
Supplementary Material: Comparing the responses of the UK, Sweden and

Denmark to COVID-19 using counterfactual modelling

S1 Onset-to-Death distribution

Key to estimating Rt is the onset-to-death distribution. The results of1 are updated in this paper with new data and improved

methods. We use data from the COVID-19 Hospitalisation in England Surveillance System (CHESS) up to 25th September

2020. We filter data as follows

• date of onset of symptoms ≥ 2020/03/09

• date of onset of symptoms < 2020/06/01

• date of death < 2020/09/01

• date of death ≥ date onset

• date of admission ≥ date onset

These filters gave 3 months for latest possible onset to resolve (recover or die) and therefore mitigates censoring bias. By

filtering date of admission to be greater than onset of symptoms we prevent estimate being biased by nosocomial infections.

In total we obtained 6050 onset-to-death times. We observed a slight trend in onset-to-death with age, but this was uniformly

distributed and so it was reasonable to assume a single distribution independent of age. The raw median time onset-death

was ∼ 11 days, with a mean of ∼ 15 days. We fitted a Gamma density function to observed onset-to-death times from daily

aggregated CHESS data. Binned data (as opposed to the precise onset-to-death times) were used to facilitate data sharing while

preserving anonymity. Little difference was observed when fitting directly on the non-binned data.

Our binned data was of form (ti,yi)
N
i=1, where N is the number of binned data observations, ti ∈ Z was an observed number

of days between onset and death, and where yi ∈ Z was the number of times that ti occurred. Thus the total number of

onset-to-death times is T = ∑
N
i=1 yi = 6050. Let the probability of dying t days after onset have density function π(t|θ) with

parameters θ (e.g. a Gamma distribution with shape and scale or rate parameters). We then define the function, evaluated on

day t as ft =
∫ t+0.5

x=t−0.5 π(x,θ)dx. Through assuming a Poisson likelihood function yt ∼ Poisson(T ft) we can define and fit a
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Bayesian hierarchical model.

yt ∼ Poisson(T ft)

ft =
∫ t+0.5

x=t−0.5
Gamma(x,θ1,θ2)dx

θ1 ∼N (0,5)

θ2 ∼N (0,5)

T =
N

∑
i=1

yi

Note ft is calculated through cumulative densities, not pointwise, and therefore accounts for the data binning. In our fitting,

diffuse N (0,5) prior distributions were used as hyper parameters of π .

We also tried fitting Frechet, Chi-Square and Log-normal distributions but, using model selection2, found these to give an inferior

fit (Figure S1). The final fitted distribution mean with 95% credible intervals was Gamma(1.45[1.40−1.50],10.43[10.01−

10.9]) (Figure S1), with mean 15.17 days and coefficient of variation 0.83.
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Figure S1. Gamma distributed fitted to onset-to-death times, with 95% credible intervals

By examining empirical survival curves and given the lack of evidence for a lognormal distribution, we found little evidence of

long tails. However, because there were observed onset-death times of greater than 100 days, more sensitive density fitting

could be investigated. Ultimately, the overwhelming amount of probability mass occurs before this day, and so we believe our

fitting sufficient for the results in this paper.

S2 Model Description

We observe Dt,m deaths occurring on days t ∈ {1, . . . ,n} and countries m ∈ {1, . . . ,M}, where M = 3 in this work. Daily deaths

are modelled using a positive real-valued function dt,m = E[Dt,m] that represents the expected number of deaths attributed

to COVID-19. The daily deaths Dt,m are assumed to follow a negative binomial distribution with mean dt,m and variance
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dt,m +
d2

t,m
φ

, where φ follows a positive half normal distribution, i.e.

Dt,m ∼ Negative Binomial

(
dt,m,dt,m +

d2
t,m

ψ

)
,

ψ ∼N +(0,5).

Here, N (µ,σ) denotes a normal distribution with mean µ and standard deviation σ . We say that X follows a positive half

normal distribution N +(0,σ) if X ∼ |Y |, where Y ∼N (0,σ). The expected number of deaths d in a given country on a given

day is a function of the number of infections (both symptomatic and asymptomatic) c that occurred in previous days.

At the beginning of the epidemic, deaths of individuals infected abroad can bias estimates of the basic reproduction number R0.

