume in 1 second, asthma symptoms score, asthma quality of life score and episodes of asthma exacerbation) did not show significant difference between PPIs and placebo.

Conclusion In this meta-analysis, PPIs therapy did not show a statistically significant improvement on mPEF in asthma patients having GERD, neither in subgroup with symptomatic GERD nor in subgroup with treatment duration >12 weeks. This analysis does not support a recommendation for PPIs therapy as empirical treatment in asthma patients with GERD.

Trial Registration: PROSPERO CRD42020177330

Strengths and limitations of this study

- This systematic review strictly followed the methodology recommendations of the Cochrane Handbook, together with a comprehensive literature search.
- This study was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and its study protocol was registered on PROSPERO (CRD42020177330).
- We conducted Trial sequential analysis in our outcomes as well as their subgroups analysis.
- The current study performed a cumulative meta-analysis in all the data.

 Some of the unreported raw data were still unavailable after making extensive efforts to obtain.

INTRODUCTION

Asthma is a common chronic respiratory disease affecting approximately 300 million people worldwide.[1 2] Gastroesophageal reflux disease (GERD) develops when the reflux of gastric contents causes irritating symptoms or complications, or both.[3] GERD was considered as a trigger factor for asthma. Symptoms and/or diagnosis of GERD presented in 30% to 90% of patients with asthma.[4-6] Association between asthma and GERD has been extensively described elsewhere.[7 8] However, evidence of the causal link between asthma and GERD remains controversial. Some studies have shown that asthma may facilitate the development of GERD by the various mechanisms.[7 8]

PPIs were regarded as the cornerstone of antacid therapy and have been proved effective in empiric treatment of GERD.[9] Given that GERD may be a risk factor for asthma, many randomized controlled trials (RCTs) were performed to identify the efficacy of different types of PPIs in the asthma patients with GERD.[10-23] However, the efficacy of PPIs for the patients with asthma accompanying with GERD has been inconsistent. Previous metanalyses have pooled the results of PPIs on asthma outcomes in children and adults, but all of them included a small sample size.[24-26] The most recent systematic review examined the efficacy of PPIs treatment for the adults with asthma. However, the review only involved mPEF in subgroup of asthmatic patients diagnosed with GERD, and failed to identify the clinical characteristics of this subgroup population.[27]

Thus, we did a systematic review and meta-analyses to compare the effects PPIs versus placebo on asthma outcomes in the patients with GERD. TSA was performed to quantify the meta-analysis monitoring boundaries and required information size (RIS) for primary outcome. Asthma outcomes included mPEF (primary outcome), evening peak expiratory flow (ePEF), forced expiratory volume in 1 second (FEV₁), asthma symptoms score, asthma quality of life, episodes of asthma exacerbation.

METHOD AND ANALYSIS

The systematic review and meta-analyses were carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The protocol has been registered (CRD42020177330) with International Prospective Register of Systematic Reviews (PROSPERO).

Eligibility criteria

Types of study

All randomized clinical trials of PPIs in the patients with asthma and GERD were included. The eligible randomized trials were required to report at least one clinical asthma outcome of interest.

Types of participants

Participants with asthma and GERD were eligible for inclusion. There were no restrictions regarding age, gender, and ethnicity. Asthma was diagnosed according to doctor's diagnosis, reported ongoing asthma-related symptoms, evidence of objective measures of lung function. GERD diagnosis based on doctors' diagnosis, reported clinical symptoms of GERD, and objective documentation.

Types of intervention and control

Trials comparing beneficial and harmful effects of PPIs with those of placebo were eligible. This review was restricted to studies with treatment duration of at least 4 weeks.[27] No restrictions were imposed on drug dosage and types of PPIs which contained omeprazole, lansoprazole, pantoprazole, esomeprazole, and rabeprazole. We excluded the trials that focused on the intervention with combination of PPIs and other antacids or gastrointestinal motility regulators.

Outcome measures

This review evaluated the following outcomes: mPEF, ePEF and FEV₁, which were commonly used as evidence of variable expiratory airflow obstruction.

Other outcomes included asthma symptoms score (validated questionnaires of all types), asthma quality of life (validated instruments of all types), episodes of asthma exacerbation and adverse events.

Information sources and search

A systematic search for evidence on the efficacy of PPIs on patients with asthma was performed through electronic databases, citation search based on reference lists and hand searching of main relevant journals. We did a search in PubMed, EMBASE, Web of Science, Cochrane Library and ClinicalTrials.gov dating from inception to 18th March, 2020. No restrictions were imposed on language, publication date, publication type, or publication status. The search terms and search strategies for all databases were described in the **supplement 1**.

Study selection

Two reviewers (ZZ and YL) independently screened titles and abstracts according to the eligibility criteria in an unblinded, standardized manner. Reviews, letters, editorials, case studies, non-human studies, study protocols, non-English-language abstract were excluded during this process. The assessments of eligible full-text articles were carried out independently by two reviewers (ZZ and YL). Disagreements between reviewers were resolved by consensus or referred to a third reviewer (JG) for resolution.

Data extraction

Two independent reviewers (ZZ and YL) extracted data from each eligible study by using a pre-designed extraction form. Discrepancies were resolved by consensus or by involvement of a third author (JG). Items of characteristics of included studies were described in **supplement 1**. We contacted the corresponding authors for outcomes data if required.

Risk of bias in individual studies

Two independent reviewers (ZZ and YL) evaluated risk of bias according to version 5.1.0 of Cochrane Handbook for Systematic Review of Interventions. An agreement was reached by discussion or by consultation with a third

review author (JG). The domains of evaluation for all the outcomes were selection bias, performance bias, detection bias, attrition bias, reporting bias, and other bias. Each potential source of bias was considered as either "high risk", "low risk", or "unclear risk".

Statistical analysis

The weighted mean difference (WMD)/standardized mean difference (SMD) and 95% confidence intervals were calculated for continuous outcomes. The relative risk with 95% confidence intervals was calculated for dichotomous outcomes. Predefined subgroup analysis was undertaken in accordance with patients aged 18 years and older or patients younger than 18 years, the percentage of subjects with symptomatic GERD ≥95%, treatment duration (≤12 weeks VS >12 weeks) and types of PPIs (omeprazole, pantoprazole, lansoprazole, esomeprazole). Given the anticipated variability among patient characteristic and study design, a random effects model with 95% confidence intervals was used in the forest plots (RevMan version 5.3). Statistical heterogeneity was quantified using I² statistic, with I² cut-off value of 25%, 50%, and 75% to quantify low, moderate, and high thresholds, respectively. We adopted cumulative meta-analysis in all the data and conducted sensitivity analysis and Egger's test to identify data stability and publication bias, respectively (StataSE 12.0). TSA (version of 0.9.5.10 Beta) was performed in mPEF and ePEF to quantify meta-analysis monitoring boundaries and RIS using parameters of mean difference of mPEF=20 L/min, estimate variance from the meta-analysis of PEF data, α at 0.05, power of 80%, and I² value of 0%.

Patient and Public Involvement

There was no patient or public involvement in this study.

RESULTS

Study selection and characteristics

The search strategy yielded 2005 abstracts, of which 49 abstracts were retrieved and under full-articles assessment for eligible articles. All studies conducted lasted for more than 4 weeks. Of these trials, fourteen randomized controlled trials were included, six of which were cross-over studies,[10-12 14 15 20] and eight were of a parallel design.[13 16-19 21-23] The flow diagram for study inclusion is described in **Figure 1**. **Table 1** and **Supplement Table 1** summarizes the characteristics of the included studies (2182 participants) and the characteristics of the subjects, respectively. Of the 14 eligible trials, twelve included subjects aged ≥18 years, while only two aimed at patients aged <18 years (ranged from 6 to 17 years old).[17 23] Mild to severe asthmatics were included. The severity of GERD was reported inconsistently among the trials. Symptoms of heartburn, regurgitation and dysphagia were the common presentations of GERD reported in most studies. The percentage of the subjects with symptomatic GERD was greater than 95% in 8 studies, of which 6 studies reported 100%.[10 11 14 17 20 22]

Risk of bias within studies

Each study was assessed in accordance with the Cochrane risk of bias tool (**Figure 2**).[28] Double-blinding method was adopted in all studies except one trial which used a single-blinding fashion.[20] Three trials were supported by pharmaceutical companies.[16 18 22]

Outcomes

Fourteen included studies investigated PPIs therapy on patients with asthma and GERD (2182 patients). Asthma outcomes were reported inconsistently among studies, leading to limitation of meta-analysis (**Table 2**). All studies reported one or more outcomes of lung function.

Primary outcome

Morning PEF

Only one of the studies with data available found a significant improvement on mPEF.[19] Eight studies containing nine groups were included in meta-analysis (1886 subjects). Among the nine groups, eight showed improvement

in asthma symptoms,[10 12 13 16 18-20 22] but only one group did not cross the neutral (zero) line.[19] The overall analysis found no statistically significant benefit on mPEF with PPIs treatment (8.68 L/min, 95% CI [-2.35, 19.37], P=0.11). Heterogeneity was absent (I²=0%; P=0.73) (**Figure 3 A**). TSA showed a heterogeneity adjusted RIS of 1240 patients without the cumulative Z curve crossing boundaries for benefit or harm (TSA adjusted 95% CI [-1.03, 22.25]), suggesting that PPIs may not show benefit on mPEF of the patients with asthma and GERD (**Figure 4 A**). No publication bias reported in mPEF, and the sensitivity analysis confirmed the robustness of these findings (**Figure \$1**).

A subgroup was performed according to the percentage of subjects with symptomatic GERD ≥95% (1253 participants). Of eight eligible studies, five reported available data for meta-analysis.[10 12 16 20 22] No statistically significant effect was found for mPEF in this subgroup (7.07 L/min, 95% CI [-6.56, 20.69], P=0.31) (**Figure 3 B**). TSA showed that only 1158 (79%) of the heterogeneity adjusted RIS of 1470 patients were calculated. However, the cumulative Z curve crossed the boundaries for futility (TSA adjusted 95% CI [-5.94, 25.58]) (**Figure 4 B**).

Next, we conducted subgroups analysis based on duration of PPIs treatment (duration ≤12 weeks with a population of 164 VS >12 weeks with 1722 participants). No statistically significant benefit was demonstrated in both subgroups (duration ≤12 weeks: 23.06 L/min, 95% CI [-3.40, 49.51], P=0.09, P=0.43; duration >12 weeks: 5.87 L/min, 95% CI [-5.83, 17.56], P=0.33) (**Figure 3 C**). Then we conducted TSA in the subgroup with duration >12 weeks. TSA did not alter the efficacy on mPEF with a PPIs treatment duration >12 weeks (TSA adjusted 95% CI [-4.99, 20.50]) (**Figure 4 C**).

Also, three subgroups meta-analyses based on types of PPIs did not showed statistically significant treatment benefit (omeprazole: 88 subjects, 4.65 L/min, 95% CI [-35.43, 44.72], P=0.27; lansoprazole: 251 subjects, 29.18

L/min, 95% CI [-23.21, 81.56], P=0.31; esomeprazole: 1547 subjects, 5.91 L/min, 95% CI [-7.02, 18.84], P=0.37) on mPEF (**Figure 3 D**).

We carried out a cumulative meta-analysis of the effect of PPIs on the mPEF and its subgroups analysis based on the data of publication. However, the effect of PPIs remained unchanged (**Figure S2**).

Secondary outcomes

Evening PEF

Ten trials reported ePEF of the subjects with asthma and GERD, of which two trials demonstrated statistically significant improvement on ePEF.[12 18] Of these 10 trials, 6 studies provided information and were included in the meta-analyses (901 participants).[10 12 16 18-20] Meta-analysis did not show statistically significant effect on ePEF (5.58 L/min; 95% CI [-8.19, 19.36]; P=0.43) (**Figure 5 A**). TSA showed that the cumulative Z curve crossed boundaries for futility, suggesting no statistically significant improvement on ePEF with PPIs therapy (TSA adjusted 95% CI [- 6.87, 25.35]). No publication bias reported in ePEF, and the sensitivity analysis showed solid results (**Figure S3a**).

