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This appendix documents the formulas and R functions (i.e., the R statistical programing 
language) used to compute effect sizes for the meta-analysis of body-worn camera (BWC) 
studies in this Campbell systematic review. The appendix also simulates data and demonstrates 
that the formulas and functions generate results that agree with analyses of count data performed 
using either Poisson or quasi-Poisson regression, depending on the availability of information on 
the dispersion of the counts, such as standard deviations. 

The regression coefficients in a Poisson model (as well as a quasi-Poisson and negative binomial 
model) are logged incident rate ratios. Once exponentiated (i.e., taking the antilogarithm), they 
become incident rate ratios. In a difference-in-differences (DiD) analysis where the treatment 
effect is estimated by the interaction of time (before and during implementation of the body-
worn camera) and condition (experimental and control), the exponentiated coefficient for the 
interaction effect is the ratio of two incident rate ratios, or a relative incident rate ratio (the size 
of the treatment effect relative to the baseline difference). Below we use the relative incident rate 
ratio (RIRR) to refer to a DiD analysis and the incident rate ratio (IRR) to refer to a simple ratio 
in counts or rates during the implementation period (i.e., no baseline data). To make the 
presentation more general, the term “pre” refers to the baseline period and “post” refers to the 
period during BWC implementation. 

Functions and Formulas 

Seven different methods are detailed below that were used to compute effect sizes and associated 
variances (or standard errors), depending on the data type employed in each study. Most of the 
studies have outcomes measured in counts, such as the counts of use-of-force incidents, calls-for-
service, complaints, etc. The counts may be reported as the total count during the pre and post 
time periods for the treatment and control groups (method 1 below), or the post time period 
count for each group (method 2 below). Neither of these methods has information regarding the 
variability in counts and as such no direct method of estimating over-dispersion. 

In contrast, other studies will report the rate or mean count for some unit of time, geographic 
area, or other unit-of-analysis (e.g., officer or groups of officers) for both the pre and post time 
periods for treatment and control groups (method 3 below) or for just the post time periods by 
group (method 4 below). Note that mean counts are incident rates (incidents per month, officer, 
etc.). In these two situations, it is possible to estimate over-dispersion, a common issue with 
crime counts. Finally, studies may dichotomize count data, such as coding whether a use-of-force 
incident did or did not occur during a particular time period (such as a shift) or for an officer 
during a given time period. Methods 5 and 6 handle these situations with the latter handling both 
pre and post data. Method 7 includes three methods for handling Poisson related regression 
models, logistic regression models, and linear regression models (e.g., OLS). There were also 



studies for which effect sizes were calculated using “one-off” computations. These are discussed 
separately for each study with associated R code documenting the computations. 

To summarize, the methods used in this meta-analysis to calculate effect sizes are: 

• Method 1: Pre and post counts for treatment and control 
• Method 2: Post counts only for treatment and control 
• Method 3: Pre and post means and standard deviations for treatment and control 
• Method 4: Post means and standard deviations for treatment and control 
• Method 5: Post only dichotomous outcome data for treatment and control 
• Method 6: Pre and post dichotomous outcome data for treatment and control 
• Method 7: Regression models 

Method 1: Pre and post counts for treatment and control 

This method is used for pre and post count data for the treatment and control group with no other 
information given. Thus, the only information reported is four count values with no information 
on variability in the counts across areas or across times. The formula for the logged RIRR will 
work with rates as well, such as crimes per 100,000. However, the variance formula requires raw 
count totals. 

The logged RIRR based on pre/post by treatment/control counts is: 

log RIRR = log �
𝑇𝑇2𝐶𝐶1
𝑇𝑇1𝐶𝐶2

� , 

where 𝑇𝑇 is the treatment group count, 𝐶𝐶 is the control group count, and the subscripts represent 
time—1 for pre and 2 for post. This formula is the same as the cross-product method of 
computing the odds ratio, leading some to incorrectly label this statistic as a logged odds ratio. 
An odds ratio is the ratio of two odds, and an odds is the ratio of successes to failures. Typical 
odds ratio data would be a sample of treatment and control individuals on which a binary 
outcome, such as recidivism or disease status, is observed post-treatment. In such cases, there is 
no pre data, and each observation could have been a success or failure. For the pre/post count 
data by group there is no binary outcome and therefore, no successes or failures. To construct an 
odds ratio, you would need to assume that the pre counts were failures and the post counts were 
successes or visa-versa. This is nonsensical, given that each incident contributing to a count isn’t 
free to be observed during either the pre or post time periods. As will be shown via simulation, 
the above produces the regression coefficient for a time by group interaction in a Poisson model 
and, as such, is a relative incidence rate ratio, not an odds ratio. 

The variance of the logged RIRR, unadjusted for any over-dispersion, is: 

𝑣𝑣log RIRR =
1
𝑇𝑇1

+
1
𝑇𝑇2

+
1
𝐶𝐶1

+
1
𝐶𝐶2

  

where the terms are defined as above. Note that this method is only appropriate if the counts are 
directly comparable. That is, it assumes that counts are derived from comparable time periods or 
areas, at least within each group (i.e., pre and post are comparable). For example, if the pre 
period is 24 months and the post period is 12 months, then the raw counts cannot be directly 



compared and must be converted to rates (i.e., counts divided by the number of months). 
Methods 3 and 4 below are adapted to handle such mean counts or incident rates. 

The R functions for these formulas are: 

logRIRRCounts <- function(T2,C2,T1,C1) { 
     log((T2*C1)/(C2*T1)) 
} 
logRIRRVCounts <-  function(T2,C2,T1,C1) { 
     1/T2 + 1/T1 + 1/C2 + 1/C1 
} 

Method 2: Post counts only for treatment and control 

This method is used for studies that only report a post count for the treatment and control groups 
with no other information given. Because there is no information on dispersion or variability in 
the counts, we must make the assumption that the counts are Poisson distributed. 

The logged IRR based on the post only treatment and control counts is: 

log 𝐼𝐼𝐼𝐼𝐼𝐼 = log �
𝑇𝑇2/𝑁𝑁𝑇𝑇
𝐶𝐶2/𝑁𝑁𝐶𝐶

� , 

where 𝑇𝑇2 is the treatment group count for the post time period, 𝐶𝐶2 is the control group count for 
the post time period, and 𝑁𝑁𝑇𝑇 and 𝑁𝑁𝐶𝐶 are the respective sample sizes. The sample sizes might be 1 
if the two time periods are equal (e.g., 1 year). If the counts are for a different number of 
geographic areas, then this is the number of areas (e.g., 10 police sectors versus 15 sectors). 𝑁𝑁 
could also be the population of the two areas, or the number of officers or calls for service in 
each group. In the parlance of count-based models, the 𝑁𝑁 is an offset that converts the counts 
into incident rates that are directly comparable. The 𝑁𝑁 does not affect statistical power. You 
could divide a year count by 1, 12, 52, or 365 and get the same logged IRR and the same 
variance (or standard error). When the two 𝑁𝑁s are equal, they cancel each other out and have no 
effect on the resulting effect size. 

The variance, unadjusted for any over-dispersion, is: 

𝑣𝑣log 𝐼𝐼𝐼𝐼𝐼𝐼 =
1
𝑇𝑇1

+
1
𝐶𝐶2

 , 

where the terms are defined as above. 

If a study reports the results as incident rates, the logged IRR equation simplifies to the ratio of 
the two rates. However, the variance must be based on the total counts within each group and not 
the incident rates. Thus, if a study reports the results as the rate per 100,000, these must be 
converted back into the raw counts to determine the variance. 

The R functions for these formulas are: 

logIRRCountsPost <- function(T2,C2,TN2,CN2) { 
       T2 <- ifelse(T2==0,.5,T2) 
       C2 <- ifelse(C2==0,.5,C2) 
       log((T2/TN2)/(C2/CN2)) 



} 
logIRRVCountsPost <- function(T2,C2) { 
     T2 <- ifelse(T2==0,.5,T2) 
     C2 <- ifelse(C2==0,.5,C2) 
    1/T2 + 1/C2 
} 

Method 3: Pre and post means and standard deviations for treatment and control 

The data for this method are pre and post mean counts (incident rates) by time, area, officer, etc., 
and standard deviations for the treatment and control groups. The logged RIRR is computed 
similarly as Method 1, with the exception that we take the cross-products of the means (rates), 
and not the total counts. Recall that Method 1 assumes that within each condition, the pre and 
post time periods or areas are comparable. In this method, they need not be. The formula for the 
logged RIRR is: 

log RIRR = log�
𝑥𝑥𝑇𝑇2𝑥𝑥𝐶𝐶1
𝑥𝑥𝑇𝑇1𝑥𝑥𝐶𝐶2

� , 

where 𝑥𝑥 is a mean count and the subscripts indicate group and time as above. Since this is the 
same as Method 1 just with means instead of counts, there is no separate R function for this 
formula. 

The standard deviations in the counts within group by time allow for the estimation of over-
dispersion using the quasi-Poisson approach. This approach adjusts the standard errors for over-
dispersion. The regression coefficients in a quasi-Poisson model are identical to those from a 
Poisson model, only the standard errors are different. Conveniently, the over-dispersion 
parameter can be computed from the means, standard deviations, and sample sizes. Note that the 
sample size must be whatever offset was used for converting the total count into the mean or 
rate. 

Given these data, the quasi-Poisson over-dispersion parameter is computed as: 

𝜙𝜙 = ��
𝑠𝑠𝑖𝑖2(𝑛𝑛𝑖𝑖 − 1)

𝑥𝑥𝑖𝑖

4

𝑖𝑖=1

�
1

∑ 𝑛𝑛𝑖𝑖4
𝑖𝑖=1 − 4

 

where 𝑠𝑠𝑖𝑖, 𝑛𝑛𝑖𝑖, and 𝑥𝑥𝑖𝑖 are the standard deviation, sample size, and mean, respectively, for each 
group and time period. This is set to 1 if the computation returns a value of less than 1. The 
variance of the logged RIRR is first computed using the variance estimate from Method 1 and 
then multiplied by the over-dispersion estimate: 

𝑣𝑣log RIRR adjusted = 𝑣𝑣log RIRR × 𝜙𝜙 . 