To ensure we are modelling deaths from locally acquired infections only, we fit observed deaths from the day after a country

has observed a cumulative total of 10 deaths.

To mechanistically link our function for deaths to our latent function for infected cases, we use a previously estimated COVID-19

infection fatality ratio IFR (probability of death given infection) together with a distribution of times from infection to death π .

The IFR is based on estimates presented in Verity et al1. The country-specific IFRs are assumed to have mean IFRm = 1%.

To incorporate between-country variability we allow the IFRm for every country to have some additional, and independent,

noise around the mean. This prior distribution therefore puts most of the support (three sigma) of the prior IFR is between

0.7%−1.3%. Specifically the prior is:

IFR∗m ∼ IFRm ·N(1,0.1).

Combining estimates from previous studies1 with new data (see section S1), we assume the distribution of times from infection

to death π (infection-to-death) to be the sum of two independent random times: the incubation period (infection to onset

of symptoms: "infection-to-onset") distribution and the time between onset of symptoms and death ("onset-to-death"). The

infection-to-onset distribution is Gamma distributed with shape 5.8 days and scale 0.943. The onset-to-death distribution is also

Gamma distributed with a shape of 1.38 days and scale 10.67 (see section S1). The infection-to-death distribution is therefore

given by:

π ∼ Gamma(5.8,0.9)+Gamma(1.45,10.43).

The mean of this distribution is around 20 days. The expected number of deaths dt,m, on a given day t, for country, m, is given

by the following discrete sum:

dt,m = IFR∗m
t−1

∑
τ=0

cτ,mπt−τ ,

where cτ,m is the number of new infections on day τ in country m and where π is discretized via πs =
∫ s+0.5

s−0.5 π(τ)dτ for

s = 0,1,2,3, ..., and where π(τ) is the density of π .

The true number of infected individuals, c, is modelled using a discrete renewal process4. To model the number of infections

over time, we specify a generation time distribution g with density g(τ), (the time between when a person becomes infected
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and when they subsequently infect another person). The generation time distribution is unknown, but we can approximate it by

assuming it is the same as the serial interval distribution (time from symptom onset in one person to the time of symptom onset

in the person they infect). We choose both the generation time and the serial interval to be Gamma distributed5:

g∼ Gamma(6.5,0.62).

Given the generation time distribution, the number of infections ct,m on a given day t, and country, m, is given by the following

discrete convolution function:

ct,m = St,mRt,m

t−1

∑
τ=0

cτ,mgt−τ

St,m = 1− ∑
t−1
i=1 ci,m

Nm

where, similar to the probability of death function, the generation time distribution is discretized by gs =
∫ s+0.5

s−0.5 g(τ)dτ

for s = 2,3, ..., and g1 =
∫ 1.5

0 g(τ)dτ . The population of country m is denoted by Nm. We include the adjustment factor

St,m = 1− ∑
t−1
i=1 ci,m

Nm
to account for the number of susceptible individuals left in the population: i.e. even in the absence of

interventions, herd immunity will reduce the number of daily infected through susceptible depletion. This assumes reinfection

over the time horizon of our model is impossible. It is possible to include a correction factor in the serial interval to account for

individuals dying before they can infect others However, given the infection-to-death delay distribution this factor is negligible

and we have chosen to exclude it. We also note the adjustment factor makes negligible difference to parameter estimation, but

excluding it helps greatly improves posterior topology and inference. When generating counterfactual the adjustment factor is

always included to account for susceptible depletion.

Infections today depend on the number of infections in previous days, weighted by the discretized generation time distribution.

This weighting is then scaled by the country-specific time-varying reproduction number, Rt,m, which models the average number

of secondary infections per infection at a given time. The functional form for the time-varying reproduction number was chosen

to be a random process. Rt,m is a function defined by:

Rt,m = eα0,m+1εw(t),m (1)

Rt,m = R0,me1εw(t),m (2)

where the conversion from days to weeks is encoded in w(t). Every 7 days, w is incremented, i.e. we set w(t)= b(t−tstart)/7c+1,

where tstart is set to March 13th. εw(t),m is a stochastic process for country m and week w(t). For all t < March 13th, εw(t),m is

set to zero. This stochastic process is defined to be a discrete random walk process. To specify this process we introduce the

parameter γ ∼N (0,σ0) and then model ε as εw(t),m ∼N (εw(t)−1,m,γ). The exponential form was used to ensure positivity of

the reproduction number. The indicator function 1 ensures the random walk can only start at a specific date which we set to