No statistically significant benefit was showed on ePEF by subgroups analyses of the studies in accordance with the percentage of subjects with symptomatic GERD ≥95%, length of PPIs treatment and types of PPIs (Figure S3b).

Forced expiratory volume in 1 second

Three studies with a population of 640 provided information of FEV₁ % predicted,[12 18 19] and only two with 237 participants provided available data of FEV₁ (L),[13 16] which were included in analyses, respectively. At the analysis of FEV₁ % predicted, no therapy effect was found on the patients with PPIs use (-1.25%, 95% CI [-4.9, 3.00], P=0.56) (**Figure 5 B1**). Heterogeneity was substantial (I^2 =61%; P=0.05). The analysis of the two studies may not demonstrated a benefit on the FEV₁ (L) in the patients with PPIs therapy (-0.09 L, 95% CI [-0.28, 0.10], P=0.36) (**Figure 5 B2**). No

publication reported in FEV1 % predicted, the sensitivity analysis showed robust results (**Figure S4**).

Asthma symptoms score

Six studies reported information of asthma symptoms score and were included in meta-analysis (371 participants).[10 13 16 17 19 20] Five of six trials included the patients aged older than 18 years (335 participants). The subgroup of adults showed no statistically significant effect on asthma symptoms score with PPIs treatment (SMD -0.30, 95% CI [-0.61, 0.01], P=0.06, heterogeneity I²=32%, P=0.21). However, the analysis found a small statistically significant improvement on asthma symptoms score (SMD -0.26, 95% CI [-0.52, -0.01], P=0.04), when we pooled the studies in adults and those in children. Heterogeneity was low (I²=19%, P=0.29) (**Figure 5 C**). No publication reported in asthma symptoms score, and the sensitivity analysis showed that the results were robust (**Figure S5**).

Asthma quality of life

Four eligible studies were included for meta-analysis (853 subjects).[16 18 19 23] The result showed no overall effect on the asthma quality of life (SMD 0.01, 95% CI [-0.44, 0.47], P=0.96). Heterogeneity was substantial (I²=89%, P<0.00001) (**Figure 5 D**). No publication bias was reported in this outcome (P=0.588), but sensitivity analysis showed the results were unstable (**Figure S6**). Therefore, the pooled result for asthma quality of life had limited meaning.

Episodes of asthma exacerbation

Only two studies including 1167 patients provided information of episodes of asthma exacerbation and showed an improvement in this variance.[16 22] However, no effect was showed in meta-analysis (relative risk 0.55, 95% CI [0.21, 1.43], P=0.22). Heterogeneity was substantial (I²=81%, P<0.02) (**Figure 5 E**).

Cumulative meta-analysis was performed in all the data of secondary outcomes. Similarly, except a minor improvement on asthma symptoms

score, it was likely that no significant effect was found on ePEF, FEV₁ % predicted, asthma quality of life and episodes of asthma exacerbation with the application of PPIs (**Figure S7**).

DISCUSSION

For primary outcome mPEF, we assessed 8 studies including 9 independent comparisons (1886 participants) and found no statistically significant improvement with PPIs treatment in patients with asthma and GERD compared to placebo. Subgroups analyses according to duration >12 weeks and the percentage of subjects with symptomatic GERD ≥95%, did not demonstrated statistically significant benefit with PPIs therapy. Also, no statistically significant improvement was observed on the secondary outcomes including ePEF, FEV₁, asthma symptoms, quality of life and asthma exacerbation. These results were further confirmed by the application of TSA and cumulative meta-analysis.

To enlarge sample size, our analysis not only included trials with asthma subjects having GERD diagnosis for entry criterion, but also those reported GERD subjects in subgroups analyses.[18 20] To the best of our knowledge, this analysis included the largest number of participants to date describing the effect of PPIs treatment in patients with asthma accompanying with GERD. The previous meta-analysis aiming to examine the efficacy of PPIs in the adult patients with asthma, reported a subgroup analysis based on GERD diagnosis for entry criterion with 7 trials (1004 patients).[27] In contrast to our study, a small statistically significant improvement was reported for mPEF in this subgroup, therefore, this analysis might overestimate the benefits on mPEF and exaggerate the effect of positive improvement, because of incomplete and inadequate population inclusion. However, in line with our results, this previous review did not show benefit on in patients with asthma with PPIs treatment on ePEF, FEV₁, asthma symptoms score and asthma quality of life.

A study reported that the minimal patient perceivable improvement differences for PEF was 18.79 L/min.[29] The minimal difference in PEF ranging from 15 to 20 L/min were summarized in a review.[30] Our analysis found that the pooled mean difference for mPEF and ePEF were 7.30 and 5.58 L/min respectively, which were far smaller than the minimal effective line, probably showing a lack of evidence to believe the efficacy of PPIs. In alignment with our study, previous meta-analysis published by Cochrane Collaboration found no statistically significant improvement on mPEF and ePEF.[25] Also, a recent large three-arms RCT was consistent with our study.[22]

Several trials have reported that PPIs played no role in asthma patients with asymptomatic GERD, whether in children or adults.[21 23] Similarly, in our subgroup meta-analysis, no statistically significant benefit appeared for mPEF in asthma patients with symptomatic GERD. This result was in keeping with a large trial including all asthma participants with symptomatic GERD.[22] Our subgroup analysis for mPEF based on duration >12 weeks was conducted, suggesting that no improvement appeared with PPIs therapy. In agreement with our result, two large trials did not find improvement for mPEF with PPIs treatment for 24 or 26 weeks.[16 22]

Mechanistically, GERD may trigger asthma via directly damage to the respiratory tree leading to bronchoconstriction by micro-aspiration of gastric or duodenal (or both) contents.[31 32] Previous studies have reported that bile acids and pepsin were found graft failure in lung transplant patients, indicating that acid materials may not be the only one of many irritants in the aspirate during gastroesophageal reflux.[33 34]

PPIs treatment significantly improved asthma symptoms and lung function in patients with exercise-triggered asthma, with asthma and nocturnal respiratory symptoms, or taking LABAs.[18 35] It appeared that benefits of PPIs may be restricted to patients with certain types or status of asthma. Further studies are warranted to examine the pathophysiological mechanism

to determine the causality between asthma and GERD. Notably, if the improvement for asthma conditions were delayed or required more time to present, then the overall effect may be underestimated. Thus, further RCTs should be conducted with a treatment period for more than 6 months. Previous RCTs combined omeprazole and domperidone therapy in patients with asthma and GERD, showing that combined therapy improved asthma symptoms and lung function with treatment period of 12 or 16 weeks.[36 37] Therefore, the efficacy of combined therapy should be further explored. Furthermore, we hopefully expect the effect of genotype-tailored PPIs in patients with asthma and co-morbid GERD.[38]

There are several limitations in the present study. Firstly, we could not extract the data from all the 11 eligible trials reporting mPEF, because of the unavailable reported form (mean difference only,[14] medians and quartiles[15]) or unavailable data in subgroup.[21] However, the overall sample size of these 3 trials was small and we do not think these studies would make a significant difference in our meta-analysis. Secondly, we could not perform a subgroup according to the severity of asthma or GERD as expected, because the severity reported inconsistently and we could not sort out the disease status of each trial. Thirdly, only two RCTs in children were eligible in the present study, making it difficult to evaluate the effect for PPIs on all outcomes in children.[17 23] However, both trials reported no improvement for PPIs in all the asthma outcomes, which were in line with the overall effect in adults in our analysis.

CONCLUSION

Compared to placebo, PPIs therapy for asthma patients with GERD did not show statistically significant improvement in mPEF. This futility did not alter in asthma patients neither with symptomatic GERD nor with PPIs treatment for more than 12 weeks. This analysis does not support a recommendation for the empirical use of PPIs therapy in asthma patients having GERD.

Acknowledgements:

The authors would like to thank Dr. Xiaoling Li for her suggestions on grammar and vocabularies of this manuscript. We would also like to thank Dr. Xiaorui Lyu (Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College) for his advice on data analysis data extraction. This work was supported by the National Natural Science Foundation of China (Grant No. 81970025).

Author contributions

ZZ led the meta-analysis was involved at every stage, including protocol development, screening, data extraction, quality assessment, data analysis and manuscript drafting. YL was involved in screening, data extraction, quality assessment, interpretation of results and manuscript revisions. JL facilitated manuscript revisions for important intellectual content. JG supervised this review and was involved in protocol preparation, consensus on disagreement in data extraction, quality assessment, data analysis, interpretation of results, manuscript drafting and revisions.

Conflicts of interests

None declared.

Funding

This work was supported by the National Natural Science Foundation of China (81970025).

Patient consent for publication

Not required.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data sharing statement

No additional data are available.

Open access

This is an open access article distributed in accordance with the Creative

Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to copy, distribute, remix, adapt, build upon this work for any purpose, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

References

- Li X, Cao X, Guo M, et al. Trends and risk factors of mortality and disability adjusted life years for chronic respiratory diseases from 1990 to 2017: systematic analysis for the Global Burden of Disease Study 2017. *Bmj* 2020;368:m234. doi: 10.1136/bmj.m234 [published Online First: 2020/02/23]
- 2. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2019.
- 3. Vakil N, van Zanten SV, Kahrilas P, et al. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. *Am J Gastroenterol* 2006;101(8):1900-20; quiz 43. doi: 10.1111/j.1572-0241.2006.00630.x [published Online First: 2006/08/25]
- 4. Kiljander TO, Laitinen JO. The prevalence of gastroesophageal reflux disease in adult asthmatics. *Chest* 2004;126(5):1490-94. doi: 10.1378/chest.126.5.1490
- Sandur V, Murugesh M, Banait V, et al. Prevalence of gastro-esophageal reflux disease in patients with difficult to control asthma and effect of proton pump inhibitor therapy on asthma symptoms, reflux symptoms, pulmonary function and requirement for asthma medications. *J Postgrad Med* 2014;60(3):282-6. doi: 10.4103/0022-3859.138754 [published Online First: 2014/08/15]
- Broers C, Tack J, Pauwels A. Review article: gastro-oesophageal reflux disease in asthma and chronic obstructive pulmonary disease. *Aliment Pharmacol Ther* 2018;47(2):176-91. doi: 10.1111/apt.14416 [published Online First: 2017/12/02]
- 7. Harding SM. Gastroesophageal reflux and asthma: insight into the association. *J Allergy Clin Immunol* 1999;104(2 Pt 1):251-9. doi: 10.1016/s0091-6749(99)70360-x [published Online First: 1999/08/19]
- Zerbib F, Guisset O, Lamouliatte H, et al. Effects of bronchial obstruction on lower esophageal sphincter motility and gastroesophageal reflux in patients with asthma. Am J Respir Crit Care Med 2002;166(9):1206-11. doi: 10.1164/rccm.200110-033OC [published Online First: 2002/10/31]
- Gyawali CP, Fass R. Management of Gastroesophageal Reflux Disease. Gastroenterology 2018;154(2):302-18. doi: 10.1053/j.gastro.2017.07.049 [published Online First: 2017/08/23]
- 10. Ford GA, Oliver PS, Prior JS, et al. Omeprazole in the treatment of asthmatics with nocturnal symptoms and gastro-oesophageal reflux: a placebo-controlled cross-over