The R functions used for computing the over-dispersion adjusted variance estimate are: 

phi1 <- function(TM2,CM2,TM1,CM1, 
                TS2,CS2,TS1,CS1, 
                TN2,CN2,TN1,CN1) { 
    sds <- c(TS2,CS2,TS1,CS1) 
    ms <- c(TM2,CM2,TM1,CM1) 



    ns <- c(TN2,CN2,TN1,CN1) 
    d <- sum((sds^2*(ns-1)/ms)) * 1/(sum(ns)-4) 
    d <- ifelse(d>1,d,1) 
    return(d) 
    } 
logRIRRVOverD <- function(TM2,CM2,TM1,CM1, 
                         TS2,CS2,TS1,CS1, 
                         TN2,CN2,TN1,CN1) { 
    v <- logRIRRVCounts(TM2*TN2,CM2*CN2,TM1*TN1,CM1*CN1) 
    phi <- phi1(TM2,CM2,TM1,CM1, 
               TS2,CS2,TS1,CS1, 
               TN2,CN2,TN1,CN1) 
    return(v*phi) 
} 

Method 4: Post only means and standard deviations for treatment and control 

This method is essentially the same as Method 3, with the exception of missing pre or baseline 
data. The comparison is between post mean counts for the treatment and control groups. As with 
Method 3, data analyzed with Method 4 also have standard deviations associated with each 
mean. All other statistical issues are the same. The logged IRR is the log of the ratio of the 
treatment to control mean: 

log 𝐼𝐼𝐼𝐼𝐼𝐼 = log�
𝑥𝑥𝑇𝑇2
𝑥𝑥𝐶𝐶2

� . 

This is also the same as the formula as for Method 2, just using the means rather than counts and 
sample sizes. 

As with Method 3, the means, standard deviations, and sample sizes for Method 4 are used to 
estimate the quasi-Poisson over-dispersion parameter. The modified formula is: 

𝜙𝜙 = ��
𝑠𝑠𝑖𝑖2(𝑛𝑛𝑖𝑖 − 1)

𝑥𝑥𝑖𝑖

2

𝑖𝑖=1

�
1

∑ 𝑛𝑛𝑖𝑖2
𝑖𝑖=1 − 2

 . 

The R functions for the logged IRR and for the over-dispersion adjusted variance estimate are: 

logIRRMeansPost <- function(TM2,CM2) { 
     log(TM2/CM2) 
} 
phi2 <- function(TM2,CM2,TS2,CS2,TN2,CN2) { 
    sds <- c(TS2,CS2) 
    ms <- c(TM2,CM2) 
    ns <- c(TN2,CN2) 
    d <- sum((sds^2*(ns-1)/ms)) * 1/(sum(ns)-2) 
    d <- ifelse(d>1,d,1) 
    return(d) 
    } 
logIRRVOverDPost <- function(TM2,CM2,TS2,CS2,TN2,CN2) { 
    v <- logIRRVCountsPost(TM2*TN2,CM2*CN2) 
    phi <- phi2(TM2,CM2,TS2,CS2,TN2,CN2) 



    return(v*phi) 
} 

Method 5: Post only dichotomous outcome data for treatment and control 

In conducting this meta-analysis, we found studies that dichotomized the count data to reflect the 
presence or absence of an event during some time period or for some other unit-of-analysis, such 
as an officer. For example, a study might have dichotomized whether or not a use-of-force 
incident occurred during a shift. In a post-only situation, one could compute either an odds ratio 
or risk ratio on these data. The risk ratio is the ratio of the probability of success in the treatment 
group relative to the success in the control group. This probability can be thought of as the rate 
of successes and has a consistent scaling and similar interpretation as the incident rate ratio. As 
will be shown through simulation below, if we treat the dichotomized data as counts (0 for no 
incidents, and 1 for 1 or more incidents), the regression coefficient from a Poisson regression 
model is the logged risk ratio. Because the data have been censored at one, they are under-
dispersed, and do not fully meet the assumptions of the Poisson model. However, the quasi-
Poisson model can adjust for both over-dispersion and under-dispersion and, interestingly, the 
quasi-Poisson model produces standard errors that are close approximations to the correct 
standard error for a logged risk ratio. This provides the justification for using the risk ratio (and 
its standard error) as an estimate for our desired IRR effect size for these data. 

The formula for the IRR estimated via the risk ratio (RR) is: 

log IRR� = log RR = log �
𝑇𝑇/𝑁𝑁𝑇𝑇
𝐶𝐶/𝑁𝑁𝐶𝐶

� = log �
𝑇𝑇 × 𝑁𝑁𝐶𝐶
𝐶𝐶 × 𝑁𝑁𝑇𝑇

� , 

where 𝑇𝑇 and 𝐶𝐶 are the number of positive events in the treatment and control groups and 𝑁𝑁𝑇𝑇 and 
𝑁𝑁𝐶𝐶 are the respective sample sizes. 

The formula for the variance of the logged risk ratio is: 

𝑣𝑣log IRR� = 𝑣𝑣log RR =
𝑁𝑁𝑇𝑇 − 𝑇𝑇
𝑇𝑇 × 𝑁𝑁𝑇𝑇

+
𝑁𝑁𝐶𝐶 − 𝐶𝐶
𝐶𝐶 × 𝑁𝑁𝐶𝐶

 , 

where the terms are defined as above. 

The R functions for these two formulas are: 

logRRPostOnly <- function(TN2,CN2,T2,C2) { 
    log((T2*CN2)/(C2*TN2)) 
} 
logRRVPostOnly <- function(TN2,CN2,T2,C2) { 
    (TN2 - T2)/(T2*TN2) + 
    (CN2 - C2)/(C2*CN2) 
} 

Method 6: Pre and post dichotomous outcome data for treatment and control 

A variation on Method 5 is dichotomized data both pre and post for the treatment and control 
groups. For example, a study may report the proportion of officers with a complaint both pre and 
post for the treatment and control groups. The goal is to have an estimate of the treatment effect 



adjusted for baseline differences, or a DiD estimate. This is accomplished by subtracting the 
logged risk ratio on the pre data from the logged risk ratio on the post data, as shown below. 

log RIRR� = log �
𝑇𝑇2 × 𝑁𝑁𝐶𝐶
𝐶𝐶2 × 𝑁𝑁𝑇𝑇

� − log �
𝑇𝑇1 × 𝑁𝑁𝐶𝐶
𝐶𝐶1 × 𝑁𝑁𝑇𝑇

� . 

The subscripts 1 and 2 denote the pre and post time periods and other terms are defined as above. 

The variance for this method is an extension of the variance for Method 5, adding the variability 
introduced from the pre data. 

𝑣𝑣log RIRR� =
𝑁𝑁𝑇𝑇 − 𝑇𝑇2
𝑇𝑇2 × 𝑁𝑁𝑇𝑇

+
𝑁𝑁𝐶𝐶 − 𝐶𝐶2
𝐶𝐶2 × 𝑁𝑁𝐶𝐶

+
𝑁𝑁𝑇𝑇 − 𝑇𝑇1
𝑇𝑇1 × 𝑁𝑁𝑇𝑇

+
𝑁𝑁𝐶𝐶 − 𝐶𝐶1
𝐶𝐶1 × 𝑁𝑁𝐶𝐶

 . 

The R functions for these equations are: 

logRRPrePost <- function(TN,CN,T2,C2,T1,C1) { 
    log((T2 * CN)/(C2 * TN)) - log((T1 * CN)/(C1 * TN)) 
} 
logRRVPrePost <- function(TN,CN,T2,C2,T1,C1) { 
    (TN-T2)/(T2*TN) + (CN-C2)/(C2*CN) + 
    (TN-T1)/(T1*TN) + (CN-C1)/(C1*CN) 
} 

Method 7: Regression models 

Research on the impacts of BWCs also uses Poisson-based regression models (Poisson, quasi-
Poisson, or negative-binomial), logistic regression models, and ordinary least squares models. 
Often there were also multi-level or mixed-effects models that adjusted for hierarchical or 
clustered data. 

Method 7a: Poisson/negative binomial models 

In the case of Poisson type models, the regression coefficient for either the treatment by time 
effect (DiD) or the treatment effect (non-DiD) was the logged RIRR or logged IRR, depending 
on whether the model included pre and post data or only post data. Thus, we coded as our effect 
size the regression coefficient and associated standard error for treatment by time or just for 
treatment. 

Method 7b: Logistic regression models 

The regression coefficient for the treatment effect from a logistic regression model is a logged 
odds ratio. In the case of post only data, it is a logged odds ratio for the treatment effect adjusted 
for any other variables in the model. In the case of both pre and post data, the treatment by time 
interaction is a DiD coefficient and reflects the logged odds ratio post minus the logged odds 
ratio pre, adjusted for any coefficients. When base-rates are low (or high), such as less than .1, 
the odds ratio and risk ratio are fairly similar. For example, if the treatment success rate is .08 
and the control success rate is .10, then the risk ratio is .8 whereas the odds ratio is .783. They 
diverge as the probabilities approach .5. Odds ratios can be converted to risk ratio using the 
following formula: 



RR =
OR

(1 − 𝑝𝑝) + (OR × 𝑝𝑝)
 , 

where OR is the odds ratio and 𝑝𝑝 is the probability of success in the control group, assuming that 
the control group was in the denominator of the odds ratio. If the odds ratio is less than 1, then 𝑝𝑝 
is the larger of the two proportions, and conversely if the odds ratio is greater than 1, then 𝑝𝑝 is 
the smaller of the two proportions. 

Since many of these models are either adjusting for covariates or are multi-level models, the 
simple variance based on the 2 by 2 frequencies is biased. To obtain a more valid estimate of the 
variance and one that is consistent with the logistic regression model, we rescaled the reported 
standard error for the logistic regression coefficient to maintain the coefficient to standard error 
ratio. Put more simply, we ensured that the 𝑡𝑡 or 𝑧𝑧 for the calculated effect size is was same as for 
the original coefficient. The formula for this is: 

𝑣𝑣log RR = �
log(RR) × SElog(OR)

log(OR)
�
2

 , 

where log(OR) is the regression coefficient from the logistic regression model, 𝑆𝑆𝐸𝐸log(OR) is the 
standard error for the regression coefficient from the logistic regression model, and log(OR) is 
the risk ratio obtained from the prior formula that converts the odds ratio into a risk ratio. 