March 13th. The prior distribution for α0,m was chosen to be

α0,m ∼N (log(3.5),0.1)

R0 = eα0,m

The prior distribution for α0 was chosen to represent a broad range of plausible reproduction numbers with support from 2 to

56. We assume that seeding of new infections begins on the 30st of January 2020. From this date, we seed our model with
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6 sequential days of an equal number of infections: c1,m = · · · = c6,m ∼ Exponential( 1
τ
), where τ ∼ Exponential(1). These

seeding infections are inferred in our Bayesian posterior distribution. We estimated parameters jointly for all 11 countries in a

single hierarchical model. Fitting was done in the probabilistic programming language Stan7 using an adaptive Hamiltonian

Monte Carlo (HMC) sampler.

Limitations of our model are discussed in detail in5. To summarize, we assume:

• a probability distribution with fixed mean and coefficient of variation for infection to symptom onset and from symptom

onset to death

• a probability distribution with fixed mean and coefficient of variation for the generation time distribution

• that the generation time and serial interval distributions are the same

• a fixed R0 for each country with modelled noise

• a fixed average infection fatality ratio mean with additive modelled noise

• average dynamics nationally and across all ages

See section S2 for further details of model assumptions and limitations.

Official data on laboratory-confirmed COVID-19 deaths by date of death were obtained from government websites: for the UK

was via the UK government dashboard8, for Sweden through the Public Health Agency of Sweden (Folkhälsomyndigheten)9

and for Denmark from the State Serum Institute (Statens Serum Institut)10. All of our source code can be found at https:

//github.com/ImperialCollegeLondon/covid19model/tree/whatif/whatif
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S3 Counterfactual Specifics and posterior ordering

As introduced in S2 our equation for Rt is

Rt,m = eα0,m+εw(t),m (3)

For country m, day t and week w. We can write the actual (i.e. the fitted) Rt for countries x and y

Rt,x = eα0,x eεw(t),x (4)

Rt,y = eα0,yeεw(t),y (5)

Consider the counterfactual where y is the donor country to recipient country x (y → x in our notation). In our absolute

approach, we have

Rt,y→x =


eα0,x eεw(t),x if t < March 13th,

eα0,y eεw(t),y if t ≥March 13th.

For the relative approach

Rt,y→x =


eα0,x eεw(t),x if t < March 13th,

eα0,x

eα0,y eα0,yeεw(t),y if t ≥March 13th

and so cancelling terms yields

Rt,y→x =


eα0,x eεw(t),x if t < March 13th,

eα0,x eεw(t),y if t ≥March 13th

Post prediction ordering

For any given country, posterior samples of the first week of the random walk process are correlated with R0, but the samples of

R0 for any given country are independent (Figure S2). If naive switching of R0 is performed then posterior correlations between

R0 and the random walk process are entirely lost (Figure S2) and the resultant uncertainty can be artificially large. There is

no rigorous solution to this problem and it arises as a result of independent growth rates in each country. One approach to

minimise this problem is to order samples such that high R0 samples match high random walk samples. This does not change

posterior summaries in the fit, but helps maintain some correlation between R0 and the random walk (Figure S2).

S6/S17



●

●

●●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●
●● ●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●●

●
●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●●
●

●

●

●

●

●

●● ●

●

●

●

●
●

●● ●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
● ●

● ●

●

●

●
●

●
●

●●

●

●● ●

●●
●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●
●

●
●

●●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●
●●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●● ●●

●

●

●

●●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●
●●

●●●●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●
●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●●

●

●

●
●

●

●

●

●
●●

●
●●

●

●

●
● ●

●●

●

●●

●

● ●

● ● ●

●

●
●

●
●

●

●

● ●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●●
●

●
●

●

●
●

● ●
●

●

●
● ●

●
● ●
●

●

●
●

●
●

●
● ●●

●

●
●

●

●

●
●●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●
● ●

●

●

●

●

●

● ●

●●

●●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

● ●
●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

● ●

●

●●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

● ●
●

●●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●
● ●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●●
●