- study. *Postgrad Med J* 1994;70(823):350-4. doi: 10.1136/pgmj.70.823.350 [published Online First: 1994/05/01]
- 11. Meier JH, McNally PR, Punja M, et al. Does omeprazole (Prilosec) improve respiratory function in asthmatics with gastroesophageal reflux? A double-blind, placebo-controlled crossover study. *Dig Dis Sci* 1994;39(10):2127-33. doi: 10.1007/bf02090360 [published Online First: 1994/10/01]
- 12. Teichtahl H, Kronborg IJ, Yeomans ND, et al. Adult asthma and gastro-oesophageal reflux: the effects of omeprazole therapy on asthma. *Aust N Z J Med* 1996;26(5):671-6. doi: 10.1111/j.1445-5994.1996.tb02938.x [published Online First: 1996/10/01]
- 13. Boeree MJ, Peters FT, Postma DS, et al. No effects of high-dose omeprazole in patients with severe airway hyperresponsiveness and (a)symptomatic gastro-oesophageal reflux. *Eur Respir J* 1998;11(5):1070-4. doi: 10.1183/09031936.98.11051070 [published Online First: 1998/07/02]
- Levin TR, Sperling RM, McQuaid KR. Omeprazole improves peak expiratory flow rate and quality of life in asthmatics with gastroesophageal reflux. *Am J Gastroenterol* 1998;93(7):1060-3. doi: 10.1111/j.1572-0241.1998.329_q.x [published Online First: 1998/07/22]
- Kiljander TO, Salomaa ER, Hietanen EK, et al. Gastroesophageal reflux in asthmatics: A double-blind, placebo-controlled crossover study with omeprazole. *Chest* 1999;116(5):1257-64. doi: 10.1378/chest.116.5.1257 [published Online First: 1999/11/13]
- 16. Littner MR, Leung FW, Ballard ED, 2nd, et al. Effects of 24 weeks of lansoprazole therapy on asthma symptoms, exacerbations, quality of life, and pulmonary function in adult asthmatic patients with acid reflux symptoms. *Chest* 2005;128(3):1128-35. doi: 10.1378/chest.128.3.1128 [published Online First: 2005/09/16]
- 17. Størdal K, Johannesdottir GB, Bentsen BS, et al. Acid suppression does not change respiratory symptoms in children with asthma and gastro-oesophageal reflux disease. *Archives of Disease in Childhood* 2005;90(9):956-60. doi: 10.1136/adc.2004.068890
- Kiljander TO, Harding SM, Field SK, et al. Effects of esomeprazole 40 mg twice daily on asthma: a randomized placebo-controlled trial. *Am J Respir Crit Care Med* 2006;173(10):1091-7. doi: 10.1164/rccm.200507-1167OC [published Online First: 2005/12/17]
- dos Santos LH, Ribeiro IO, Sanchez PG, et al. Evaluation of pantoprazol treatment response of patients with asthma and gastroesophageal reflux: a randomized prospective double-blind placebo-controlled study. *J Bras Pneumol* 2007;33(2):119-27. doi: 10.1590/s1806-37132007000200004 [published Online First: 2007/08/29]
- Susanto AD, Yunus F, Wiyono WH, et al. Asthma symptoms improvement in moderate persistent asthma patients with gastroesophageal reflux disease (GERD): The role of proton-pump inhibitor. *Medical Journal of Indonesia* 2008;17(3):169-74. doi: 10.13181/mji.v17i3.317
- 21. Mastronarde JG, Anthonisen NR, Castro M, et al. Efficacy of esomeprazole for treatment of poorly controlled asthma. *New England Journal of Medicine* 2009;360(15):1487-99. doi: 10.1056/NEJMoa0806290
- 22. Kiljander TO, Junghard O, Beckman O, et al. Effect of esomeprazole 40 mg once or twice daily on asthma: a randomized, placebo-controlled study. *Am J Respir Crit Care Med*

- 2010;181(10):1042-8. doi: 10.1164/rccm.200910-1537OC [published Online First: 2010/01/30]
- 23. Holbrook JT, Wise RA, Gold BD, et al. Lansoprazole for children with poorly controlled asthma: a randomized controlled trial. *JAMA* 2012;307(4):373 81. doi: 10.1001/jama.2011.2035
- 24. Coughlan JL, Gibson PG, Henry RL. Medical treatment for reflux oesophagitis does not consistently improve asthma control: a systematic review. *Thorax* 2001;56(3):198-204. doi: 10.1136/thorax.56.3.198 [published Online First: 2001/02/22]
- Gibson PG, Henry RL, Coughlan JL. Gastro-oesophageal reflux treatment for asthma in adults and children. *Cochrane Database Syst Rev* 2003(2):Cd001496. doi: 10.1002/14651858.Cd001496 [published Online First: 2003/06/14]
- 26. Miceli Sopo S, Radzik D, Calvani M. Does treatment with proton pump inhibitors for gastroesophageal reflux disease (GERD) improve asthma symptoms in children with asthma and GERD? A systematic review. *Journal of Investigational Allergology and Clinical Immunology* 2009;19(1):1-5.
- 27. Chan WW, Chiou E, Obstein KL, et al. The efficacy of proton pump inhibitors for the treatment of asthma in adults: a meta-analysis. *Arch Intern Med* 2011;171(7):620-9. doi: 10.1001/archinternmed.2011.116 [published Online First: 2011/04/13]
- 28. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 2011;343:d5928. doi: 10.1136/bmj.d5928 [published Online First: 2011/10/20]
- 29. Santanello NC, Zhang J, Seidenberg B, et al. What are minimal important changes for asthma measures in a clinical trial? *Eur Respir J* 1999;14(1):23-7. doi: 10.1034/j.1399-3003.1999.14a06.x [published Online First: 1999/09/18]
- Reddel HK, Taylor DR, Bateman ED, et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. *Am J Respir Crit Care Med* 2009;180(1):59-99. doi: 10.1164/rccm.200801-060ST [published Online First: 2009/06/19]
- Hom C, Vaezi MF. Extra-esophageal manifestations of gastroesophageal reflux disease: diagnosis and treatment. *Drugs* 2013;73(12):1281-95. doi: 10.1007/s40265-013-0101-8 [published Online First: 2013/07/25]
- 32. Naik RD, Vaezi MF. Extra-esophageal gastroesophageal reflux disease and asthma: understanding this interplay. *Expert Rev Gastroenterol Hepatol* 2015;9(7):969-82. doi: 10.1586/17474124.2015.1042861 [published Online First: 2015/06/13]
- 33. Vos R, Blondeau K, Vanaudenaerde BM, et al. Airway colonization and gastric aspiration after lung transplantation: do birds of a feather flock together? *J Heart Lung Transplant* 2008;27(8):843-9. doi: 10.1016/j.healun.2008.05.022 [published Online First: 2008/07/29]
- 34. Griffin SM, Robertson AG, Bredenoord AJ, et al. Aspiration and allograft injury secondary to gastroesophageal reflux occur in the immediate post-lung transplantation period (prospective clinical trial). *Ann Surg* 2013;258(5):705-11; discussion 11-2. doi: 10.1097/SLA.0b013e3182a6589b [published Online First: 2013/10/15]
- 35. Peterson KA, Samuelson WM, Ryujin DT, et al. The role of gastroesophageal reflux in exercise-triggered asthma: a randomized controlled trial. *Dig Dis Sci* 2009;54(3):564-71.

- doi: 10.1007/s10620-008-0396-6 [published Online First: 2008/08/09]
- 36. Sharma B, Sharma M, Daga MK, et al. Effect of omeprazole and domperidone on adult astmatics with gastroesophageal reflux. *World Journal of Gastroenterology* 2007;13(11):1706-10. doi: 10.3748/wjg.v13.i11.1706
- 37. Bediwy AS, Al-Biltagi M, Amer HG, et al. Combination therapy versus monotherapy for gastroesophageal reflux in children with difficult-to-treat bronchial asthma. *Egyptian Journal of Chest Diseases and Tuberculosis* 2014;63(1):33-38. doi: 10.1016/j.ejcdt.2013.10.014
- 38. Tang M, Blake KV, Lima JJ, et al. Genotype tailored treatment of mild symptomatic acid reflux in children with uncontrolled asthma (GenARA): Rationale and methods. *Contemp Clin Trials* 2019;78:27-33. doi: 10.1016/j.cct.2019.01.009 [published Online First: 2019/01/20]

List of Figures

Figure 1 Flow diagram of identification of eligible studies for inclusion.

Figure 2 Risk of bias summary displaying review authors' judgements about each risk of bias item for each included study.

Figure 3 A, Forest plot for morning peak expiratory flow. B, Forest plot for morning peak expiratory flow in subgroup of the percentage of subjects with symptomatic GERD ≥95%. C, Forest plot for morning peak expiratory flow in subgroups of treatment duration ≤12 weeks and >12 weeks. D, Forest plot for morning peak expiratory flow in subgroups of different types of proton pump inhibitors.

Figure 4 A, Trial sequential analysis of morning peak expiratory flow. **B**, Trial sequential analysis of morning peak expiratory flow in subgroup of the percentage of subjects with symptomatic GERD ≥95%. **C**, Trial sequential analysis of morning peak expiratory flow in subgroup of of treatment duration >12 weeks.

Figure 5 A, Forest plot for evening peak expiratory flow. **B1**, Forest plot for FEV1 % predicted. **B2**, Forest plot for FEV1 (L). **C**, Forest plot for asthma symptoms score. **D**, Forest plot for asthma quality of life score. **E**, Forest plot for episodes of asthma exacerbation.

Page 22 of 55

Table 1 Summary of participants characteristics of included studies

Trials	Mean (SD or range) Age (Years)	Male, n (%)	Severity of asthma	Severity of GERD	Complications of GERD	Symptomatic GERD (%)	Association between asthma and GERD reported
Ford 1994	63 (50-80)	5 (50%)	Mean PEFR before and after terbutaline use (SD), 1/minute: 253 (83) and 308 (±94)	Number per grade of esophagitis: Grade I (n=1), Grade II (n=2), Grade III(n=4); Barrett's esophagus (n=2	Heartburn, regurgitation, lack of proportion	100%	No
Meier 1994	49 (34-63)	9 (60%)	Not stated; inclusion criteria: reversibility of FEV ₁ and/ or PEF after bronchodilator use: >15%	Number per grade of esophageal inflammation: Grade I (n=1), Grade II (n= 4), Grade IV (n= 2); hiatal hernia n=10; Barrett's esophagus and peptic stricture n=10	Not specified	100%	Yes
Teichtahl 1996	46 (12)	12 960%)	Not stated, inclusion criteria: reversibility of FEV ₁ >15%; diurnal variation of PEF: >20%	GERD symptoms in all	Not specified	95%	No
Boeree 1998	51 (10)	17 (47.2%)	Mean FEV ₁ %, pred (SD): Int 66(20); cont 75(23); mPEF mean (SD): Omeprazole group 329 (91); placebo group 321 (109)	Increased gastroesophageal reflux reported in all	Dysphagia Int n=2/1/0, Cont n=3/0/0; heartburn Int n=9/0/0, Cont n=9/3/0; regurgitation Int n=3/0/0, Cont n=4/3/0	50%	No
Levin 1998	57 (35–72)	6 (67%)	Mean FEV ₁ (range): 1.9 (1.0–2.9); mean PEFR (range), L/min: mPEF 376 (283–488), ePEF 381 (286–468).	24-h pH monitoring, mean % time with pH < 4 (range): total: 24.4 (4.7–64.0), supine: 17.6 (0–39.8), upright: 23.8 (5.6–74.4)	Not specified	100%	No
Kiljander 1999	49 (21–75)	18(35%)	Mean PEF (range) L/min, 455 (250 to 700); FEV $_1$ % of predicted (range), 81 (31 to 114)	Median % time pH < 4 (75–25% quartiles): total 9.0 (14.7–5.0), upright 10.1 (15.1–6.9), supine: 4.0 (15.7–0.8)	Not specified	65%	No
Littner 2005	47 (12)	66 (31.9%)	Moderate-to-severe persistent asthma	Mean severity score (SD): Overall reflux symptoms: Int 1.66 (0.69), Cont 1.70 (0.65) ¶	Patients with symptoms (%): heartburn Int 97%, Cont 95%; regurgitation Int 80%, Cont 80%; dysphagia: Int 32%, Cont 47%	Int 96.1±8.0%, Cont 97.3±5.2%	No
Størdal 2005	10.2 (9.2), 11.3 (11.0)	29 (76.3%)	GINA classification of asthma severity (step 1/2/3/4): Int 4/8/7/0, Cont 3/6/10/0.	Reflux index, mean (%, SD): Int 8.8 (4.0), Cont 9.7 (5.1); reflux index≥ 10% (n): Int n=5, Cont n=6	Not specified	100%	No
GERD+/NOC+ (Kiljander-1) iljander 2006	46.3	80 (36.5%)	FEV ₁ , % pred: Int 67.3%, Cont 66.2%; Morning PEF, % pred: Int 73.0%, Cont 73.0%	Abnormal 24-h esophageal pH in all	Mean number heartburn symptoms/day: (nighttime) Int 0.42, Cont 0.44; (daytime) Int 0.68, Cont 0.71 Mean number heartburn	Not stated	Yes
GERD+/NOC- (Kiljander-2)	44.3	94 (26.9%)	FEV ₁ , % pred: Int 65.5%, Cont 67.4%; mPEF, % pred: Int 68.7%, Cont 69.2%.	Abnormal 24-h esophageal pH in all	symptoms/day: (nighttime) Int 0.46, Cont 0.47; (daytime) Int 0.68, Cont 0.62		
dos Santos 2007	Int 40 (12), Cont 45 (12)	9 (22.0%)	Mean FEV ₁ % predicted (SD): Int 61.6 (19), Cont 60.4 (19); mean diurnal PEF (SD): Int 317 (13), Cont 264 (86)	Mean GERD symptoms score (SD): Int 12.9 (9), Cont 11.4 (7)	Not specified	80%	No
Susanto 2008	Int 42.69 (11.11), Cont 37.88 (11.01)	9 (28.1%)	Moderate persistent asthma; mean FEV ₁ % prediction (SD): Int 72.9 (6.7), Cont 71.2 (7.7); mean PEFR, L/min (SD): Int 258.8 (33.2), Cont 269.5 (76.4)	One or more typical GERD symptoms in all. patients with histopathological esophagitis (%): 87.5%	Heartburn: Int 68%. Cont 87%; atypical chest pain: Int 81.3%, Cont 75%, regurgitation: Int 100%, Cont 100%, dysphagia: Int 12.5%, Cont 25%, water brash: Int 37.5%, Cont 37.5%	100%	No
Mastronarde 2009	(>18)	Not stated	Persistent and poorly controlled asthma	PH monitoring positive in all	Not specified	0%	No
Kiljander 2010	45 (19-70)	233 (24.3%)	Moderate-to-severe asthma	Moderate severity	Heartburn, acid regurgitation Dyspepsia	100%	No
Holbrook 2012	(6-17)	Not stated	Poorly controlled asthma	Abnormal 24-h esophageal pH in all	Not specified	0%	No