The R functions for these equations are: 

logRRlogOR <- function(lgOR,p1,p2) { 
  OR <- exp(lgOR) 
  psmall <- ifelse(p1<p2,p1,p2) 
  plarge <- ifelse(p1>p2,p1,p2) 
  p <- ifelse(OR<1, plarge, psmall) 
  return(log(OR/((1-p)+(p*OR)))) 
} 
logRRVlogOR <- function(lgRR,lgOR,se) { 
  ((lgRR*se)/lgOR)^2 
} 

This method is accurate for post only models. For DiD models, the conversion of the odds ratio 
into a risk ratio is only approximate, given that it is actually the ratio of two odds ratios. When 
possible for the DiD cases, we estimated the proportions by each group by time from the 
regression model, assuming the full model was reported. We then used these four proportions to 
compute the logged RIRR. These computations are detailed in the section on study-specific 
computations. If this was not possible, the above conversion was used. 

Method 7c: Ordinary and generalized linear regression models 

Several studies reported results from ordinary least squares (OLS) regression or mixed-effects 
linear models. In some cases, the study also reported means. If the model did not include 
baseline covariates, then we computed the logged RIRR or logged IRR from the reported means. 
In cases where the statistical model adjusted for covariates, then the logged RIRR (for DiD 



models) or logged IRR for a simple mean difference models was computed using the following 
formula: 

log RIRR = log�
𝑥𝑥𝑐𝑐 + 𝐵𝐵
𝑥𝑥𝑐𝑐

� , 

where 𝑥𝑥𝑐𝑐 is the post period mean for the control group and 𝐵𝐵 is the regression coefficient for the 
treatment effect. If the mean for the control group was not reported, then it was estimated from 
the regression model. 

The variance for the effect size was calculated from the standard error for the regression 
coefficient if the model adjusted for clustering or other statistical issues. This maintains the 
effect size to standard error ratio that was present for the regression coefficient and its standard 
error, thus accounting for clustering, covariates, etc. The formula was: 

𝑣𝑣log RIRR = �
log(RIRR) × SE𝐵𝐵

𝐵𝐵
�
2

 , 

where 𝐵𝐵 is the regression coefficient and SE𝐵𝐵 is the standard error of the regression coefficient. 

The R functions for these formulas are: 

logRIRRolsB <- function(B,x) { 
  log((x+B)/x) 
} 
logRIRRVolsB <- function(lgrirr,B,s) { 
  ((lgrirr*s)/B)^2 
} 

Simulations and Verification of Function Accuracy 

Below we simulated data for each of the situations above and compare the results from either a 
Poisson and quasi-Poisson regression model to the results of the above functions. For Methods 1-
4, the formulas and functions reproduce the regression model results. For Methods 5-6, the effect 
sizes are reproduced but the standard errors (variances) differ slightly. However, for these 
models the computed standard errors are actually more accurate as the method is consistent with 
the nature of the data. The methods for logistic and OLS type regression models are also shown 
to be sufficiently accurate for our purpose. 

The simulated data below is generated using the negative binomial distribution function with a 
moderate amount of over-dispersion. A total of 48 counts are generated, with 12 counts pre and 
post for each group. 

set.seed(12345) 
Crime <- c(rnbinom(12, 500, .2),  
           rnbinom(12, 400, .2),  
           rnbinom(24, 500, .2)) 
Time <- c(rep(1,12),rep(2,12),rep(1,12),rep(2,12)) 
Group   <- c(rep(1,24),rep(2,24)) 
data <- as.data.frame(cbind(Crime,Group,Time)) 



table <- aggregate(Crime ~ Time + Group,  
                   data=data, function(x) { 
             c("Count"=sum(x),"Mean"=mean(x), 
               "SD"=sd(x),"N"=length(x)) }) 
table$Count <- table$Crime[,1] 
table$Mean  <- table$Crime[,2] 
table$SD    <- table$Crime[,3] 
table$N     <- table$Crime[,4] 
table$Crime <- NULL 
pander(table) 

Time Group Count Mean SD N 
1 1 24055 2005 116.8 12 
2 1 19721 1643 110.9 12 
1 2 23926 1994 94.69 12 
2 2 23712 1976 102.6 12 

Verification of Method 1 

Below is a simple Poisson regression model with time, group, and the interaction for time and 
group as the independent variables as well as the results from the R functions for Method 1. 
These functions accurately reproduce the regression results. For the Poisson model, the result of 
interest is the time by group interaction. Because the model reports standard errors, we have 
reported the square-root of the variance returned from the function. 

logRIRR <- logRIRRCounts(table$Count[4],table$Count[2], 
                         table$Count[3],table$Count[1]) 
SE <-  sqrt(logRIRRVCounts(table$Count[4],table$Count[2], 
                         table$Count[3],table$Count[1])) 
pander(summary(glm(Crime ~ Time*Group,  
                   family="poisson", data=data))) 

  Estimate Std. Error z value Pr(>|z|) 
(Intercept) 7.997 0.03282 243.6 0 

Time -0.3883 0.02129 -18.24 2.317e-74 
Group -0.1951 0.02065 -9.446 3.506e-21 

Time:Group 0.1897 0.01328 14.29 2.629e-46 

(Dispersion parameter for poisson family taken to be 1 ) 

Null deviance: 860.3 on 47 degrees of freedom 
Residual deviance: 266.3 on 44 degrees of freedom 

pander(as.data.frame(cbind(logRIRR,SE))) 

logRIRR SE 
0.1897 0.01328 



Verification of Method 2 

Below is a simple Poisson regression model with group as the only independent variable, given 
that the data is post-test only. The R functions for Method 2 are also applied to the counts. These 
functions accurately reproduce the regression results. 

logIRR <- logIRRCountsPost(table$Count[4], 
                           table$Count[2], 
                           table$N[4], 
                           table$N[2]) 
SE <-  sqrt(logIRRVCountsPost(table$Count[4], 
                              table$Count[2])) 
pander(summary(glm(Crime ~ Group,  
                   family="poisson", data=data[ Time==2, ]))) 

  Estimate Std. Error z value Pr(>|z|) 
(Intercept) 7.22 0.01565 461.3 0 

Group 0.1843 0.009637 19.12 1.623e-81 

(Dispersion parameter for poisson family taken to be 1 ) 

Null deviance: 508.1 on 23 degrees of freedom 
Residual deviance: 140.8 on 22 degrees of freedom 

pander(as.data.frame(cbind(logIRR,SE))) 

logIRR SE 
0.1843 0.009637 

Verification of Method 3 

Method 3 adjusts for over-dispersion using the quasi-Poisson over-dispersion estimator. The R 
functions for Method 3 and the quasi-Poisson regression model on these data produce identical 
results, establishing the accuracy of the formulas and R functions that implement them. 

logRIRR <- logRIRRCounts(table$Mean[4],table$Mean[2], 
                         table$Mean[3],table$Mean[1]) 
phi <- phi1(table$Mean[4],table$Mean[2], 
            table$Mean[3],table$Mean[1], 
            table$SD[4],table$SD[2], 
            table$SD[3],table$SD[1], 
            table$N[4],table$N[2], 
            table$N[3],table$N[1]) 
SE <- sqrt(logRIRRVOverD(table$Mean[4],table$Mean[2], 
            table$Mean[3],table$Mean[1], 
            table$SD[4],table$SD[2], 
            table$SD[3],table$SD[1], 
            table$N[4],table$N[2], 
            table$N[3],table$N[1])) 



pander(summary(glm(Crime ~ Time*Group,  
                   family="quasipoisson", data=data))) 

  Estimate Std. Error t value Pr(>|t|) 
(Intercept) 7.997 0.08058 99.24 2.177e-53 

Time -0.3883 0.05226 -7.431 2.682e-09 
Group -0.1951 0.05069 -3.848 0.0003814 

Time:Group 0.1897 0.03259 5.82 6.212e-07 

(Dispersion parameter for quasipoisson family taken to be 6.027303 ) 

Null deviance: 860.3 on 47 degrees of freedom 
Residual deviance: 266.3 on 44 degrees of freedom 

pander(as.data.frame(cbind(logRIRR,SE,phi))) 

logRIRR SE phi 
0.1897 0.03259 6.027 

Verification of Method 4 

Recall that Method 4 is just Method 3 without the pre-test data. The analyses below establish the 
accuracy of the formulas and R functions which implement them. 

logRIRR <- logIRRCountsPost(table$Mean[4],table$Mean[2],table$N[4],table$N[2]) 
phi <- phi2(table$Mean[4],table$Mean[2], 
            table$SD[4],table$SD[2], 
            table$N[4],table$N[2]) 
SE <- sqrt(logIRRVOverDPost(table$Mean[4],table$Mean[2], 
            table$SD[4],table$SD[2], 
            table$N[4],table$N[2])) 
pander(summary(glm(Crime ~ Group, family="quasipoisson", 
                   data=data[ Time==2, ]))) 

  Estimate Std. Error t value Pr(>|t|) 
(Intercept) 7.22 0.03961 182.3 1.787e-36 

Group 0.1843 0.02439 7.557 1.499e-07 

(Dispersion parameter for quasipoisson family taken to be 6.402818 ) 

Null deviance: 508.1 on 23 degrees of freedom 
Residual deviance: 140.8 on 22 degrees of freedom 

pander(as.data.frame(cbind(logRIRR,SE,phi))) 

logRIRR SE phi 
0.1843 0.02439 6.403 



Verification of Method 5 

Method 5 and 6 are based on binary or dichotomous data. We simulate binary data for the 
treatment and control group with a population failure rate (proportion of 1s) for the treatment 
group of 0.10 and 0.15 for the control group. We then estimate the logged RIRR using Method 5. 
We also analyze these data using a quasi-Poisson model. Notice that the over-dispersion 
parameter is less than 1, reflecting under-dispersion. The regression coefficient for the treatment 
effect equals the logged risk ratio computed on these data. The computed standard error is 
approximately equal to the standard error for the treatment effect from the quasi-Poisson model. 
In this case, the computed standard error is more accurate than that from the quasi-Poisson 
model. 

