Supplementary Materials for

Teaching neural network to attach and detach electrons from molecules

Roman Zubatyuk, Justin S. Smith, Benjamin T. Nebgen, Sergei Tretiak, Olexandr Isayev*

*Corresponding author. Email: <u>olexandr@olexandrisayev.com</u>

This PDF file includes:

Supplementary Table 1: Number of molecules and conformers in training and test datasets.

Supplementary Figure 1: Distribution of molecule sizes in training and test datasets.

Supplementary Figure 2: Distribution of molecular energies for training and test datasets.

Supplementary Table2: Root mean square errors (RMSEs) for atomic partial charge (DFT/MBIS) prediction for individual models and ensemble of 5 models (ens5) on lons-12 test set and lons-16 external set.

Supplementary Note 1: Loss function for the AIMNet models training.

Supplementary Figure 3: Correlation plots for predicted versus DFT total molecular energies for Ions-16 dataset.

Supplementary Figure 4: Correlation plots for predicted versus DFT ionization potentials (IP) and electron attachment energies (EA) for Ions-16 dataset.

Supplementary Figure 5: Correlation plots for predicted versus DFT MBIS partial atomic charges for Ions-16 dataset.

	Cations	Neutrals	Anions				
Molecules							
lons-12	154,381	167,103	155,981				
lons-16	13,607	16,138	13,860				
Conformers							
lons-12	1,896,354	3,273,755	2,150,019				
lons-16	75,654	148,543	85,741				

Supplementary Table 1: Number of molecules and conformers in training and test datasets.

Supplementary Figure 1: Distribution of molecule sizes in training and test datasets.

Supplementary Figure 2: Distribution of molecular energies for training and test datasets. Atomization energy defined as total DFT energy minus sum of atomic energies computed as average in the dataset.

Supplementary Table 2: Root mean square errors (RMSEs) for atomic partial charge (DFT/NBO) prediction for individual models and ensemble of 5 models (ens5) on lons-12 test set and lons-16 external set.

Model	Test Dataset	Partial charge RMSE		
		Cation	Neutral	Anion
AIMNet	lons-12	0.028	0.017	0.026
	lons-16	0.028	0.013	0.021
	lons-16 (ens5)	0.026	0.011	0.019
	ChEMBL-20 (ens5)	0.031	0.016	0.042
AIMNet-MT	lons-12	0.025	0.016	0.027
	lons-16	0.024	0.013	0.022
	lons-16 (ens5)	0.023	0.011	0.020
	ChEMBL-20 (ens5)	0.028	0.016	0.040
AIMNet-NSE	lons-12	0.025	0.016	0.025
	lons-16	0.024	0.013	0.021
	lons-16 (ens5)	0.022	0.011	0.019
	ChEMBL-20 (ens5)	0.027	0.016	0.038

Supplementary Note 1: Loss function for the AIMNet models training.

The training objective was minimization of weighted multi-target mean squared error (MSE) loss function. For a molecule with N atoms it could be written as:

$$\mathcal{L} = \sum_{t=1}^{T} w_t (\mathcal{L}_E + w_q \mathcal{L}_q + w_{\tilde{q}} \mathcal{L}_{\tilde{q}})$$
(S1)

$$\mathcal{L}_E = \frac{1}{N} \left(E - \hat{E} \right)^2 \tag{S2}$$

$$\mathcal{L}_{q} = \frac{1}{2N} \sum_{i=1}^{N} \sum_{s \in \{\alpha, \beta\}} (q_{i}^{s} - \hat{q}_{i}^{s})^{2}$$
(S3)

$$\mathcal{L}_{\tilde{q}} = \frac{1}{2N} \sum_{i=1}^{N} \sum_{s \subset \{\alpha, \beta\}} (\hat{q}_i^s - \tilde{q}_i^s)^2 \tag{S3}$$

The loss functions include the weighted contributions from total energy prediction error \mathcal{L}_E and spincharges prediction error \mathcal{L}_q . For AIMNet-NSE we added squared difference between of predicted charges before and after normalization procedure (Eq. 4), to ensure that un-normalized charges are close to the normalized charges. For all AIMNet models, contributions from several "SCF-like" passes were included into the total loss with weights w_t . The weights w_q and $w_{\tilde{q}}$ were selected as 90 and 30 kcal mol⁻¹ e^{-1} such as all energy and charges errors give approximately equal contributions to the loss function.

The models were trained with 3 passes, the outputs from each pass were included into weight function with weights w_t =[0.15, 0.25, 0.60] for AIMNet and AIMNet-MT and w_t =[0, 0.3, 0.7] for AIMNet-NSE.

Our experiments show that the final results are virtually the same regardless the choice of weights in the loss function.

Supplementary Figure 3: Correlation plots for predicted versus DFT total molecular energies for Ions-16 dataset.

Supplementary Figure 4: Correlation plots for predicted versus DFT ionization potentials (IP) and electron attachment energies (EA) [kcal/mol] for lons-16 dataset.

Supplementary Figure 5: Correlation plots for predicted versus DFT NBO partial atomic charges for Ions-16 dataset.