Abbreviations: FEV₁, forced expiratory volume in 1 second; mPEF, morning peak expiratory flow; PEFR peak expiratory flow; pred, predicted; PUD, peptic ulcer disease; GERD, gastroesophageal reflux disease; GINA: Global Initiative for Asthma; Int, intervention; Cont, control; PPI, proton pump inhibitor; NOC, nocturnal respiratory symptoms; SD, standard deviation

43 ¶ An investigator-assessed scale was used, as follows: 0, none; 1, mild; 2, moderate; and 3, severe.

Page 23 of 55

 BMJ Open

Table 2 Summary of results of PPIs treatment on asthma outcomes

Trials	mPEF, L/min	ePEF, L/min	FEV₁, L	FEV₁%, Pred	Asthma symptom score	AQLQ	Episodes of asthma exacerbation
Ford 1994	-	-	NA	NA	-	NA	NA
Meier 1994	NA	NA	-	NA	-	NA	NA
Teichtahl 1996	-	+	NA	-	NA	NA	NA
Boeree 1998	-	-	-	NA	-	NA	NA
Levin 1998	+	-	-	NA	NA	+	NA
Kiljander 1999	-	-	+*	NA	+	NA	NA
Littner 2005	-	-	-	-	-	+	+
Størdal 2005	NA	NA	-	NA	-	-	NA
GERD+/NOC-,	-	-	NA		-	-	NA
Kiljander-1 2006 GERD+/NOC+, Kiljander-2 2006	+	+	NA		<u>-</u>	-	NA
dos Santos 2007	-	-	NA	-	-	+	NA
Susanto 2008	+	-	NA	NA	+	NA	NA
Mastronarde 2009	-	NA	-	NA	70	-	NA
Kiljander 2010	-	-	+		- /	+	+
Holbrook 2012	NA	NA	-	NA	NA		NA

Abbreviations: FEV₁, forced expiratory volume in 1 second; pred, predicted; mPEF, morning peak expiratory flow; AQLQ, Asthma Quality of Life Questionnaire; NA, not available; JW, Macay. . .

 $^{23\,}$ +, significant therapy effect; -, not significant therapy effect.

^{24 *,} Decline during omeprazole use.

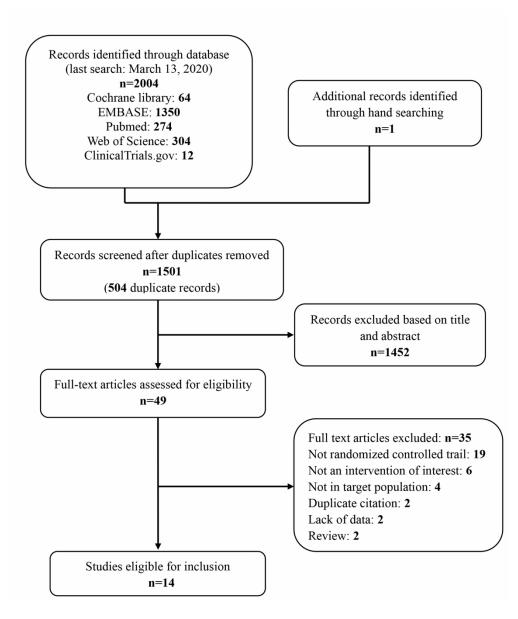


Figure 1 Flow diagram of identification of eligible studies for inclusion.

168x199mm (600 x 600 DPI)

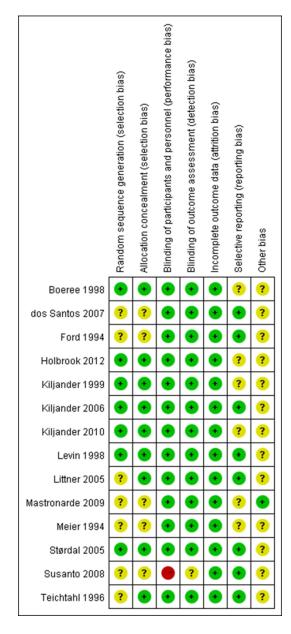


Figure 2 Risk of bias summary displaying review authors' judgements about each risk of bias item for each included study.

1038x2359mm (72 x 72 DPI)

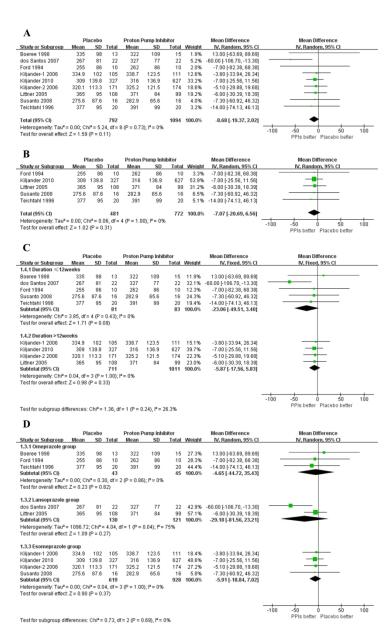


Figure 3 A, Forest plot for morning peak expiratory flow. B, Forest plot for morning peak expiratory flow in subgroup of the percentage of subjects with symptomatic GERD ≥95%. C, Forest plot for morning peak expiratory flow in subgroups of treatment duration ≤12 weeks and >12 weeks. D, Forest plot for morning peak expiratory flow in subgroups of different types of proton pump inhibitors.

1209x1999mm (72 x 72 DPI)

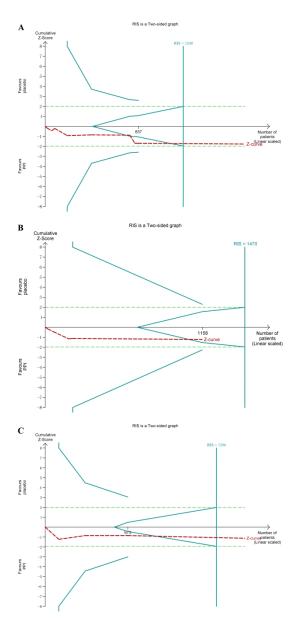


Figure 4 A, Trial sequential analysis of morning peak expiratory flow. B, Trial sequential analysis of morning peak expiratory flow in subgroup of the percentage of subjects with symptomatic GERD ≥95%. C, Trial sequential analysis of morning peak expiratory flow in subgroup of of treatment duration >12 weeks.

72x145mm (1200 x 1200 DPI)

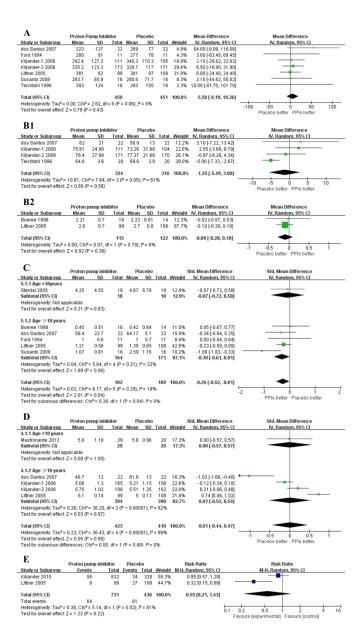


Figure 5 A, Forest plot for evening peak expiratory flow. B1, Forest plot for FEV1 % predicted. B2, Forest plot for FEV1 (L). C, Forest plot for asthma symptoms score. D, Forest plot for asthma quality of life score. E, Forest plot for episodes of asthma exacerbation.

72x133mm (1200 x 1200 DPI)