set.seed(54321) 
y <- c(rbinom(100,1,.10),rbinom(100,1,.15)) 
group <- c(rep(0,100),rep(1,100)) 
data <- as.data.frame(cbind(y,group)) 
data$group <- factor(group, labels=c("Treatment","Control")) 
table <- table(data$group,data$y) 
table <- addmargins(table, 2) 
logRR <-logRRPostOnly(table[2,3],table[1,3], 
                      table[2,2],table[1,2]) 
SE <- sqrt(logRRVPostOnly(table[2,3],table[1,3], 
                          table[2,2],table[1,2])) 
pander(table) 

  0 1 Sum 
Treatment 88 12 100 

Control 83 17 100 
pander(summary(glm(y~group, family="quasipoisson", data=data))) 

  Estimate Std. Error t value Pr(>|t|) 
(Intercept) -2.12 0.2683 -7.903 1.851e-13 

groupControl 0.3483 0.3504 0.9941 0.3214 

(Dispersion parameter for quasipoisson family taken to be 0.8636364 ) 

Null deviance: 112.0 on 199 degrees of freedom 
Residual deviance: 111.1 on 198 degrees of freedom 

pander(as.data.frame(cbind(logRR,SE))) 

logRR SE 
0.3483 0.3495 

Verification of Method 6 

For Method 6, we need both pre and post binary data for each group. Such data is simulated 
below, adding to the data used from the verification of Method 5. The pre data is simulated 
twice, first with no correlation between the pre and post data (the actual data may have a non-



zero correlation due to chance, but the random distributions from which they are sampled are 
uncorrelated), and second with a correlation between the pre and post observations. As with 
Method 5, we analyzed these data using a quasi-Poisson model. In this case, the treatment effect 
is the time by group interaction. The regression coefficient for the treatment by group effect 
equals the computed RIRR or difference between the pre and post logged risk ratios. The 
computed standard error is approximately equal to the standard error for the treatment effect 
from the quasi-Poisson model. In this case, the computed standard error is more accurate. 

library("tidyr") 
data$y1 <- c(rbinom(100,1,.10),rbinom(100,1,.15)) 
data$y2 <- data$y  
data$y <- NULL ## drop y (it is now y2) 
datalong <- gather(data, time, y, y1:y2, factor_key=TRUE) 
table <- table(datalong$time,datalong$group,datalong$y) 
logRIRR <- logRRPrePost(100,100,table[2,2,2], table[2,1,2], 
                                table[1,2,2],table[1,1,2]) 
SE <- sqrt(logRRVPrePost(100,100,table[2,2,2], table[2,1,2], 
                                table[1,2,2],table[1,1,2])) 
pander(table) 

   0 1 

y1 Treatment  89 11 

 Control  85 15 

y2 Treatment  88 12 

 Control  83 17 

pander(summary(glm(y~group*time, family="quasipoisson", data=datalong))) 

  Estimate Std. Error t value Pr(>|t|) 
(Intercept) -2.207 0.2814 -7.843 4.122e-14 

groupControl 0.3102 0.3705 0.8371 0.403 
timey2 0.08701 0.3896 0.2233 0.8234 

groupControl:timey2 0.03815 0.511 0.07466 0.9405 

(Dispersion parameter for quasipoisson family taken to be 0.8712122 ) 

Null deviance: 218.3 on 399 degrees of freedom 
Residual deviance: 216.6 on 396 degrees of freedom 

pander(as.data.frame(cbind(logRIRR,SE))) 

logRIRR SE 
0.03815 0.5096 

data$y1 <- rbinom(200,1,.40)*data$y2 
PrePostR <- cor(data$y1,data$y2) 



datalong <- gather(data, time, y, y1:y2, factor_key=TRUE) 
table <- table(datalong$time,datalong$group,datalong$y) 
logRIRR <- logRRPrePost(100,100,table[2,2,2], table[2,1,2], 
                                table[1,2,2],table[1,1,2]) 
SE <- sqrt(logRRVPrePost(100,100,table[2,2,2], table[2,1,2], 
                                table[1,2,2],table[1,1,2])) 
pander(table) 

   0 1 

y1 Treatment  95 5 

 Control  92 8 

y2 Treatment  88 12 

 Control  83 17 

pander(summary(glm(y~group*time,  
                  family="quasipoisson", data=datalong))) 

  Estimate Std. Error t value Pr(>|t|) 
(Intercept) -2.996 0.4252 -7.045 8.257e-12 

groupControl 0.47 0.542 0.8671 0.3864 
timey2 0.8755 0.5061 1.73 0.08444 

groupControl:timey2 -0.1217 0.6499 -0.1873 0.8515 

(Dispersion parameter for quasipoisson family taken to be 0.9040406 ) 

Null deviance: 189.3 on 399 degrees of freedom 
Residual deviance: 181.5 on 396 degrees of freedom 

pander(as.data.frame(cbind(logRIRR,SE,PrePostR))) 

logRIRR SE PrePostR 
-0.1217 0.6536 0.6403 

Verification of Method 7b 

This method converts the results from a logistic regression model, including mixed-effects 
(hierarchical) logistics regression models into the desired logged IRR or logged RIRR. We first 
simulate the former. The conversion functions reproduce the logged risk ratio from the 2 by 2 
table and the standard error is a close approximation. If the model includes covariates then this 
would be a logged risk ratio adjusted for covariates. Additionally, the value computed from the 
raw proportions would differ somewhat from those computed with this method. This logged risk 
ratio is our estimate of the logged incident rate ratio. 

set.seed(54321) 
y <- c(rbinom(100,1,.10),rbinom(100,1,.15)) 
group <- c(rep(0,100),rep(1,100)) 



data <- as.data.frame(cbind(y,group)) 
data$group <- factor(group, labels=c("Treatment","Control")) 
table <- table(data$group,data$y) 
table <- addmargins(table, 2) 
logRR <-logRRPostOnly(table[2,3],table[1,3], 
                      table[2,2],table[1,2]) 
SE <- sqrt(logRRVPostOnly(table[2,3],table[1,3], 
                          table[2,2],table[1,2])) 
model <- glm(y~group, family="binomial", data=data) 
logRRfromOR <- logRRlogOR(model$coefficients[2], 
                           table[1,2]/table[1,3],  
                           table[2,2]/table[2,3]) 
SEfromOR <- sqrt(logRRVlogOR(logRRfromOR, 
                           summary(model)$coefficients[2,1], 
                           summary(model)$coefficients[2,2])) 
pander(table) 

  0 1 Sum 
Treatment 88 12 100 

Control 83 17 100 
pander(model) 

Fitting generalized (binomial/logit) linear model: y ~ group 

  Estimate Std. Error z value Pr(>|z|) 
(Intercept) -1.992 0.3077 -6.475 9.501e-11 

groupControl 0.4068 0.4069 0.9998 0.3174 
pander(as.data.frame(cbind(logRR,SE,logRRfromOR,SEfromOR))) 

  logRR SE logRRfromOR SEfromOR 
groupControl 0.3483 0.3495 0.3483 0.3484 

The formulas and function for converting the results from logistic regression models with both 
pre and post data also work reasonably well, although in this case the conversion is approximate. 
The conversion is assuming a simple odds ratio and not the ratio of two odds ratios. Ideally in 
these cases, we would estimate the pre and post success proportions from the regression model 
and compute the RIRR directly from those. The conversion method tested where was only used 
if that was not possible (i.e., the study did not report the full regression model and enough 
information about model to recover these proportions). 

library("tidyr") 
data$y1 <- c(rbinom(100,1,.10),rbinom(100,1,.15)) 
data$y2 <- data$y  
data$y <- NULL ## drop y (it is now y2) 
datalong <- gather(data, time, y, y1:y2, factor_key=TRUE) 
table <- table(datalong$time,datalong$group,datalong$y) 
logRIRR <- logRRPrePost(100,100,table[2,2,2], table[2,1,2], 
                                table[1,2,2],table[1,1,2]) 



SE <- sqrt(logRRVPrePost(100,100,table[2,2,2], table[2,1,2], 
                                table[1,2,2],table[1,1,2])) 
 
model <- glm(y~group*time, family="binomial", data=datalong) 
logRIRRfromOR <- logRRlogOR(summary(model)$coefficients[4,1], 
                           table[2,1,2]/100,  
                           table[2,2,2]/100) 
SEfromOR <- sqrt(logRRVlogOR(logRIRRfromOR, 
                           summary(model)$coefficients[4,1], 
                           summary(model)$coefficients[4,2])) 
pander(table) 

   0 1 

y1 Treatment  89 11 

 Control  85 15 

y2 Treatment  88 12 

 Control  83 17 

#pander(summary(model)) 
pander(as.data.frame(cbind("log RIRR" =logRIRR,SE, 
                           "log RIRR from logistic Reg." = logRIRRfromOR, 
                           "SE" =SEfromOR))) 

log RIRR SE log RIRR from logistic Reg. SE 
0.03815 0.5096 0.04445 0.5161 

Finally, the code below demonstrates that the original proportions can be recovered from the 
regression coefficients. 

b <- model$coefficients 
control_pre  <- sum(b*c(1,1,0,0)) 
control_post <- sum(b*c(1,1,1,1)) 
tx_pre       <- sum(b*c(1,0,0,0)) 
tx_post      <- sum(b*c(1,0,1,0)) 
exp(control_pre)/(exp(control_pre)+1) 

## [1] 0.15 

exp(control_post)/(exp(control_post)+1) 

## [1] 0.17 

exp(tx_pre)/(exp(tx_pre)+1) 

## [1] 0.11 

exp(tx_post)/(exp(tx_post)+1) 