●
● ●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

● ●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

● ●
●

●
● ●

●

●
●

●
●

●
●
●

●

●
●

●

●

●

●●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

● ● ●●●
●

●

●
●

●

●
●

●

●

●
●

●

●●●
●

●

●●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●
●●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●●

●●

●●

●
●

●●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

● ●
●●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●●

●

●●

● ●

●

●●

●

●

●

●
● ●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●
●

●
●

●●

●

●
●
●

●
●●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●●

● ●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

● ●

● ●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●● ●●●

●

●

●

●
● ●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●● ●

●

●

●
●

●● ●
●

●
●

●●
●

●
●●

●

●●
●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●
●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●●●
●

● ●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●●●

●●

●

●
●

●
● ●

●●
●

●

● ●

●

● ●

●●●
●

●
●

●●

●
●●

●

●

●●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

● ●
●

●●●

●

●

●

● ●

●

●●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●
●

●

●

●
●●

●●●
●

● ●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

● ●

●

●

●

●
●

●

●

●●

●●

●

●

●● ●

●

●
●

●

●
●

● ●●

●
●

●●

●
●●

● ●

●●

●

●

●

●

●

●

● ● ●
●

●
●

●

●●

●

●
●

●

●

●

●
● ●

● ●

●●

●●

●
●

●

●●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●
●

●● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

3.0 3.5 4.0 4.5 5.0

4.
0

4.
5

5.
0

5.
5

Posterior UK R0 against Sweden R0

R0 UK

R
0 

S
w

ed
en

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●
● ●

●
●

●
●

● ●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●●

●

●●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●

●
●

●●
● ●

●

●

●

●
●

●●

●
●

●

●
●

●●●
●

●
●

● ●

●

●
●

●

●

●●

●
●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●
●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

● ●

●
● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

● ●●

●

●

●

●●

●
●

●
●

●

● ●●

●

●

●

●
●

●

●
● ●

●

●

●

●

●●

● ●
●●●

●

●

●

●

●

●

●
●

● ●
●●

●●

●

●
●

●
●

●

● ●
●

●

●

● ●

●

●
●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

● ●
●

●●
●●

●

●

●

●
●

●

●

●●

●

●●●

●● ● ●

●

●

●
●●

●

● ●

●

●

●
●

●

●

● ●
●

●
●

●●● ●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●
●

●

●

●

●

●●●

● ●

●

●●
● ●

●

●

●

●

●
●

●

●

● ●

●

●
● ●
●

●

●

● ●●●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●●

●
●

●

●
●

●

● ●

●

●

●

●●

●
●

●

●●
●

●
●

●

●

●

●
● ●

●●

●
●

●

●

●

●

●

●

●
● ●

●

●
● ●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●●

●

●
●
●

●●
●

● ● ●

● ●

●

● ●
●

●●
●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

● ●●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●●

●●

●

●

● ●

● ●
●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●● ●
●

●
●

●

●●

●
●●

●
●●

●
●
● ●

●●
●

●
●

●

●
●

● ●
●●

●
●

● ●●
●

● ●●●

●
●●

●

●

●

●
●

●●

●

●

●
● ●

●

●●●

●
●

● ●

●

●

●
●

●

● ●

● ●

●●

●

●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●
●●

●

● ●
●

●

●
●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●● ●

● ●

●

●

●

● ●
●

●

● ●

●

●●

●
●

●
●

●
●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

● ● ●
●

●
●

●
●

●

●

●

●

●
●

● ●

●

●●●

● ●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●
●

●● ●

●
●

●
●● ●

●

●

●

●
●●

● ●

●● ●●

●

●
●●

●
●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●
●●

●

●
●

●●

●

●

●

●

● ●●

●

●●

●
●

●

●

●

●

●

●

●
●●

● ●

●
●●

●
●

● ●

●● ●

●

●
●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●
● ●

●

●

●

●●

●●

●

●

●

●

●

●●

●

● ●
●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●●

●
●

●● ●
●

●
●●●

● ●
●

●● ●●

●
●●

●

●
●

●

●●
●

●

●●
●

●
●● ●

●
●

●

●

●

●

●
● ●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
● ●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●