Page 29 of 55 BMJ Open

Supplement Table 1 Summary of the characteristics of included studies

Trials	Location	ation Study	Medication/dose	Concurrent	Duration	Number Randomized patie	Completed	Inclusion	n criteria	Concurrent disease	Major exclusions
		design	and usage	treatment	(weeks)	Intervention group	Control group	Asthma diagnosis	GERD Diagnosis	=	
Ford 1994	UK	Crossover	Omeprazole 20 mg, qd	ICS 80%, ipratropium 10%	4	Total: 1	¥	Doctor's diagnosis; reversibility PEFR after bronchodilator use: ≥15%; nocturnal asthma attack	Abnormal pH in 24-h pH monitoring; upper gastrointestinal endoscopy; history of esophagitis	Not stated	Not specified
Meier 1994	America	Crossover	Omeprazole 20 mg, bid	Asthma medications (lack of type), theophylline 11/15	6	Total: 1	5/15	ATS; reversibility of FEV ₁ and/ or PEF after bronchodilator use: >15%	Abnormal pH in 24-h pH monitoring; manometry; esophagogastroduodeno scopy; acid-perfusion (Bernstein) test	Not stated	≤18 years old. pregnancy, female unwilling to use bir contraception; unable to give informed consent
Teichtahl 1996	Australia	Crossover	Omeprazole 40 mg, qd	Other asthma medications; Iβ2A	4	Total: 2	25/20	Doctor's diagnosis; positive HIT; diurnal variation of PEFR ≥20%; reversibility of FEV₁ and/ or PEF after bronchodilator use: >15%	Abnormal pH in 24-h pH monitoring; endoscopy	Not stated	Other significant respiratory disease respiratory tract infection; significan systemic, esophageal strictur
Boeree 1998	The Netherlands	Parallel	Omeprazole 40 mg, bid	ICS 0.4 mg/day used in all	12	18/16	18/14	Doctor's diagnosis; FEV ₁ >1.25 L, PC20 <2 mg/mL	Abnormal pH in 24-h pH monitoring, increased GER was defined as >4% of 24 h registration, or >3% during the supine position	COPD	Upper and/or lower respiratory tract infection, other concomitant lung diseases
Levin 1998	America	Crossover	Omeprazole 20 mg, qd	Inhaled β-agonists used in all	8	total: ′	11/9	Doctor's diagnosis; ≥15% reversibility in FEV₁ after bronchodilator treatment; asthma medication used daily	Symptoms of heartburn or regurgitation at least once weekly without therapy; manometry, ambulatory 24-h esophageal pH monitoring	Not stated	COPD, URTI, prior gastroesophageal surgery, acute PUD, use of omeprazole of URTI within previous 30 days
Kiljander 1999	Finland	Crossover	Omeprazole 40 mg, qd	Iβ ₂ A 91%; ICS 89%	8	total: 5	7/52	Doctor's diagnosis; ATS	24-h pH monitoring and manometry	Not stated	Not specified
Littner 2005	multi-center, North America	Parallel	Lansoprazole 30 mg, bid	ICS, stable doses of asthma medications for at least 4 wks	24	99/85	108/88	Doctor's diagnosis; FEV ₁ pred > 50% and < 85%; ≥12% improvement in FEV ₁ (in liters) after the inhalation of 180 ug of albuterol; five or more nocturnal asthma awakenings and receiving stable doses of asthma medications within previous 4 wks	Investigator judgement based on symptomatic acid reflux and acid-suppressive therapy; 24-h esophageal pH monitoring	Not stated	Smoking; receiving ipratropium bromide, immunotherapy; URTI; uncontrolled medical condition; receiving PPI within 14 days
Størdal 2005	Norway	Parallel	Omeprazole 20 mg, qd	ICS: Int n=17, Cont n=17; long acting bronchodilato rs: Int 10, Cont 12	12	19/18	19/18	Doctor's diagnosis; at least two episodes of asthma symptoms requiring medication within previous six months	24-h pH monitoring; A reflux index ≥5.0 was considered abnormal	Not stated	Previously known or treated GERD
GERD+/ NOC+ Kilja nder (Kiljan der-1)	Europe, North America, South	Parallel	Esomeprazole 40 mg, qd	ICS: 98.6%; LABAs: 49.8%	16	112/105	107/105	FEV₁% pred: 50 to 80%, ≥12% (and ≥0.20 L) reversibility; PEF pred <80%; symptom of nighttime awakening with	Heartburn ≥2 times/wk; acid regurgitation ≥once /wk within previous 3 month. erosive esophagitis or Barrett's esophagus	Not stated	Smoking; esophage or gastric surgery; glucocorticosteroids <30 days; erosive esophagitis ≤16 wks
GERD+/ NOC-	America	Parallel	Esomeprazole 40 mg, bid	ICS: 97.7%; LABAs: 34%	16	174/174	176/171	related respiratory symptoms; or PEF	(without dysplasia) documented in the previous		and PPI use <14 day before enrollment;

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open Page 30 of 55

1	(Kiljande r-2)								overnight variability ≥15%	12 months; abnormal 24-h esophageal pH		recurrent moderate or severe GERD symptoms
2 3 4 5 6 7 8	dos Santos-2007	Brazil	Parallel	Pantoprazole 40 mg, qd	long-acting β2 -agonists (%): Int 45%, Cont 64%; oral corticoids: Int 9%, Cont 18%	12	total: 44 (Int n=22		Asthmatic clinical history and symptoms for at least two months; airflow obstruction (FEV ₁ /FVC) < 90% of predicted; the methacholine bronchoprovocation test (+), obstruction reversibility: FEV ₁ >200 mL and 7% of predicted	24-h esophageal pH monitoring; manometry	Not stated	Smoking; receiving PPI and H-2 receptor blocker; systemic arterial hypertension
9 10 11	Susanto-2008	Indonesia	Crossover	Esomeprazole 40 mg, qd	inhaled budesonide 400 µg bid, salbutamol 100 mg/puff	8	18/16	18/16	GINA 2002	Endoscopy and or esophageal histopathologic examination; typical GERD symptoms	Not stated	Not specified
12 13 14 15	Mastronarde-20 09	Multicenter, North America	Parallel	Esomeprazole 40 mg, bid	ICS in all	24	61 /61	62 /62	Doctor's diagnosis; positive methacholine challenge test; 12% increase in FEV ₁ after bronchodilator treatment	24-h pH monitoring, mean % time with pH < 4 (range): total >5.8%, upright >8.2%, supine <3.5%	Not stated	Smoking; FEV ₁ % pred <50%; surgery; acid-suppression treatment
16 17 18 19	Kiljander-2010	Multicenter, Europe, North America, South America	Parallel	Esomeprazole 40 mg, qd/bid	ICS and LABA in all	26	40 mg, qd: 313/273; 40 mg, bid: 320/272	328/283	Doctor's diagnosis; ATS	The validated Reflux Disease Questionnaire, esophageal 24-h pH monitoring	Not stated	Alarm symptoms presented, smoking, esophageal or gastric surgery, Barrett esophagus
20 21 22 23 24	Holbrook 2012	America	Parallel	Lansoprazole, children <30 kg: 15 mg/d; children ≥30 kg: 30 mg/d	ICS in all	24	29 /29	20 /20	Doctor's diagnosis; ≥12% in FEV₁ after bronchodilator treatment; PC20 ≤16 mg/mL; positive exercise bronchoprovocation test	Ambulatory esophageal pH monitoring: time of pH <4 in 6- to 11-year-old for ≤6%, in 12- to 17-year-old for ≤4%	Not stated	Receiving PPI or other reflux medications; anti-reflux surgery or trachea-esophageal fistula repair; FEV ₁ % pred <60%

Abbreviations: LABA, long-acting β_2 -agonists, FEV₁, forced expiratory volume in 1 second; FVC, forced vital capacity; PC20, provocative concentration of methacholine bromide causing a \geq 20% fall in forced expiratory volume in 1 second; I β_2 A, inhaled β_2 -agonists, ICS, inhaled corticosteroid; mPEF, morning peak expiratory flow; PEFR morning peak expiratory flow; pred, predicted; PUD, peptic ulcer disease; URTI, upper respiratory tract infection; GER, gastroesophageal reflux; GERD, gastroesophageal reflux disease; GINA: Global Initiative for Asthma; ATS: American Thoracic Society; Int, intervention; Cont, control; wks, weeks; qd, once daily; bid, twice daily; PPI, proton pump inhibitor, NOC, nocturnal respiratory symptoms; SD, standard deviation; HIT histamine bronchoprovocation test; NA, not available

Appendix

Supplement 1

Information sources and search

The search terms of asthma included: "asthma", "asthma bronchiale", "asthma pulmonale", "asthmatic", "asthmatic subject", "bronchial asthma", "bronchus asthma", "childhood asthma", "chronic asthma", "lung allergy" and "asthmatics".

The search terms of gastroesophageal reflux disease contained: "gastroesophageal reflux", "gerd", "gastroesophageal reflux disease", "gord", "cardioesophageal reflux", "esophageal reflux", "esophageal regurgitation", "esophageal reflux", "gastro esophageal reflux", "gastro esophageal reflux", "gastroesophageal reflux", "oesophageal reflux", "oesophageal regurgitation", "oesophageal reflux", "oesophageal regurgitation", "oesophageal reflux", "oesophageal regurgitation", "oesophageal reflux", "oesophageal r

The search terms of contained: "proton pump inhibitor", "proton pump inhibitors", "PPI" "pantoprazole", "omeprazole", "esomeprazole", "lansoprazole", and "rabeprazole".

(search strategies for all databases)

Medline via Ovid, 2020,3,18

#	Term	Result
#1	"randomized controlled trial".pt.	
#2	(random\$ or placebo\$ or single blind\$ or double blind\$ or triple	
	blind\$).ti,ab.	
#3	(retraction of publication or retracted publication).pt.	
#4	or/1-3	

#5	(animals not humans).sh.	
#6	((comment or editorial or meta-analysis or practice-guideline or	
	review or letter or journal correspondence) not "randomized	
	controlled trial").pt.	
#7	(random sampl\$ or random digit\$ or random effect\$ or random	
	survey or random regression).ti,ab. not "randomized controlled	
	trial".pt.	
#8	4 not (5 or 6 or 7)	
#9	(asthma\$ or bronchial asthma\$).ti,ab.	
#10	exp asthma\$/	
#11	exp "gastroesphageal reflux"/ or gastroesophageal reflux.ti,ab,kf.	
	or exp Gastric Acid Reflux/ or exp Gastric Acid Reflux Disease/	
	or exp gastro-Esophageal Reflux/ or exp Gastro Esophageal	
	Reflux/ or exp Gastroesophageal Reflux Disease/ or exp GERD/	
	or exp Esophageal Reflux/ or exp Gastro-oesophageal Reflux/ or	
	exp Gastro oesophageal Reflux/	
#12	(Gastric Acid Reflux or Gastric Acid Reflux Disease or	
	Gastro-Esophageal Refluxor Gastro Esophageal Reflux or	
	Gastroesophageal Reflux Disease or GERD or Esophageal	
	Reflux or Gastro-oesophageal Reflux or Gastro oesophageal	
	Reflux).ti,ab,kf.	
#13	9 or 10	
#14	11 or 12	
#15	13 and 14	

#16	exp proton pump inhibitor\$/	
#17	exp omeprazole/ or exp lansoprazole/ or exp pantoprazole/ or	
	exp rabeprazole/ or exp esomeprazole/ or exp ilaprazole/	
#18	(omeprazole or lansoprazole or pantoprazole or rabeprazole or	
	esomeprazole or ilaprazole or proton pump inhibitor\$).ti,ab,kf.	
#19	16 and 17 and 18	
#20	8 and 15 and 19	12

Pubmed 2020,3,18

#	Term	Result				
#1	Search "Asthma"[Mesh]	126238				
#2	Search "asthma*"[Title/Abstract]	146574				
#3	Search "Bronchial Asthma" [Title/Abstract]	18297				
#4	Search ((((((("asthma bronchiale"[Title/Abstract]) OR "asthma	42241				
	pulmonale"[Title/Abstract]) OR "asthmatic"[Title/Abstract]) OR					
	"asthmatics"[Title/Abstract]) OR "bronchus					
	asthma"[Title/Abstract]) OR "childhood					
	asthma"[Title/Abstract]) OR " chronic asthma"[Title/Abstract])					
	OR "lung allergy"[Title/Abstract]					
#5	#1 OR #2 OR #3 OR #4	175686				
#6	Search "Gastroesophageal Reflux"[Mesh]	26315				
#7	Search ((((((((((((((((((((((((((((((((((((26101				
	reflux"[Title/Abstract]) OR "gerd"[Title/Abstract]) OR					

#8

#9

#10

#11

#12

"gastroesophageal reflux disease"[Title/Abstract]) OR	
"gord"[Title/Abstract]) OR "cardioesophageal	
reflux"[Title/Abstract]) OR "esophageal reflux"[Title/Abstract])	
OR "esophageal regurgitation"[Title/Abstract]) OR	
"esophagogastric reflux"[Title/Abstract]) OR "esophagus	
reflux"[Title/Abstract]) OR "gastric	
regurgitation"[Title/Abstract]) OR "gastro esophageal	
reflux"[Title/Abstract]) OR "gastro oesophageal	
reflux"[Title/Abstract]) OR "gastroesophageal	
reflex"[Title/Abstract]) OR "gastroesophageal	
regurgitation"[Title/Abstract]) OR "gastroesophagus	
reflux"[Title/Abstract]) OR "gastrooesophageal	
reflex"[Title/Abstract]) OR "gastrooesophageal	
reflux"[Title/Abstract]) OR "gastrooesophageal reflux	
disease"[Title/Abstract]) OR "gastrooesophageal	
regurgitation"[Title/Abstract]) OR "oesophageal	
reflux"[Title/Abstract]) OR "oesophageal	
regurgitation"[Title/Abstract]) OR "oesophagogastric	
reflux"[Title/Abstract]) OR "oesophagus reflux"[Title/Abstract]	
#6 OR #7	35248
#5 AND #8	2083
Search "Proton Pump Inhibitors" [Mesh]	10998
Search "proton pump inhibitors"[Title/Abstract]	8793
Search ((((("omeprazole"[Title/Abstract]) OR	12476