## [1] 0.12 



Verification of Method 7c 

Linear regression models, such as OLS and linear mixed-effects GLM models, presented a 
special problem in this meta-analysis. For method detailed in this section to work, either the 
means must be available and reported, or it must be possible to estimate them from the model. 
This method works for both a post-only treatment effect and a DiD model. For the post-only 
model, the formula and function reproduce the same value for the logged IRR as one gets from a 
direct calculation from the raw data, as well as a close approximation to the standard error, as 
expected. For pre and post data, the logged RIRR will differ from that of the Poisson model as 
the difference between the pre treatment and control means or counts differ. The OLS is 
comparing absolute change, whereas the Poisson is comparing relative change. When the two 
baseline counts are equal, this method and the Poisson model will be equal. The more the 
baseline counts differ, the more these methods will differ. However, this verifies that this method 
provides a reasonable approximation to the desired logged RIRR. In RCTs, the baseline counts 
should be roughly equal and only differ by chance. In quasi-experiments, the baseline counts 
might differ more substantially. However, this method still produces a workable effect size 
estimate. 

set.seed(12345) 
Crime <- c(rnbinom(12, 500, .2),  
           rnbinom(12, 400, .2),  
           rnbinom(24, 500, .2)) 
Time <- c(rep(0,12),rep(1,12),rep(0,12),rep(1,12)) 
Group   <- c(rep(0,24),rep(1,24)) 
data <- as.data.frame(cbind(Crime,Group,Time)) 
table <- aggregate(Crime ~ Group,  
                   data=data, function(x) { 
             c("Count"=sum(x),"Mean"=mean(x), 
               "SD"=sd(x),"N"=length(x)) }) 
table$Count <- table$Crime[,1] 
table$Mean  <- table$Crime[,2] 
table$SD    <- table$Crime[,3] 
table$N     <- table$Crime[,4] 
table$Crime <- NULL 
pander(table) 

Group Count Mean SD N 
0 43776 1824 215.5 24 
1 47638 1985 96.97 24 

model1 <- lm(Crime ~ Group, data=data) 
model2 <- glm(Crime ~ Group, data=data, family="quasipoisson") 
logRIRR <- logRIRRolsB(model1$coefficients[2],table$Mean[1]) 
SE <- sqrt(logRIRRVolsB(logRIRR,model1$coefficients[2], 
                          summary(model1)$coefficients[2,2])) 
pander(table) 

Group Count Mean SD N 
0 43776 1824 215.5 24 



1 47638 1985 96.97 24 
pander(summary(model1)) 

  Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1824 34.11 53.48 4.561e-43 

Group 160.9 48.23 3.336 0.001687 
Fitting linear model: Crime ~ Group 

Observations Residual Std. Error 𝑅𝑅2 Adjusted 𝑅𝑅2 
48 167.1 0.1948 0.1773 

pander(summary(model2)) 

  Estimate Std. Error t value Pr(>|t|) 
(Intercept) 7.509 0.01857 404.3 2.505e-83 

Group 0.08455 0.02573 3.286 0.001947 

(Dispersion parameter for quasipoisson family taken to be 15.09718 ) 

Null deviance: 860.3 on 47 degrees of freedom 
Residual deviance: 697.0 on 46 degrees of freedom 

pander(as.data.frame(cbind(logRIRR,SE))) 

  logRIRR SE 
Group 0.08455 0.02534 

Crime <- c(rnbinom(12, 500, .2),  
           rnbinom(12, 400, .2),  
           rnbinom(24, 500, .2)) 
Time <- c(rep(0,12),rep(1,12),rep(0,12),rep(1,12)) 
Group   <- c(rep(0,24),rep(1,24)) 
data <- as.data.frame(cbind(Crime,Group,Time)) 
table <- aggregate(Crime ~ Group + Time,  
                   data=data, function(x) { 
             c("Count"=sum(x),"Mean"=mean(x), 
               "SD"=sd(x),"N"=length(x)) }) 
table$Count <- table$Crime[,1] 
table$Mean  <- table$Crime[,2] 
table$SD    <- table$Crime[,3] 
table$N     <- table$Crime[,4] 
table$Crime <- NULL 
model1 <- lm(Crime ~ Group * Time, data=data) 
model2 <- glm(Crime ~ Group * Time, data=data, family="quasipoisson") 
logRIRR <- logRIRRolsB(model1$coefficients[4],table$Mean[3]) 
SE <- sqrt(logRIRRVolsB(logRIRR,model1$coefficients[4], 
                          summary(model1)$coefficients[4,2])) 
pander(table) 

Group Time Count Mean SD N 



0 0 23910 1992 96.61 12 
1 0 24083 2007 85.71 12 
0 1 19269 1606 79.7 12 
1 1 24249 2021 101.7 12 

pander(summary(model1)) 

  Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1993 26.37 75.57 3.269e-48 

Group 14.42 37.29 0.3866 0.7009 
Time -386.7 37.29 -10.37 2.139e-13 

Group:Time 400.6 52.73 7.597 1.542e-09 
Fitting linear model: Crime ~ Group * Time 

Observations Residual Std. Error 𝑅𝑅2 Adjusted 𝑅𝑅2 
48 91.33 0.7982 0.7844 

pander(summary(model2)) 

  Estimate Std. Error t value Pr(>|t|) 
(Intercept) 7.597 0.01349 563 1.623e-86 

Group 0.007209 0.01905 0.3785 0.7069 
Time -0.2158 0.0202 -10.68 8.373e-14 

Group:Time 0.2227 0.02772 8.033 3.619e-10 

(Dispersion parameter for quasipoisson family taken to be 4.353928 ) 

Null deviance: 984.0 on 47 degrees of freedom 
Residual deviance: 193.3 on 44 degrees of freedom 

pander(as.data.frame(cbind(logRIRR,SE))) 

  logRIRR SE 
Group:Time 0.2227 0.02932 

R Code for Effect Size Calculations for Specific Studies 

Data were not always presented in studies in such a way as to allow direct calculation of the 
logged RIRR or logged IRR using the methods detailed in the prior sections. In these cases, 
either preliminary calculations were necessary or one-off methods needed to be implemented. 
These computations are detailed below for each study where this was the case. 

Study ID S272: Ariel (2016, 2017) Denver, CO 

Coding for study S272 is based on two references: 



1. R272: Ariel, B. (2016). Increasing cooperation with the police using body worn 
cameras. Police Quarterly, 19, 326-362. 

2. R273: Ariel, B. (2016). Police body cameras in large police department. Journal of 
Criminal Law & Criminology, 106(4), 729-768. 

This study has one geographic area for the treatment group and five for the control group. The 
raw counts were reported for the five control areas for the following outcomes: use of force 
incidents, misconduct complaints, and force complaints. Standard deviations were not reported 
but can be computed from these control counts for both the baseline (pre) and implementation 
(post) periods. These standard deviations are then used to estimate the variance, adjusting for 
overdispersion, using Method 3. These data are reported in reference ID R273. 

The code below computes the total count and standard deviation of the counts for the control 
group across these three outcomes. 

## use of force incidents data 
force_pre  <- c(101,118,135,157,58) 
force_post <- c(67,49,57,77,44) 
## misconduct complaints data  
mis_pre <- c(83,120,91,84,30) 
mis_post <- c(44,63,64,41,33) 
## force complaints data 
force_comp_pre <- c(10,17,14,22,6) 
force_comp_post <- c(18,18,23,11,8) 
## create table 
sds <- c("Force Pre" = sd(force_pre), "Force Post" = sd(force_post), 
         "Misconduct Pre" = sd(mis_pre), "Miconduct Post" = sd(mis_post), 
         "Complaints Pre" = sd(force_comp_pre), "Complaints Post" = sd(force_comp
_post)) 
counts <- c("Force Pre" = sum(force_pre), "Force Post" = sum(force_post), 
         "Misconduct Pre" = sum(mis_pre), "Miconduct Post" = sum(mis_post), 
         "Complaints Pre" = sum(force_comp_pre), "Complaints Post" = sum(force_co
mp_post)) 
table <- rbind(counts,sds) 
row.names(table) <- c("Counts","Standard Deviation") 
pander(table) 

Table continues below 

  Force Pre Force Post Misconduct Pre 
Counts 569 294 408 

Standard Deviation 37.45 13.39 32.53 
  Miconduct Post Complaints Pre Complaints Post 

Counts 245 69 78 
Standard Deviation 13.84 6.181 6.025 



Study ID S416: Wallace et al. (2018) Spokane, WA 

Coding for study S416 is based on two references: 

1. R416: White, M.D., Gaub, J.E., & Todak, N. (2018). Exploring the potential for body-
worn cameras to reduce violence in police-citizen encounters. Policing: A Journal of 
Policy and Practice, 12(1), 66–76. 

2. R411: Wallace, D., White, M.D., Gaub, J.E., & Todak, N. (2018). Body-worn cameras as a 
potential source of de-policing: Testing for camera-induced passivity. Criminology, 
56(3), 481–509. doi: 10.1111 

The computations below are based on information from R411, tables 1, 3, and 4. The effect size 
is based on the regression coefficient for TX Officer x RCT Period (i.e., treatment and control 
officers by pre and during periods). These are logistic regression models. Method 7b needs the 
base-rate each outcome to convert the logged odds ratio into our logged RIRR. We could use the 
overall proportions listed in table 1, but below we estimate the proportions based on the overall 
mean and the regression coefficients. This makes a fairly trivial difference. 

## officer initiated call 
m <- .407 # overall mean 
mlogit <- log(m/(1-m)) 
b <- .077 
logit1 <- mlogit + b/2 
logit2 <- mlogit - b/2 
p1 <- exp(logit1)/(exp(logit1)+1)  
p2 <- exp(logit2)/(exp(logit2)+1)  
table <- rbind("Officer initialed calls Treatment p =" = p1, 
  "Officer initialed calls Control p =" = p2) 
pander(table) 

Officer initialed calls Treatment p = 0.4163 
Officer initialed calls Control p = 0.3977 

## arrest  
m <- .055 # overall mean 
mlogit <- log(m/(1-m)) 
b <- .139 
logit1 <- mlogit + b/2 
logit2 <- mlogit - b/2 
p1 <- exp(logit1)/(exp(logit1)+1)  
p2 <- exp(logit2)/(exp(logit2)+1)  
table <- rbind("Arrests Treatment p =" = p1, 
  "Arrests Control p =" = p2) 
pander(table) 

Arrests Treatment p = 0.05873 
Arrests Control p = 0.0515 



S600: Braga et al. (2018) Boston, MA 

The is one reference associated with this study. 