● ●

●
●

●
● ●●

●

●●

●

●
●

●●

●

●

● ●
●

● ●

●●

●●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●●

●

●

●●

●

●●
●●

●

●●

●

●

●●

●●●
●

●

●

●

●

●

●

●

● ●●

●●

●
●

●

●

●

● ● ●
●●

●

● ●

●

●
●

●

●
●

●

● ●

●

●
●

●●
●●●

●

●

●

● ●●
● ●

● ●

●

●

●

●

●

●● ●●●
●● ●

● ●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●
●

●●

● ●

●

●

●

● ●

●

●

● ●
●

●
●

●

●

●

●●

●

●
●

●
●

●

● ●
●

● ● ●

●
●

●●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●
●●
●

●
● ●

●
●

●

●
●

●

●

●

●
●

● ●
●

● ●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●
●

●

●

●●
●

●

●

● ●●
●●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●
●

●

●

●●

●

●●

●
●

●

●

●
●

● ●

●

●

● ●

●
●

●

●

● ●

●●

●

●
●●

●

●●

●

●

●

●
●

●
●
●

●

●

●

●
● ●

● ●

●
● ●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

● ●

●
● ●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

● ●
●

●

●

●●

●

●

●

●●

●
●

●●

●

●
●

● ●●

●
●

●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●
●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
● ●

●

●

1.4 1.5 1.6 1.7

−
0.

6
−

0.
2

Original samples

R0 UK

U
K

 fi
rs

t w
ee

k 
ra

nd
om

 w
al

k
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

● ●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

● ●

●

●
●

●

●●

●

●

●
●

● ●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●●●

●● ●

●

●

●

● ●

●
●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●●
●

●
● ● ●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●
●

● ●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

● ●

●

●

●

●

●●

●

● ●

●

●

●
●

●
●●

●

●

●

●

●

●

●
● ●●

●

● ●

●
●

●●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

●
●

●
●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

● ●

●

● ●

●
●●

●

●

●

● ●
●●

●

●

●

●●

●
●

●
●

●
●●

●

● ●

●

●

●

●
●

●
●●

●
●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●● ●

●●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

● ●

●

●
●●

● ●

●

●

●

●

●

● ●
●

●

● ●
●●

●

●

●
●

●

●●

●

●

●

●
●

● ●

●●
●
●

●

●

●

●

●

●
●

● ●

●●
●

●

● ●
●

●
●

●●

●

●

●

●

●
●

●
●

● ●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●
●
●

●● ●
●●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●
●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

● ●

●
●

●●

●

●
●

●●
●

●

●

●
●

●

●

●
●●

●
●

●●
●●

●

●

●
●

● ●●

●
●

●

●

●

●

●●

●●

●

●

●

●● ● ●
●

●
●

●

●

●
●

●●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●●

●
●

●●

●

●
● ●

●

●

●●

●
●

●

●

●

●

● ●

●

●
●●●

●
●

●

●

●●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●

●
●

●● ●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

● ●

●

●

●
●

●

●

●
●

●

●● ●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

●

●●

●

●●●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●
●

● ●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●
●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●
●
●

●
●

●

●

●
●

●
●

●
●●

●

●

● ●
●

●
●

●
●●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●●

●

●
●

●
●

●●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●
● ●

●

●
●

●

●

●

●

●
● ●

●●
●

●
●

●

●

● ●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

● ●

●
●

●●

●

●
●●

●

● ●● ●

●

●

●●

●

● ●

●

●

●

● ● ●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●
●

●

●

●●

● ●
●

●
●

●

●

●
●

●
●

●
●

●●
●

●
●●

●
●

●

●
●

● ●

● ●

●

●

● ●

●

●

●

●

●

●
●

●
●●●

●

●●

●

●

●

●
●●●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●●●
●●

●●
●

●

●

●

●

●

● ●

●●

●

●

●

●
● ●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●●

●

●
● ●

●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●●

●

● ●●

●●
●
●

●

●
●

●
●

●

●

●

●
● ●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●●●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●●

●●
●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

● ●
●●

●

●

●●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●
●●

●
●

●

●
●

●

●

●

●●

●
●

● ●

●● ●

●

●

●
●

●
● ●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●
●●

●

● ●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●●

●

●

●

1.4 1.5 1.6 1.7

−
0.

4
0.

0
0.