	"lansoprazole"[Title/Abstract]) OR	
	"pantoprazole"[Title/Abstract]) OR	
	"rabeprazole"[Title/Abstract]) OR	
	"esomeprazole"[Title/Abstract]) OR "ilaprazole"[Title/Abstract]	
#13	#10 OR #11 OR #12	23677
#14	#9 AND #10	274

Embase 3,18,2020

#	Term	Result
#1	('asthma'/exp OR 'asthma' OR 'asthma bronchiale' OR 'asthma	858
	pulmonale' OR 'asthma, bronchial' OR 'asthmatic' OR 'asthmatic	
	subject' OR 'bronchial asthma' OR 'bronchus asthma' OR	
	'childhood asthma' OR 'chronic asthma' OR 'lung allergy') AND	
	('gastroesophageal reflux'/exp OR 'gerd (gastroesophageal reflux	
	disease)' OR 'gerd (gastrooesophageal reflux disease)' OR 'gord	
	(gastrooesophageal reflux disease)' OR 'cardioesophageal reflux'	
	OR 'cardiooesophageal reflux' OR 'esophageal reflux' OR	
	'esophageal regurgitation' OR 'esophagogastric reflux' OR	
	'esophagus reflux' OR 'gastric regurgitation' OR 'gastro	
	esophageal reflux' OR 'gastro oesophageal reflux' OR	
	'gastroesophageal reflex' OR 'gastroesophageal reflux' OR	
	'gastroesophageal reflux disease' OR 'gastroesophageal	
	regurgitation' OR 'gastroesophagus reflux' OR	
	'gastrooesophageal reflex' OR 'gastrooesophageal reflux' OR	

'gastrooesophageal reflux disease' OR 'gastrooesophageal regurgitation' OR 'oesophageal reflux' OR 'oesophageal regurgitation' OR 'oesophagogastric reflux' OR 'oesophagus reflux' OR 'reflux, gastroesophageal' OR 'reflux, gastrooesophageal' OR 'regurgitation, gastric' OR 'regurgitation, gastroesophageal' OR 'regurgitation, gastrooesophageal') AND ('proton pump inhibitors':ti,ab OR 'lansoprazole'/exp OR '2 [[[3 methyl 4 (2, 2, 2 trifluoroethoxy) 2 pyridyl] methyl] sulfinyl] 1h benzimidazole' OR 'a 65006' OR 'a65006' OR 'abt 006' OR 'abt006' OR 'ag 1749' OR 'ag1749' OR 'agopton' OR 'bamalite' OR 'banilux' OR 'betalans' OR 'compraz' OR 'dakar (drug)' OR 'daxar' OR 'dostab' OR 'duomate' OR 'ilsatec' OR 'inhipraz' OR 'keval' OR 'lancid' OR 'lancopen' OR 'langaton' OR 'lanpra' OR 'lanpraz' OR 'lanprol' OR 'lanproton' OR 'lansazol' OR 'lansobene' OR 'lansol' OR 'lansone' OR 'lansop' OR 'lansopep' OR 'lansoprazol' OR 'lansoprazole' OR 'lansox' OR 'lansozole' OR 'lanster' OR 'lanston' OR 'lanvell' OR 'lanximed' OR 'lanzo' OR 'lanzol-30' OR 'lanzopral' OR 'lanzoprazole' OR 'lanzor' OR 'lanzul' OR 'lapraz' OR 'laprazol' OR 'laproton' OR 'lasgan' OR 'limpidex' OR 'lopral' OR 'monolitum' OR 'ogast' OR 'ogasto' OR 'ogastoro' OR 'ogastro' OR 'opiren' OR 'pampe' OR 'praton' OR 'prevacid' OR 'prevacid 24 hr' OR 'prevacid fastab' OR 'prevacid iv' OR 'prevacid solutab' OR 'prezal' OR 'prolanz' OR 'prosogan' OR 'pysolan' OR 'sopralan-30' OR 'suprecid' OR 'takepron' OR

'takepron od' OR 'tanzolan' OR 'ulpax' OR 'zoton' OR 'zoton fastab' OR 'omeprazole'/exp OR '5 methoxy 2 [[(4 methoxy 3, 5 dimethyl 2 pyridyl) methyl] sulfinyl] benzimidazole' OR 'aleprozil' OR 'antra' OR 'antra mups' OR 'arapride' OR 'audazol' OR 'baromezole' OR 'desec' OR 'dolintol' OR 'domer' OR 'dudencer' OR 'duogas' OR 'emeproton' OR 'epirazole' OR 'ezipol' OR 'gasec' OR 'gasec gastrocaps' OR 'gastec' OR 'gastop' OR 'gastrimut' OR 'gastrolac' OR 'gastroloc' OR 'glaveral' OR 'h 168 68' OR 'h 168-68' OR 'h-etom' OR 'h168 68' OR 'h168-68' OR 'hovizol' OR 'hyposec' OR 'inhibitron' OR 'inhipump' OR 'logastric' OR 'lomac' OR 'lopraz' OR 'losamel' OR 'losec' OR 'losec mups' OR 'losecosan' OR 'ludea' OR 'madiprazole' OR 'maxor' OR 'medoprazole' OR 'medral' OR 'meiceral' OR 'mepral' OR 'mepzol' OR 'mezzopram' OR 'miol' OR 'miracid' OR 'mopral' OR 'mopralpro' OR 'nocid' OR 'ocid' OR 'ogal' OR 'olexin' OR 'omedar' OR 'omelon' OR 'omep uno' OR 'omepral' OR 'omeprazen' OR 'omeprazol' OR 'omeprazole' OR 'omeprazole magnesium' OR 'omeprazole sodium' OR 'omeprazon' OR 'omepril' OR 'omeraz' OR 'omesec' OR 'omestad' OR 'omezin' OR 'omezol' OR 'omezolan' OR 'omezole' OR 'omezzol' OR 'omisec' OR 'omizac' OR 'omolin' OR 'ompranyt' OR 'omprazole' OR 'onexal' OR 'oprax' OR 'ozoken' OR 'parizac' OR 'penrazole' OR 'pepticum' OR 'peptidin' OR 'peptilcer' OR 'peptizole' OR 'pra-sec' OR 'prazidec' OR 'prazole'

OR 'prilosec' OR 'prilosec otc' OR 'prisolec' OR 'probitor' OR 'proceptin' OR 'protoloc' OR 'ramezol' OR 'rapinex' OR 'reglacid' OR 'result (drug)' OR 'risek' OR 'romep' OR 'roweprazol' OR 'secrepina' OR 'severon' OR 'stomacer' OR 'stomec' OR 'stozole' OR 'suifac' OR 'ulceral' OR 'ulcozol' OR 'ulnor' OR 'ulsek' OR 'ulsen' OR 'ulzol' OR 'vulcasid' OR 'wonmp' OR 'xoprin' OR 'zatrol' OR 'zefxon' OR 'zenpro' OR 'zimor' OR 'zoltum' OR 'pantoprazole'/exp OR '5 difluoromethoxy 2 [(3, 4 dimethoxy 2 pyridyl) methylsulfinyl] 1h benzimidazole' OR 'anagastra' OR 'branzol' OR 'by 1023' OR 'by 1023' OR 'controloc' OR 'controloc control' OR 'eupantol' OR 'inipom' OR 'inipomp' OR 'pantecta' OR 'pantecta control' OR 'pantodac' OR 'pantodar' OR 'pantoloc' OR 'pantoloc control' OR 'pantop' OR 'pantoprazole' OR 'pantoprazole sodium' OR 'pantoprazole sodium sesquihydrate' OR 'pantozol' OR 'pantozol control' OR 'pepticus' OR 'protium' OR 'protonix' OR 'protonix iv' OR 'rifun' OR 'rifun 40' OR 'sk and f 96022' OR 'skf 96022' OR 'skf96022' OR 'somac' OR 'somac control' OR 'ulcepraz' OR 'ulcotenal' OR 'ziprol' OR 'zurcal' OR 'zurcale' OR 'zurcazol' OR 'rabeprazole'/exp OR '2 [[4 (3 methoxypropoxy) 3 methyl 2 pyridyl] methylsulfinyl] benzimidazole' OR 'aciphex' OR 'aciphex sprinkle' OR 'dexrabeprazole' OR 'e 3810 (benzimidazole derivative)' OR 'e3810 (benzimidazole derivative)' OR 'ly 307640' OR 'ly307640' OR 'pariet' OR 'pariprazole' OR 'pariprazole sodium' OR 'rabec'

	OR 'rabeloc' OR 'rabeprazole' OR 'rabeprazole sodium' OR	
	'esomeprazole'/exp OR 'esomeprazol' OR 'esomeprazole' OR	
	'esomeprazole magnesium' OR 'esomeprazole potassium' OR	
	'esomeprazole sodium' OR 'esoprax' OR 'h 199 18' OR 'h 199-18'	
	OR 'h 19918' OR 'h199 18' OR 'h199-18' OR 'h19918' OR	
	'inexium' OR 'nexium' OR 'nexium 24hr' OR 'nexium control'	
	OR 'nexium iv' OR 'nexium-mups' OR 'perprazole' OR 'sompraz'	
	OR 'ilaprazole'/exp OR '2 [(4 methoxy 3 methyl 2 pyridyl)	
	methylsulfinyl] 5 (1 pyrrolyl) 1h benzimidazole' OR 'ilaprazole'	
	OR 'iy 81149' OR 'iy81149')	
#2	'asthma*':ab,ti OR 'asthma bronchiale':ab,ti OR 'asthma	230139
	pulmonale':ab,ti OR 'asthmatic':ab,ti OR 'asthmatics':ab,ti	
	OR 'asthmatic subject':ab,ti OR 'bronchial asthma':ab,ti	
	OR 'bronchus asthma':ab,ti OR 'childhood asthma':ab,ti	
	OR 'chronic asthma':ab,ti OR 'lung allergy':ab,ti	
#3	'asthma'/exp OR asthma	321680
#4	#2 OR #3	324305
#5	'gastroesophageal reflux'/exp OR 'gastroesophageal reflux'	66642
#6	'gastroesophageal reflux':ab,ti OR 'gerd':ab,ti	41444
	OR 'gastroesophageal reflux disease':ab,ti OR 'gord':ab,ti	
	OR 'cardioesophageal reflux':ab,ti OR 'esophageal reflux':ab,ti	
	OR 'esophageal regurgitation':ab,ti OR 'esophagogastric	
	reflux':ab,ti OR 'esophagus reflux':ab,ti OR 'gastric	
	regurgitation':ab,ti OR 'gastro esophageal reflux':ab,ti	

	OR 'gastro oesophageal reflux':ab,ti OR 'gastroesophageal	
	reflex':ab,ti OR 'gastroesophageal regurgitation':ab,ti	
	OR 'gastroesophagus reflux':ab,ti OR 'gastrooesophageal	
	reflex':ab,ti OR 'gastrooesophageal reflux':ab,ti	
	OR 'gastrooesophageal reflux disease':ab,ti	
	OR 'gastrooesophageal regurgitation':ab,ti OR 'oesophageal	
	reflux':ab,ti OR 'oesophageal regurgitation':ab,ti	
	OR 'oesophagogastric reflux':ab,ti OR 'oesophagus reflux':ab,ti	
#7	#5 OR #6	70399
#8	#4 AND #7	5602
#9	'omeprazole'/exp OR 'proton pump inhibitor'/exp	76773
	OR 'lansoprazole'/exp OR 'pantoprazole'/exp	
	OR 'rabeprazole'/exp OR 'esomeprazole'/exp	
	OR 'ilaprazole'/exp	
#10	'omeprazole':ab,ti OR 'proton pump inhibitor':ab,ti	27726
	OR 'lansoprazole':ab,ti OR 'pantoprazole':ab,ti	
	OR 'rabeprazole':ab,ti OR 'esomeprazole':ab,ti	
	OR 'ilaprazole':ab,ti	
#11	#9 OR #10	78726
#12	#8 AND #11	1328
#13	#1 OR #12	1350

Note: #1 Retrieval strategy was through "PICO" in Embase.