R600: Braga, A.A., Barao, L.M., Zimmerman, G.M., Douglas, S., & Sheppard, K. (2019). 
Measuring the direct and spillover effects of body worn cameras on the civility of police-citizen 
encounters and police work activities. Journal of Quantitative Criminology. doi:10.1007/s10940-
019-09434-9 

There were seven effect sizes extracted from this study. Two were based on Poisson models, and 
five were from panel OLS models. For these models, we extracted the mean counts pre and post 
by group and then computed the logged RIRR using Method 3. The standard error was rescaled 
as detailed in Method 7c. The code below shows the computations. 

Note that crime incidents effect changes directions but is essentially null in the OLS and in the 
estimated model. This reflects the difference between a DiD in absolute change versus a DiD in 
relative (percent) change. 

The models are reported on page 23. The independent variables are in the following order and 
dummy coded as follows: 

• Treatment by time interaction: multiple the treatment and time dummy codes 
• Treatment: 1 = treatment; 0 = control 
• Time: 1 = intervention; 0 = baseline 
• Constant equals 1 for all observations 
## regression coefficients  
dispatched <- c(-1.687,3.846, .548,16.451) 
oic        <- c(-.870, 2.264, .336, 7.979) 
ci         <- c(-.055, 1.621, -.795, 8.941) 
ar         <- c( .018,  .126,-.074, 1.72) 
fio        <- c( .456,-1.048,-.981, 3.067) 
 
## Contrasts (independent variable dummy coding) 
control_t1_mean <- c(0, 0, 0, 1) 
control_t2_mean <- c(0, 0, 1, 1) 
tx_t1_mean      <- c(0, 1, 0, 1) 
tx_t2_mean      <- c(1, 1, 1, 1) 
## Logged RIRRs  
logRIRRCounts <- function(T2,C2,T1,C1) { 
    log((T2*C1)/(C2*T1)) 
} 
## Compute logged RIRR 
dispatchedRIRR <- logRIRRCounts(sum(tx_t2_mean*dispatched), 
              sum(control_t2_mean*dispatched), 
              sum(tx_t1_mean*dispatched), 
              sum(control_t1_mean*dispatched)) 
oicRIRR <- logRIRRCounts(sum(tx_t2_mean*oic), 
              sum(control_t2_mean*oic), 
              sum(tx_t1_mean*oic), 
              sum(control_t1_mean*oic)) 

doi:10.1007/s10940-019-09434-9
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ciRIRR <- logRIRRCounts(sum(tx_t2_mean*ci), 
              sum(control_t2_mean*ci), 
              sum(tx_t1_mean*ci), 
              sum(control_t1_mean*ci)) 
arRIRR <- logRIRRCounts(sum(tx_t2_mean*ar), 
              sum(control_t2_mean*ar), 
              sum(tx_t1_mean*ar), 
              sum(control_t1_mean*ar)) 
fioRIRR <- logRIRRCounts(sum(tx_t2_mean*fio), 
              sum(control_t2_mean*fio), 
              sum(tx_t1_mean*fio), 
              sum(control_t1_mean*fio)) 
RIRRs <- c(dispatchedRIRR,oicRIRR,ciRIRR,arRIRR,fioRIRR) 
## Estimate standard errors from the models 
b <- c(-1.687,-.873,-.055,.018,.456) 
se <- c(1.369,.789,.808,.061,.351) 
seRIRRs <- (RIRRs*se)/b 
## Results 
table <- as.data.frame(cbind(b,RIRRs,seRIRRs^2)) 
names(table) <- c("B (OLS)","log RIRR","Variance log RIRR") 
rownames(table) <- c("Dispatched","OfficerInitiated", 
                     "CrimeIncidents","ArrestReports","FIO") 
pander(table) 

  B (OLS) log RIRR Variance log RIRR 
Dispatched -1.687 -0.09052 0.005396 

OfficerInitiated -0.873 -0.09479 0.007339 
CrimeIncidents -0.055 0.00922 0.01835 
ArrestReports 0.018 0.01317 0.001992 

FIO 0.456 0.08431 0.004211 

S627: Koslicki et al. (2019) Northwest City 

There is one reference associated with this study. 

• R627: Koslicki, W.M., Makin, D.A., & Willits, D. (2019). When no one is watching: 
Evaluating the impact of body-worn cameras on use of force incidents. Policing and 
Society, doi:10.1080/10439463.2019.1576672. 

The one outcome, use of force, is analyzed using an OLS based interrupted time series method, 
accounting for autocorrelation. Unfortunately, there is no single coefficient associated with the 
treatment effect (they estimated the immediate change at the start of the intervention and the 
slope during the intervention period). They reported the means needed for Method 2, using the 
baseline as the control and post as the treatment. Using PlotDigitizer, we obtained recovered 
approximate data from Figure 1 in Koslicki et al. (2019). The purpose of using this method was 
to obtain the standard deviations for estimating over-dispersion. The means for these data are 
close to those reported by Koslicki et al. These means were not used but suggest that the 

doi:10.1080/10439463.2019.1576672


digitized data are approximately close to the actual values. The standard deviations on these data 
were used. 

month <- c(seq(1:89)) 
prepost <- c(rep(0,52),rep(1,37)) 
y <- c(7.042514,11.03512,2.9944546,4.990758,9.066544, 
      7.042514,2.0240295,7.014787,2.9944546,9.038817,5.046211, 
      3.9926064,15,8.040666,0.9981516,7.042514,3.022181, 
      1.025878,0,6.044362,4.990758,9.038817,12.033272, 
      8.040666,2.9944546,3.9926064,4.990758,15.027726, 
      5.046211,0,3.022181,12.033272,14.029574,13.031424, 
      9.066544,1.9963032,6.044362,2.0240295,14.029574, 
      6.044362,1.025878,4.020333,0,7.042514,7.014787, 
      6.016636,5.018484,1.025878,3.9926064,0.9981516,7.014787, 
      6.016636,0,0.9981516,3.022181,0.9704251,1.9963032, 
      1.9685767,2.9944546,2.0240295,9.066544,11.062846,0, 
      4.020333,3.9926064,1.025878,3.022181,9.038817,6.016636, 
      3.022181,5.046211,4.020333,9.038817,3.022181, 
      3.9926064,10.036968,1.9963032,5.018484,0,7.042514, 
      10.036968,7.042514,0.9981516,2.9944546,3.9926064, 
      11.03512,8.040666,5.046211,3.9926064) 
data <- as.data.frame(cbind(month,prepost,y)) 
table <- aggregate(y ~ prepost, data=data, function(x) {c("Mean" = mean(x), 
                                                          "SD" = sd(x))}) 
print(table) 

##   prepost   y.Mean     y.SD 
## 1       0 5.963849 4.055043 
## 2       1 4.503672 3.280490 

S633: Yokum et al. (2019) Washington, DC 

There is one reference associated with this study. 

• Yokum, D., Ravishankar, A., & Coppock, A. (2019). A randomized control trial evaluating 
the effects of police body-worn cameras. Proceedings of the National Academy of Sciences, 
116(21), 10329-10332. 

Yokum and colleagues provided us a copy of these data but they are now available online at DC 
Body-Worn Camera Evaluation. These data have been anonymized and therefore do not have 
officer level covariates. Below, we convert the data from the wide format (one record per office) 
to the long format (two records per officer, one pre and one post). We also select variables of 
interest. There are five quasi-Poisson models that we run. The regression coefficient of interest is 
the time (PrePost) by treatment (Z) interaction, a difference-in-difference analysis (logged 
RIRR). The unit-of-analysis is the individual officer. 

## load needed libraries 
library("MASS") 
library("nlme") 
library("dplyr") 

https://osf.io/p6vuh/
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##  
## Attaching package: 'dplyr' 

## The following object is masked from 'package:nlme': 
##  
##     collapse 

## The following object is masked from 'package:MASS': 
##  
##     select 

## The following objects are masked from 'package:stats': 
##  
##     filter, lag 

## The following objects are masked from 'package:base': 
##  
##     intersect, setdiff, setequal, union 

library("reshape") 

##  
## Attaching package: 'reshape' 

## The following object is masked from 'package:dplyr': 
##  
##     rename 

## The following objects are masked from 'package:tidyr': 
##  
##     expand, smiths 

library("coefplot") 

## Loading required package: ggplot2 

library("estimatr") 
library("knitr") 
library("kableExtra") 