4

Naive relative approach

R0 UK

U
K

 fi
rs

t w
ee

k 
ra

nd
om

 w
al

k

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●●

●
●●

●

●

●
●

●

●

●● ●● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●●

●
●

● ●

●

●

●

●

●

●

●●

●

●●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●
●

●
●

●
●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●●●

●

●

● ●

●●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

● ●

●

●
●

●

●● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
● ● ●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●
●

● ●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●
●

●

●

●
●

●● ●

●

●

●●

●

●

●
●●

●
●

●

●
●

●

●● ●●

●

●●

●

●

●

●

●

●

●

● ●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●
●●●●

●

●

●
● ●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

● ●●
●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

● ●● ●

●

● ●

●

●

● ●
●

●●

●

●

●

●

●

●

●
●

● ●

●
●●

●
●●●

●
●

●

●●●

●

●

● ● ●

●●●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●●

●

●

●

●●

●

●
●

●
●

●●
●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●●●

●●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●● ●

●●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

1.4 1.5 1.6 1.7

−
0.

4
0.

0
0.

4

Ordered relative approach

R0 UK

U
K

 fi
rs

t w
ee

k 
ra

nd
om

 w
al

k

Figure S2. Top left: Joint posterior samples of R0 for the UK plotted against posterior samples of R0 from Sweden. Top right:

Original correlation structure for the UK for R0 and the first week of the random walk. Bottom left: Naive scaling of R0 in the

relative structure removes correlation structure for the UK for R0 and the first week of the random walk. Bottom right:

Ordering samples in the scaling of R0 in the relative structure preserves correlation structure for the UK for R0 and the first

week of the random walk
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S4 Original Time-varying Reproduction Plots
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Figure S3. Estimated time-varying reproduction number (Rt ) with 95% credible intervals

S5 Total cumulative mortality for counterfactual scenarios

Recipient Country

Denmark Sweden United Kingdom

Donor Country

Denmark 606
971 [608-1,591] 14,192 [9,683-21,205]]

1,234 [757-2,060] 37,866 [24,369-61,039]

Sweden
3,024 [1,892-4,590]

5,515
66,010 [46,877-91,121]

2,120 [1,339-3,351] 156,038 [117,622-207,557]

United Kingdom
1,604 [1,035-2,338] 2,626 [1,739-3,891]

40,659
674 [434-997] 1,360 [921-1,959]

Table S1. As per Table 1, but showing absolute mortality until 1st July 2020, and not per-capita deaths.

S6 Sensitivity analysis to infection fatality ratio

In this section we halve the mean IFR from 1% to 0.5%, well below central estimates for the demographics of the countries

analysed1, 11, 12. The prior distribution for IFR allows a 3 standard deviation range from 0.35%− 0.65%. Results are very
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similar for Sweden and Denmark, but mortality for the UK adopting the Swedish strategy are reduced, because herd immunity

has a larger effect in reducing transmission in a high-mortality-but-low-IFR scenario (Table S2). Our substantive conclusions

remain unchanged, however.

Recipient Country

Denmark Sweden United Kingdom

Donor Country

Denmark 105
95 [59-152] 203 [142-300]

122 [72-200] 516 [352-752]

Sweden
471 [307-703]

546
832 [622-1132]

337 [215-542] 1,626 [1,288-2,058]

United Kingdom
263 [178-379] 250 [166-354]

599
113 [75-162] 133 [87-189]

Table S2. As per Table 1. Sensitivity analysis assuming that the infection fatality ration (IFR) is halved. Absolute and relative

approach deaths per million estimates shown in red and blue text respectively.