#	Term	Result
#1	TS=("gastroesophageal reflux") OR TS=("gerd ':ab,ti OR	
	'gastroesophageal reflux disease") OR TS=("gord ':ab,ti OR	
	'cardioesophageal reflux'') OR TS=("esophageal reflux") OR	
	TS=("esophageal regurgitation") OR TS=("esophagogastric	
	reflux") OR TS=("esophagus reflux") OR TS=("gastric	
	regurgitation") OR TS=("gastro esophageal reflux") OR	
	TS=("gastro oesophageal reflux") OR TS=("gastroesophageal	
	reflex") OR TS=("gastroesophageal regurgitation") OR	
	TS=("gastroesophagus reflux") OR TS=("gastrooesophageal	
	reflex") OR TS=("gastrooesophageal reflux") OR	
	TS=("gastrooesophageal reflux disease") OR	
	TS=("gastrooesophageal regurgitation") OR TS=("oesophageal	
	reflux") OR TS=("oesophageal regurgitation") OR	
	TS=("oesophagogastric reflux") OR TS=("oesophagus reflux")	
#2	TS=("asthma*") OR TS=("asthma bronchiale") OR	
	TS=("asthma pulmonale") OR TS=("asthmatic") OR	
	TS=("asthmatics") OR TS=("asthmatic subject") OR	
	TS=("bronchial asthma") OR TS=("bronchus asthma") OR	
	TS=("childhood asthma") OR TS=("chronic asthma") OR	
	TS=("lung allergy")	
#3	#2 AND #1	
#4	TS=("omeprazole") OR TS=("proton pump inhibitor*") OR	
	TS=("lansoprazole") OR TS=("pantoprazole") OR	

	TS=("rabeprazole") OR TS=("esomeprazole") OR	
	TS=("ilaprazole")	
#5	#4 AND #3	304

Cochrane library 18,3,2020

#	Term	Result
#1	MeSH descriptor: [Asthma] explode all trees	
#2	MeSH descriptor: [Gastroesophageal Reflux] explode all trees	
#3	("asthma" OR "asthma bronchiale" OR "asthma pulmonale" OR	
	"asthmatic" OR "asthmatic subject" OR "bronchial asthma" OR	
	"bronchus asthma" OR "childhood asthma" OR "chronic	
	asthma" OR "lung allergy" OR "asthmatics"):ti,ab,kw	
#4	("gastroesophageal reflux" OR "gerd " OR "gastroesophageal	
	reflux disease" OR "gord " OR "cardioesophageal reflux" OR	
	"esophageal reflux" OR "esophageal regurgitation" OR	
	"esophagogastric reflux" OR "esophagus reflux" OR "gastric	
	regurgitation" OR "gastro esophageal reflux" OR "gastro	
	oesophageal reflux" OR "gastroesophageal reflex" OR	
	"gastroesophageal regurgitation" OR "gastroesophagus reflux"	
	OR "gastrooesophageal reflex" OR "gastrooesophageal reflux"	
	OR "gastrooesophageal reflux disease" OR "gastrooesophageal	
	regurgitation" OR "oesophageal reflux" OR "oesophageal	
	regurgitation" OR "oesophagogastric reflux" OR "oesophagus	
	reflux"):ti,ab,kw	

#5	#1 OR #3	
#6	#2 OR #4	
#7	#5 AND #6	
#8	MeSH descriptor: [Proton Pump Inhibitors] explode all trees	
#9	("proton pump inhibitors"):ti,ab,kw	
#10	MeSH descriptor: [Esomeprazole] explode all trees	
#11	("esomeprazole"):ti,ab,kw	
#12	("omeprazole" OR "lansoprazole" OR "pantoprazole" OR "rabeprazole" OR "esomeprazole" OR "ilaprazole"):ti,ab,kw	
#13	MeSH descriptor: [Lansoprazole] explode all trees	
#14	MeSH descriptor: [Pantoprazole] explode all trees	
#15	MeSH descriptor: [Rabeprazole] explode all trees	
#16	#8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15	
#17	#7 AND #16	63

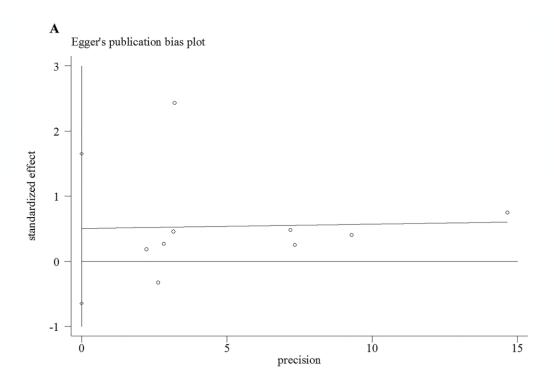
Clinical trail (US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov)18,3,2020

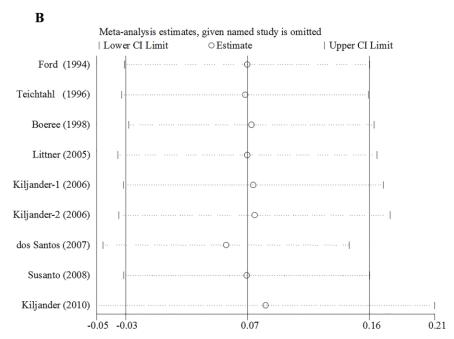
Retrieval strategy:

"Proton Pump Inhibitors" OR "omeprazole" OR "lansoprazole" OR "pantoprazole" OR "rabeprazole" OR

"esomeprazole" OR "ilaprazole" | Completed Studies | "asthma" and "gastroesophageal reflux"

Applied Filters: Completed


Results: 12


Data extraction

Data of the included studies characteristics were collected if available. (a) Items of characteristics of included studies contained study location, study design, medication type/dose/usage, concurrent treatment, treatment duration, randomized and completed sample size, diagnostic inclusion criteria of asthma and GERD, concurrent diseases, major exclusions; (b) items of subject characteristics included age, male proportion, severity of asthma and GERD, complications of GERD, proportion of symptomatic GERD, and whether the association between asthma and GERD were reported; (c) items of effect of each outcome mentioned above included mean, standard deviation (SD), 95% confidence interval, median, interquartile range, and/or range.

If trials reported more than one eligible comparison group (for example, intervention group-1 VS control group-1 and intervention group-2 VS control group-2), these were considered independent studies and these data were extracted respectively if available. Three-arm trials (for example, two intervention groups VS control group) were combined appropriately into one PPI group and one placebo group.

No publication bias reported in mPEF (P=0.342). Both sensitivity analysis and egger's test further supported the overall results were stable.

Figure S1 A, Egger's publication bias plot for mPEF (P=0.336). **B,** Sensitivity analysis for mPEF.

Results of cumulative meta-analysis of mPEF and its subgroups analysis showed no significant improvement with the application of PPIs.

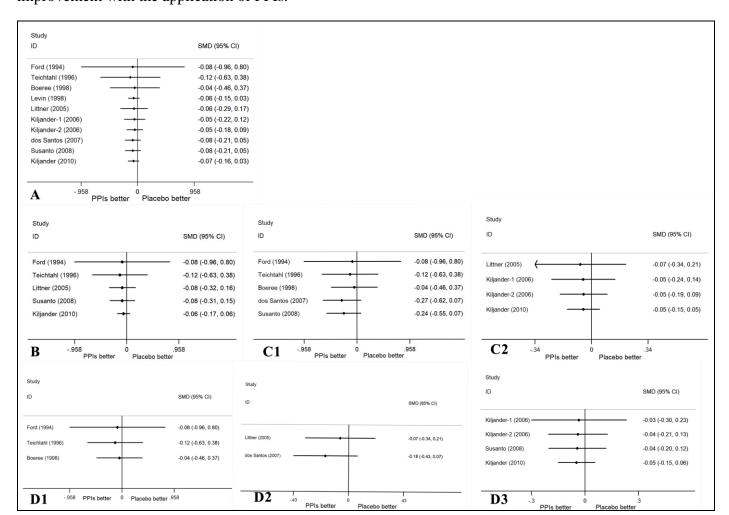
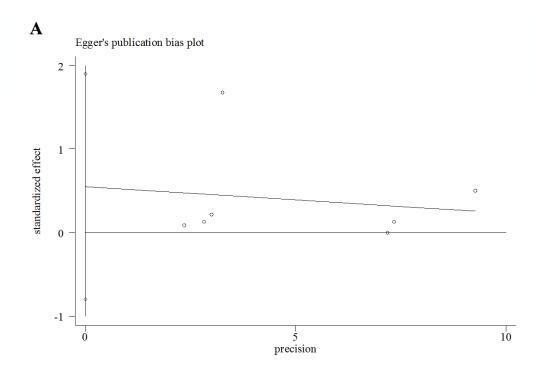
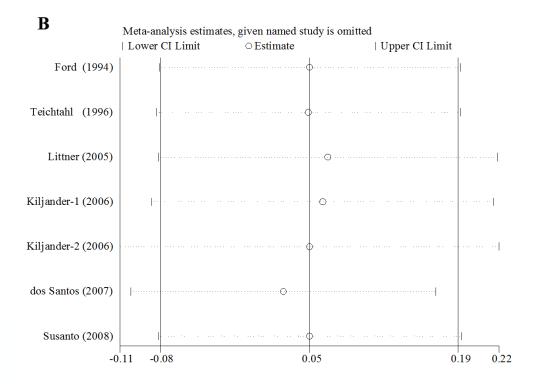




Figure S2 A, Cumulative meta-analysis of morning peak expiratory flow. B, Cumulative meta-analysis of morning peak expiratory flow in subgroup of the percentage of subjects with symptomatic GERD ≥95%. C1-2, Forest plot for morning peak expiratory flow in subgroups of treatment duration ≤12 weeks and >12 weeks. D1-3, Forest plot for morning peak expiratory flow in subgroups of different types of proton pump inhibitors (Omeprazole, Lansoprazole, Esomeprazole).

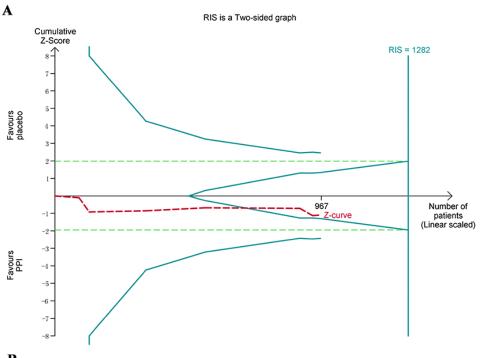
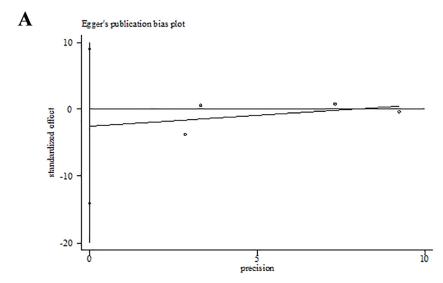
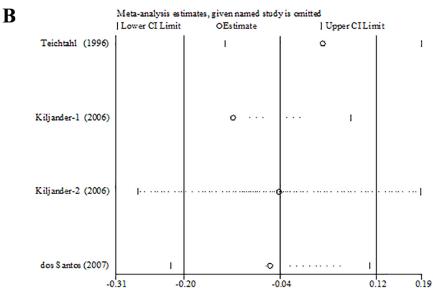

a. No publication bias reported in ePEF (P=0.342). Both sensitivity analysis and egger's test further supported the overall results were stable.

Figure S3a A, Egger's publication bias plot for ePEF (P=0.342). **B,** Sensitivity analysis for ePEF.

b.