##  
## Attaching package: 'kableExtra' 

## The following object is masked from 'package:dplyr': 
##  
##     group_rows 

## set working director 
setwd("~/new/bwc/search/pdfs/R633_data") 
## Load anonymized dataset 
officer_level <- read.csv("officer_level_anon.csv",  
                          stringsAsFactors = FALSE) 
## Drop specialty units (as per Yokum's analysis) 
officer_level <- subset(officer_level,  
                        district!="NSID" & district!="NSID_2" & 
                        district!="SOD" & district!="SOD" & 
                        district!="SSD" & district!="1Ds") 
## Select Variables and Reshape to Long Format 



df <- officer_level %>%  
      select(Z, block_id, district, district_block_id,  
        weights, ID_anon, 
        all_complaints1 =        all_complaints_pre,        
        all_complaints2 =       all_complaints_post, 
        all_complaints_1000_rate1 = all_complaints_1000_rate_pre, 
        all_complaints_1000_rate2 = all_complaints_1000_rate_post, 
        use_of_force1 =          use_of_force_pre,          
        use_of_force2 =         use_of_force_post,         
        use_of_force_1000_rate1 =  use_of_force_1000_rate_pre, 
        use_of_force_1000_rate2 = use_of_force_1000_rate_post, 
        disorderly_conduct1 =    disorderly_conduct_pre,    
        disorderly_conduct2 =   disorderly_conduct_post,   
        simple_assault1 =        simple_assault_pre,        
        simple_assault2 =       simple_assault_post,       
        traffic_arrest1 =        traffic_arrest_pre,        
        traffic_arrest2 =       traffic_arrest_post,       
        tickets1 =               tickets_pre,               
        tickets2 =              tickets_post,              
        warnings1 =              warnings_pre,               
        warnings2 =              warnings_post, 
        dv_arrests1 =             dv_arrests_pre, 
        dv_arrests2 =             dv_arrests_post, 
        dv_report_taken1 =       dv_report_taken_pre, 
        dv_report_taken2 =       dv_report_taken_post, 
        assault_on_po1   =       assault_on_po_pre, 
        assault_on_po2   =       assault_on_po_post,         
    ) 
dflong <- reshape(df, varying=c("all_complaints1", 
                                "all_complaints2", 
                                "all_complaints_1000_rate1", 
                                "all_complaints_1000_rate2", 
                                "use_of_force1", "use_of_force2", 
                                "use_of_force_1000_rate1", 
                                "use_of_force_1000_rate2", 
                                "disorderly_conduct1", 
                                "disorderly_conduct2", 
                                "simple_assault1", 
                                "simple_assault2", 
                                "traffic_arrest1", 
                                "traffic_arrest2", 
                                "tickets1", "tickets2", 
                                "warnings1", "warnings2", 
                                "dv_arrests1", 
                                "dv_arrests2", 
                                "dv_report_taken1", 
                                "dv_report_taken2", 
                                "assault_on_po1", 
                                "assault_on_po2"), 
                  direction="long", timevar="PrePost", 



                  idvar=c("Z", "block_id", "district",  
                          "district_block_id", 
                          "weights", "ID_anon"), 
                  sep="") 
rownames(dflong) <- NULL 
## create dataframe with just those issuing  
## traffic tickets and warnings 
df_traffic <- subset(df, tickets1>0 & tickets2>0 &  
                       warnings1>0 & warnings2>0, 
                       select=c("Z", "block_id", "district", 
                                "district_block_id", 
                                "weights","ID_anon", 
                                "tickets1","tickets2", 
                                "warnings1","warnings2")) 
dflong_traffic <- reshape(df_traffic, varying=c("tickets1", 
                                                "tickets2", 
                                                "warnings1", 
                                                "warnings2"), 
                  direction="long", timevar="PrePost", 
                  idvar=c("Z", "block_id", "district", 
                          "district_block_id", 
                          "weights", "ID_anon"), 
                  sep="") 
## combine: disorderly, simple, traffic 
## combine: tickets, warnings 
dflong$arrests <- dflong$disorderly_conduct +  
                  dflong$simple_assault +  
                  dflong$traffic_arrest 
dflong_traffic$traffic <- dflong_traffic$warnings +  
                          dflong_traffic$tickets 

The table below shows the mean counts per officer by condition and time for each of the 
outcomes of interest. 

means <- aggregate(cbind(all_complaints, use_of_force, dv_arrests, 
                         dv_report_taken, assault_on_po, arrests) 
                   ~ PrePost+Z, data=dflong, mean) 
sds   <- aggregate(cbind(all_complaints, use_of_force, dv_arrests, 
                         dv_report_taken, assault_on_po, arrests) 
                   ~ PrePost+Z, data=dflong, sd) 
means7 <- aggregate(traffic ~ PrePost+Z, data=dflong_traffic, mean) 
sds7   <- aggregate(traffic ~ PrePost+Z, data=dflong_traffic, sd) 
means <- cbind(means,means7) 
sds   <- cbind(sds,sds7) 
means <- t(round(means,3))[ c(3:8,11), ] 
sds <- t(round(sds,3))[ c(3:8,11), ] 
control_ns <- c(rep(table(df$Z)[[1]],6),table(df_traffic$Z)[[1]]) 
tx_ns      <- c(rep(table(df$Z)[[2]],6),table(df_traffic$Z)[[2]]) 
means <- cbind(means,control_ns,tx_ns) 
sds   <- cbind(sds,control_ns,tx_ns) 
colnames(means) <- c("Control/Pre","Control/Post","Tx/Pre","Tx/Post","Control 



N","BWC N") 
colnames(sds) <- c("Control/Pre","Control/Post","Tx/Pre","Tx/Post","Control N"
,"BWC N") 
pander(means) 

Table continues below 

  Control/Pre Control/Post Tx/Pre Tx/Post 
all_complaints 0.225 0.162 0.209 0.195 
use_of_force 0.409 0.471 0.33 0.515 
dv_arrests 2.284 2.36 2.276 2.284 

dv_report_taken 0 143.1 0 120.6 
assault_on_po 0.575 0.782 0.43 0.853 

arrests 4.972 9.078 4.604 9.31 
traffic 76.85 69.04 49.71 64.8 

  Control N BWC N 
all_complaints 888 1034 
use_of_force 888 1034 
dv_arrests 888 1034 

dv_report_taken 888 1034 
assault_on_po 888 1034 

arrests 888 1034 
traffic 130 156 

pander(sds) 

Table continues below 

  Control/Pre Control/Post Tx/Pre Tx/Post 
all_complaints 0.573 0.49 0.591 0.527 
use_of_force 0.945 1.05 0.721 1.204 
dv_arrests 4.474 5.532 4.398 5.638 

dv_report_taken 0 142.2 0 132.3 
assault_on_po 1.544 1.785 1.247 1.853 

arrests 9.322 13.42 7.861 13.08 
traffic 212.7 194.4 137.1 240.5 

  Control N BWC N 
all_complaints 888 1034 
use_of_force 888 1034 
dv_arrests 888 1034 

dv_report_taken 888 1034 
assault_on_po 888 1034 



arrests 888 1034 
traffic 130 156 

This section estimates the logged relative incident rate ratios with standard errors adjusted for 
overdispersion using quasi-Poisson models. These models are difference-in-differences models 
that use both the pre and post counts. The treatment effect is the interaction between time and 
condition. Note that for the outcome dv_report_taken, there was no baseline (pre) data, so the 
treatment effect is a logged incident rate ratio between treatment and control during the post 
period. Also note that for traffic_stops, only those officers with non-zero counts both pre and 
post were included. These models do not take into account that the data represent repeated 
measures on the officers. However, the significance levels are roughly similar to the above 
models for complaints and use of force. 

dvs <- c("all_complaints", "use_of_force", "dv_arrests", 
         "dv_report_taken","assault_on_po", "arrests") 
models1 <- lapply(dvs, function(x) { 
  glm(substitute(i ~ Z*PrePost + factor(district),  
                 list(i = as.name(x))), data = dflong, 
      weights=weights, family=quasipoisson(link="log"))}) 
## traffic only has traffic officers 
models1_7 <- glm(traffic ~ Z*PrePost + factor(district), 
                 data = dflong_traffic, 
                 weights=weights, family=quasipoisson(link="log")) 
## dv_report_taken has no baseline (pre) data 
models1_4 <- glm(dv_report_taken2  ~ Z + factor(district), 
                 data = df, 
                 weights=weights, family=quasipoisson(link="log")) 
estimates1  <- unlist(lapply(seq(1:6), function(x) 
   {summary(models1[[x]])$coefficients[[10,1]]} )) 
std.errors1 <- unlist(lapply(seq(1:6), function(x) 
   {summary(models1[[x]])$coefficients[[10,2]]} )) 
estimates1  <- c(estimates1,  summary(models1_7)$coefficients[[10,1]]) 
std.errors1 <- c(std.errors1, summary(models1_7)$coefficients[[10,2]]) 
estimates1[4]  <- summary(models1_4)$coefficients[[2,1]] 
std.errors1[4] <- summary(models1_4)$coefficients[[2,2]] 
control_ns <- c(rep(table(df$Z)[[1]],6),table(df_traffic$Z)[[1]]) 
tx_ns      <- c(rep(table(df$Z)[[2]],6),table(df_traffic$Z)[[2]]) 
results1 <- cbind(estimates1,std.errors1^2,control_ns,tx_ns) 
rownames(results1) <- c(dvs,"traffic") 
colnames(results1) <- c("Estimate","Variance","Control N", "BWC N") 
pander(results1) 

  Estimate Variance Control N BWC N 
all_complaints 0.2841 0.03221 888 1034 
use_of_force 0.3523 0.02069 888 1034 
dv_arrests -0.06713 0.0162 888 1034 

dv_report_taken -0.04188 0.001403 888 1034 



assault_on_po 0.3048 0.02502 888 1034 
arrests 0.09696 0.01091 888 1034 
traffic 0.3412 0.2008 130 156 

S637: Bennett et al. (2019) Fairfax County, VA 

There is one reference associated with this study. 

• R637: Bennett, R.R., Bartholomew, B., & Champagne, H. (2019). Fairfax County Police 
Department’s Body-Worn Camera Pilot Project: An Evaluation. Washington, DC: 
Department of Justice, Law and Criminology, American University. Retrieved from 
https://www.fairfaxcounty.gov/police/sites/police/files/assets/documents/fcpd%20final%20r
eport%2006_25_19.pdf 

We extracted four effect sizes from this study. The study reported the results from ARIMA 
models. To get the logged RIRR that we wanted, we re-analyzed the data using a quasi-Poisson 
model. For two of the four outcomes, we could easily determine each value of the time series. 
For two of the time series, this was not possible. The authors kindly provided us with these data. 
The re-analysis to get our desired effect sizes is below. 