	Pla	acebo		Proton P	ump Inhil	oitor		Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
Ford 1994	277	78	11	280	81	11	9.2%	-3.00 [-69.45, 63.45]			-
Littner 2005	381	97	108	381	82	99	68.2%	0.00 [-24.40, 24.40]			
Susanto 2008	280.6	71.7	16	283.7	65.9	16	17.8%	-3.10 [-50.82, 44.62]			
Teichtahl 1996	383	155	18	393	124	18	4.8%	-10.00 [-101.70, 81.70]	_	•	_
Total (95% CI)			153			144	100.0%	-1.31 [-21.46, 18.84]		•	
Heterogeneity: Tau2:	= 0.00; C	$hi^2 = 0.$.05, df=	3 (P = 1.0	$0); I^2 = 09$	5			400	+ + +	4.0
Test for overall effect	Z = 0.13	P = 0	0.90)						-100	-50 0 50 PPIs better Placebo be	10

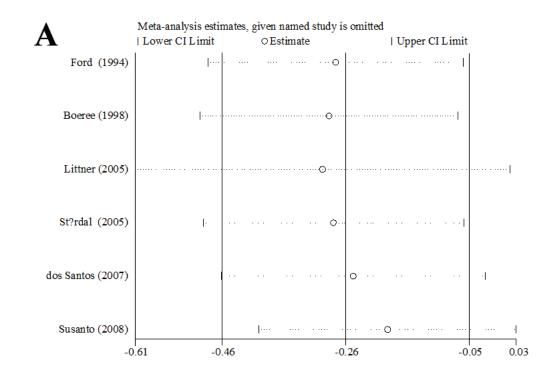

C	PI	lacebo		Proton I	Pump Inhi	bitor		Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
2.4.1 Duration ≤12	weeks										
dos Santos 2007	269	77	22	323	127	22	24.9%	-54.00 [-116.06, 8.06]		-	
Ford 1994	277	78	11	280	81	11	21.7%	-3.00 [-69.45, 63.45]			_
Susanto 2008	280.6	71.7	16	283.7	65.9	16		-3.10 [-50.82, 44.62]			
Teichtahl 1996	383	155	18	393	124	18	11.4%	-10.00 [-101.70, 81.70]	_	•	_
Subtotal (95% CI)			67			67	100.0%	-16.52 [-47.47, 14.43]			
Heterogeneity: Tau ² :	= 0.00: CI	hi² = 1.8	88. df = 1	3 (P = 0.6)	0): I² = 0%			. , .			
Test for overall effect					.,,						
			,								
2.4.2 Duration >12w	eeks										
Kiljander-1 2006	340.3	110.3	105	342.4	127.3	111	23.5%	-2.10 [-33.82, 29.62]			
Kiljander-2 2006	328.7	117	171	335.2	123.3	173	36.7%	-6.50 [-31.90, 18.90]			
Littner 2005	381	97	108	381	82	99	39.8%	0.00 [-24.40, 24.40]			
Subtotal (95% CI)			384			383	100.0%	-2.88 [-18.27, 12.51]		-	
Heterogeneity: Tau2:	= 0.00; CI	hi² = 0.1	3. df = 1	2 (P = 0.94	4): I ² = 0%						
Test for overall effect	: Z = 0.37	(P = 0.	71)	,							
									400		400
									-100	-50 0 50	
Took for outperson did	·	Ohiz -	0.00 4	6- 1 (D - 1	140 12-1	200				PPIs better Placebo be	:πer


Test for subgroup differences: Chi² = 0.60, df = 1 (P = 0.44), l² = 0%

D										
	P	lacebo		Proton F	ump Inhi	bitor		Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI
2.3.1 Omeprazole gr	oup									
Ford 1994	277	78	11	280	81	11	65.6%	-3.00 [-69.45, 63.45]	-	
Teichtahl 1996	383	155	18	393	124	18	34.4%	-10.00 [-101.70, 81.70]		
Subtotal (95% CI)			29			29	100.0%	-5.41 [-59.22, 48.40]		
Heterogeneity: Tau ² :	= 0.00; C	hi² = 0.0	01, df = 1	1 (P = 0.90	0); I ² = 0%					
Test for overall effect	Z = 0.20) (P = 0.	84)							
2.3.2 Lansoprazole g	group									
dos Santos 2007	269	77	22	323	127	22	35.5%	-54.00 [-116.06, 8.06]		-
Littner 2005	381	97	108	381	82	99	64.5%	0.00 [-24.40, 24.40]		
Subtotal (95% CI)			130			121	100.0%	-19.15 [-69.79, 31.48]		
Heterogeneity: Tau ² :	= 879.16;	Chi ² =	2.52, df	= 1 (P = 0	$.11$); $I^2 = 6$	10%				
Test for overall effect	Z = 0.74	(P = 0.	46)							
2.3.3 Esomeprazole	group									
Kiljander-1 2006	340.3	110.3	105	342.4	127.3	111	33.3%	-2.10 [-33.82, 29.62]		
Kiljander-2 2006	328.7	117	171	335.2	123.3	173	52.0%			
Susanto 2008	280.6	71.7	16	283.7	65.9	16	14.7%			
Subtotal (95% CI)			292			300	100.0%	-4.53 [-22.84, 13.77]		-
Heterogeneity: Tau2:	= 0.00: C	hi² = 0.0)5. df = 3	2 (P = 0.98)	3): I² = 0%					
Test for overall effect					,,,					
									+	
									-100	-50 0 50 10
Test for subgroup dit	ferences	: Chi²=	0.28. d	f = 2 (P = 0	0.87), I ² = (0%				PPIs better Placebo better

Figure S3b A, Trial sequential analysis of evening peak expiratory flow. Heterogeneity adjusted required information size of 1470 subjects calculated in accordance with mean difference of mPEF=20 L/min, "empirical" variance from the meta-analysis of PEF data, α at 0.05, power of 80%, I^2 value of 0%. Dashed red cumulative Z curve does not cross solid blue trial sequential monitoring boundaries for benefit or harm, but cross boundaries for futility (blue inner wedge boundaries). Horizontal dotted green lines illustrate traditional level of statistical significance (P=0.05). **B,** Forest plot for evening peak expiratory flow in subgroup of the percentage of subjects with symptomatic GERD \geq 95%. **C,** Forest plot for morning peak expiratory flow in subgroups of treatment duration \leq 12 weeks and \geq 12 weeks. **D,** Forest plot for evening peak expiratory flow in subgroups of different types of proton pump inhibitors.

No publication reported in FEV₁ % predicted (P=0.445). Both sensitivity analysis and egger's test further supported the overall results were stable.



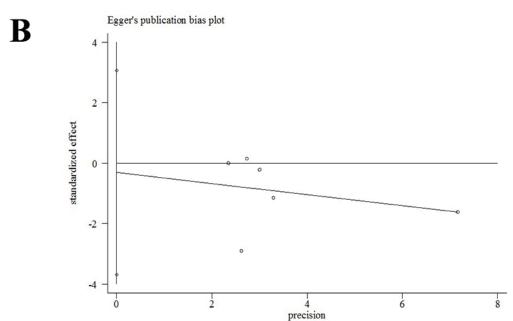


Figure S4 A, Egger's publication bias plot for FEV₁ % predicted (P=0.445). **B,** Sensitivity analysis for FEV₁ % predicted.

Supplement 6

No publication reported in asthma symptoms score (P=0.809). Both sensitivity analysis and egger's test further supported the overall results were stable (**supplement 5**).

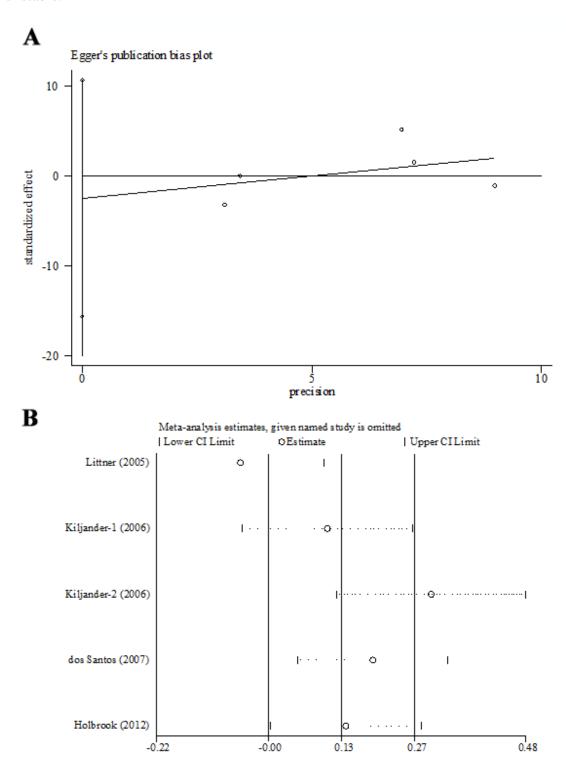


Figure S5 A, Egger's publication bias plot for asthma symptoms score (P=0.809). **B,** Sensitivity analysis for asthma symptoms score.

Supplement 7

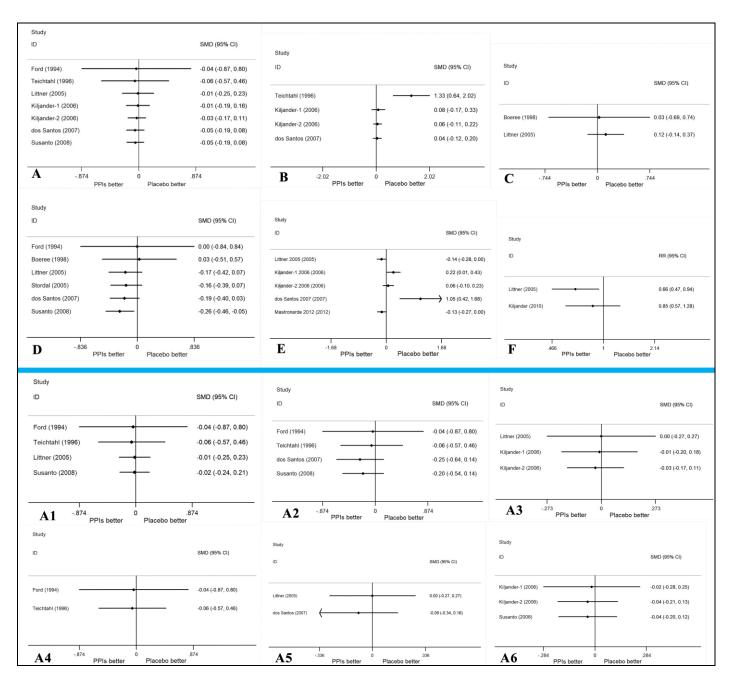

No publication reported in asthma quality of life (P=0.588), but sensitivity analysis showed the results were unstable.

Figure S6 A, Egger's publication bias plot for asthma quality of life (P=0.588). **B,** Sensitivity analysis for asthma quality of life.

Supplement 8

Cumulative meta-analysis was performed in all the data of secondary outcomes. Except a small positive effect on asthma symptoms score, no significant improvement was found on ePEF and its subgroups analysis, FEV1 % predicted, asthma quality of life and episodes of asthma exacerbation with the application of PPIs.

Figure S7 A, Cumulative meta-analysis of evening peak expiratory flow. **B**, Cumulative meta-analysis of FEV1 % predicted. **C**, Cumulative meta-analysis of FEV1 (L). **D**, Cumulative meta-analysis of asthma symptoms score. **E**, Cumulative meta-analysis of asthma quality of life score. **F**, Cumulative meta-analysis

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

of episodes of asthma exacerbation. **A1-6**, Cumulative meta-analysis of evening peak expiratory flow in subgroups of the percentage of subjects with symptomatic GERD ≥95% (**A1**), treatment duration ≤12 weeks (**A2**), treatment duration >12 weeks (**A3**), and different types of proton pump inhibitors (**A4-6**: Omeprazole, Lansoprazole, Esomeprazole).

Page 55 of 55

BMJ Open

46 47

PRISMA 2009 Checklist

2			
Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary 2 3	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
6 Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
24 Eligibility criteria 25	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6, appendix
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6, appendix
2 Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Appendix
9 Risk of bias in individual 9 studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6-7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

45 46 47

PRISMA 2009 Checklist

		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	7-8
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8, appendix
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8-12
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-12
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Appendix
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Appendix
DISCUSSION	•		
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12-13
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	13
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	13-14
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	14

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.