## Figure 3.5 (complaints) 
complaints_tx <- c(1,0,1,1,0,8,0,4,0,4,6,8,2,2,5,4,1,5,4,0, 
                   3,5,4,1,0,0,1,1,7,0,2,3,7,0,0,1,2,1,1,1) 
complaints_cg <- c(1,2,0,3,0,2,3,0,1,2,2,2,1,1,1,1,3,3,0,0, 
                   2,0,0,1,4,2,1,3,2,0,3,0,0,1,4,0,4,1,0,0) 
complaints <- c(complaints_tx, complaints_cg) 
## Figure 3.6 (Use of Force) 
force_tx  <- c(8, 8, 14, 9, 8, 11, 12, 15, 1, 1, 5, 0, 12, 2, 6, 9, 
               12, 4, 10, 7, 8, 11, 9, 17, 17, 14, 8, 4, 23, 10, 7, 
               0, 18, 13, 4, 3, 4, 7, 6, 0) 
force_cg  <- c(3, 23, 24, 7, 7, 3, 3, 6, 6, 6, 0, 4, 11, 5, 1, 2, 4, 
               11, 7, 10, 6, 4, 1, 15, 4, 12, 8, 14, 1, 3, 10, 8, 2, 
               1, 11, 5, 8, 13, 3, 1) 
force   <- c(force_tx,force_cg) 
## Figure 3.1 Traffic Stops (provided by Bennett) 
traffic_tx <- c(648, 136, 712, 338, 520, 310, 429, 201, 446, 253, 350, 
                242, 352, 263, 464, 317, 435, 299, 524, 299, 326, 235, 
                357, 257, 330, 255, 331, 284, 426, 269, 556, 359, 577, 
                301, 498, 296, 477, 287, 488, 314, 369, 405, 382, 213, 
                488, 474, 717, 351, 486, 364, 518, 305, 423, 407, 433, 
                348, 634, 366, 524, 283, 479, 327, 310, 356, 495, 364, 
                672, 383, 659, 387, 527, 327, 365, 335, 509, 343, 590, 
                397, 513, 312, 497, 232, 487, 325, 452, 223, 412, 191, 
                410, 319, 603, 331, 697, 378, 491) 
traffic_cg <- c(217, 492, 248, 662, 424, 368, 338, 466, 254, 324, 311, 
                396, 242, 377, 364, 429, 348, 398, 359, 514, 325, 330,  
                271, 392, 310, 404, 301, 408, 304, 339, 354, 417, 385,  
                555, 316, 323, 325, 397, 312, 439, 312, 456, 208, 321,  
                324, 451, 358, 449, 381, 407, 299, 414, 426, 446, 268,  
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                436, 426, 647, 334, 451, 350, 487, 271, 436, 330, 367,  
                447, 537, 333, 419, 401, 495, 350, 393, 337, 341, 296,  
                496, 357, 385, 307, 367, 336, 452, 355, 430, 271, 339,  
                217, 383, 285, 327, 301, 311, 174) 
traffic <- c(traffic_tx,traffic_cg) 
## Figure 3.2 Incidents Responded to by the Police (provided by Bennett) 
incidents_tx <- c(327, 205, 296, 257, 312, 237, 340, 210, 305, 229, 254, 
                  230, 296, 250, 300, 270, 331, 275, 334, 265, 292, 239, 
                  349, 275, 326, 273, 352, 213, 294, 283, 306, 237, 273, 
                  207, 290, 226, 288, 212, 305, 222, 274, 348, 216, 185, 
                  290, 210, 305, 251, 345, 252, 317, 213, 292, 192, 328, 
                  231, 315, 222, 300, 181, 302, 241, 304, 236, 345, 221, 
                  308, 259, 312, 238, 317, 233, 315, 243, 346, 250, 344, 
                  255, 334, 201, 328, 193, 391, 271, 269, 207, 316, 219, 
                  292, 236, 258, 221, 306, 253, 295) 
incidents_cg <- c(249, 288, 263, 358, 268, 307, 302, 327, 277, 325, 323, 
                  339, 306, 460, 344, 376, 322, 350, 305, 416, 288, 348, 
                  284, 401, 339, 381, 278, 377, 276, 391, 255, 348, 310, 
                  405, 201, 403, 279, 324, 288, 306, 258, 356, 237, 327, 
                  236, 293, 225, 341, 250, 348, 271, 333, 234, 333, 261, 
                  311, 275, 323, 254, 373, 255, 373, 260, 359, 240, 337, 
                  287, 409, 257, 351, 258, 380, 261, 350, 298, 323, 255, 
                  329, 243, 316, 235, 285, 270, 350, 232, 312, 271, 359, 
                  241, 313, 240, 311, 258, 324, 199) 
incidents <- c(incidents_tx,incidents_cg) 
 
## Create independent variables and dataframe for  complaints and force 
week <- c(seq(7,46,by=1)) 
week <- c(week,week) 
prepost <- c(rep(0,20),rep(1,13),rep(0,7)) 
prepost <- c(prepost,prepost) 
group <- c(rep(1,40),rep(0,40)) 
data_fig5_fig6 <- as.data.frame(cbind(group,prepost,week,complaints,force)) 
data_fig5_fig6$group <- factor(data_fig5_fig6$group,levels=c(1,0), 
                     labels=c("Treatment","Control")) 
data_fig5_fig6$prepost <- factor(data_fig5_fig6$prepost,levels=c(0,1), 
                       labels=c("Pre","Post")) 
## Drop post intervention data 
data_fig5_fig6_thru40 <- subset(data_fig5_fig6, week<41) 
 
 
## Create independent variables and dataframe of traffic and incidents  
week <- c(seq(1:95),seq(1:95)) 
prepost <- c(rep(0,53),rep(1,25),rep(0,17)) 
prepost <- c(prepost,prepost) 
group <- c(rep(1,95),rep(0,95)) 
data_fig1_fig2 <- as.data.frame(cbind(group,prepost,week,incidents,traffic)) 
data_fig1_fig2$group <- factor(data_fig1_fig2$group,levels=c(1,0), 
                               labels=c("Treatment","Control")) 
data_fig1_fig2$prepost <- factor(data_fig1_fig2$prepost,levels=c(0,1), 



                                 labels=c("Pre","Post")) 
data_fig1_fig2_thru79 <- subset(data_fig1_fig2, week<80) 
## quasi-Poisson models 
mod_complaints <- glm(complaints ~ prepost*group + week, data=data_fig5_fig6_thru40, 
                       family = quasipoisson(link = "log")) 
mod_force <- glm(force ~ prepost*group + week, data=data_fig5_fig6_thru40, 
                       family = quasipoisson(link = "log")) 
mod_incidents <- glm(incidents ~ prepost*group + week, data=data_fig1_fig2_thru79, 
                     family = quasipoisson(link = "log")) 
mod_traffic   <- glm(traffic   ~ prepost*group + week, data=data_fig1_fig2_thru79, 
                     family = quasipoisson(link = "log")) 
## Print results 
summary(mod_complaints) 

##  
## Call: 
## glm(formula = complaints ~ prepost * group + week, family = quasipoisson(link = "lo
g"),  
##     data = data_fig5_fig6_thru40) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -2.3672  -1.6509  -0.3442   0.7681   2.6544   
##  
## Coefficients: 
##                           Estimate Std. Error t value Pr(>|t|)   
## (Intercept)               0.941659   0.366570   2.569   0.0126 * 
## prepostPost              -0.053385   0.402049  -0.133   0.8948   
## groupControl             -0.658056   0.308718  -2.132   0.0369 * 
## week                      0.002215   0.017985   0.123   0.9024   
## prepostPost:groupControl  0.022067   0.500025   0.044   0.9649   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for quasipoisson family taken to be 1.820924) 
##  
##     Null deviance: 148.66  on 67  degrees of freedom 
## Residual deviance: 134.89  on 63  degrees of freedom 
## AIC: NA 
##  
## Number of Fisher Scoring iterations: 5 

summary(mod_force) 

##  
## Call: 
## glm(formula = force ~ prepost * group + week, family = quasipoisson(link = "log"),  
##     data = data_fig5_fig6_thru40) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -4.5198  -1.4041  -0.4116   1.3783   4.5674   
##  
## Coefficients: 
##                          Estimate Std. Error t value Pr(>|t|)     
## (Intercept)               2.39010    0.28215   8.471 5.37e-12 *** 
## prepostPost               0.63657    0.31972   1.991   0.0508 .   
## groupControl             -0.14818    0.22244  -0.666   0.5077     



## week                     -0.01850    0.01431  -1.292   0.2009     
## prepostPost:groupControl -0.35809    0.34519  -1.037   0.3035     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for quasipoisson family taken to be 3.825859) 
##  
##     Null deviance: 282.44  on 67  degrees of freedom 
## Residual deviance: 254.55  on 63  degrees of freedom 
## AIC: NA 
##  
## Number of Fisher Scoring iterations: 5 

summary(mod_incidents) 

##  
## Call: 
## glm(formula = incidents ~ prepost * group + week, family = quasipoisson(link = "log
"),  
##     data = data_fig1_fig2_thru79) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -6.7045  -2.5882  -0.0218   2.0287   7.4732   
##  
## Coefficients: 
##                            Estimate Std. Error t value Pr(>|t|)     
## (Intercept)               5.6405700  0.0355382 158.718  < 2e-16 *** 
## prepostPost               0.0324916  0.0559870   0.580    0.563     
## groupControl              0.1338435  0.0328820   4.070  7.5e-05 *** 
## week                     -0.0009350  0.0009456  -0.989    0.324     
## prepostPost:groupControl -0.0135612  0.0586431  -0.231    0.817     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for quasipoisson family taken to be 8.545517) 
##  
##     Null deviance: 1514.1  on 157  degrees of freedom 
## Residual deviance: 1310.2  on 153  degrees of freedom 
## AIC: NA 
##  
## Number of Fisher Scoring iterations: 4 

summary(mod_traffic) 

##  
## Call: 
## glm(formula = traffic ~ prepost * group + week, family = quasipoisson(link = "log")
,  
##     data = data_fig1_fig2_thru79) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -13.981   -3.592   -1.137    3.145   15.733   
##  
## Coefficients: 
##                           Estimate Std. Error t value Pr(>|t|)     
## (Intercept)               5.909826   0.056588 104.436   <2e-16 *** 
## prepostPost               0.061048   0.085044   0.718    0.474     
## groupControl             -0.042692   0.052942  -0.806    0.421     
## week                      0.001505   0.001507   0.999    0.320     



## prepostPost:groupControl -0.026764   0.090871  -0.295    0.769     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for quasipoisson family taken to be 28.48526) 
##  
##     Null deviance: 4421.5  on 157  degrees of freedom 
## Residual deviance: 4198.8  on 153  degrees of freedom 
## AIC: NA 
##  
## Number of Fisher Scoring iterations: 4 
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