S9/S17



●

●

●

●

●

Abs: UK −> Dmk Rel: UK −> Dmk

Abs: Swe −> Dmk Rel: Swe −> Dmk Fit Dmk

M
ar Apr

M
ay Ju

n Ju
l

M
ar Apr

M
ay Ju

n Ju
l

M
ar Apr

M
ay Ju

n Ju
l

0
5

10
15
20

0

25

50

75

0

20

40

0

25

50

75

0

20

40

D
ea

th
s

Denmark

●

●

●

●

●

Abs: Dmk −> Swe Rel: Dmk −> Swe

Abs: UK −> Swe Rel: UK −> Swe Fit Swe

M
ar Apr

M
ay Ju

n Ju
l

M
ar Apr

M
ay Ju

n Ju
l

M
ar Apr

M
ay Ju

n Ju
l

0

30

60

90

120

0

30

60

90

120

0

30

60

90

120

0

30

60

90

120

0

30

60

90

120D
ea

th
s

Sweden

●

●

●

●

●

Abs: Dmk −> UK Rel: Dmk −> UK

Abs: Swe −> UK Rel: Swe −> UK Fit UK

M
ar Apr

M
ay Ju

n Ju
l

M
ar Apr

M
ay Ju

n Ju
l

M
ar Apr

M
ay Ju

n Ju
l

0

300

600

900

0

1000

2000

3000

0

300

600

900

0

1000

2000

3000

0

300

600

900

D
ea

th
s

United Kingdom

Figure S4. Estimates of daily deaths (red curves with shaded 95% credible intervals). Observed deaths are shown as blue bars.

Infection fatality ratio in these estimates has been halved.
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S7 Sensitivity analysis to generation time distribution

We investigated the sensitivity of our estimates to the generation time distribution, varying the mean (which takes a value of

6.5 days in our main analysis), to 6, 7 and 8 days. These values were chosen as plausible serial intervals reported from13.

Tables S3, S4 and S5 show that estimates of deaths per million are highly similar from those reported in our main analysis.

Recipient Country

Denmark Sweden United Kingdom

Donor Country

Denmark 105
97 [60-156] 217 [148-330]

124 [77-200] 519 [340-804]

Sweden
512 [325-789]

546
988 [724-1391]

361 [230-557] 2042 [1539-2748]

United Kingdom
265 [173-384] 251 [165-355]

599
120 [78-177] 141 [94-201]

Table S3. As per Table 1. Sensitivity analysis assuming mean generation time of 6 days. Absolute and relative approach

deaths per million estimates shown in red and blue text respectively.

Recipient Country

Denmark Sweden United Kingdom

Donor Country

Denmark 105
91 [54-149] 179 [124-269]

114 [68-190] 614 [407-938]

Sweden
564 [346-888]

546
919 [655-1321]

400 [252-645] 2830 [2148-3734]

United Kingdom
329 [213-473] 288 [186-422]

599
120 [79-174] 128 [83-188]

Table S4. As per Table 1. Sensitivity analysis assuming mean generation time of 7 days. Absolute and relative approach

deaths per million estimates shown in red and blue text respectively.
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Recipient Country

Denmark Sweden United Kingdom

Donor Country

Denmark 105
99 [60-164] 234 [160-359]

123 [72-206] 401 [257-654]

Sweden
497 [313-780]

546
1009 [743-1401]

362 [222-581] 1510 [1044-2123]

United Kingdom
244 [158-358] 233 [155-340]

599
139 [86-215] 166 [107-249]

Table S5. As per Table 1. Sensitivity analysis assuming mean generation time of 8 days. Absolute and relative approach

deaths per million estimates shown in red and blue text respectively.

S8 Sensitivity analysis to onset-to-death distribution

We investigated our estimates’ sensitivity to our fitted onset-to-death distribution, varying its mean from a value of 15.17 days,

to 11, 13, 17 and 19 days (Tables S6, S7, S8, and S9 respectively). In all scenarios, deaths per million are similar to those

reported in the main text.

Recipient Country

Denmark Sweden United Kingdom

Donor Country

Denmark 105
97 [59-163] 208 [139-314]

129 [79-217] 699 [448-1113]

Sweden
514 [317-799]

546
956 [692-1313]

345 [210-542] 2465 [1864-3192]

United Kingdom
278 [179-409] 261 [177-380]

599
102 [64-154] 122 [81-176]

Table S6. As per Table 1. Sensitivity analysis assuming mean of 11 days in onset-to-death distribution. Absolute and relative

approach deaths per million estimates shown in red and blue text respectively.
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Recipient Country

Denmark Sweden United Kingdom

Donor Country

Denmark 105
95 [58-154] 207 [141-306]

124 [76-209] 622 [401-985]

Sweden
524 [331-807]

546
976 [698-1322]

362 [216-560] 2357 [1765-3134]

United Kingdom
279 [182-403] 256 [175-379]

599
109 [70-165] 128 [88-187]

Table S7. As per Table 1. Sensitivity analysis assuming mean of 13 days in onset-to-death distribution. Absolute and relative

approach deaths per million estimates shown in red and blue text respectively.

Recipient Country

Denmark Sweden United Kingdom

Donor Country

Denmark 105
95 [58-153] 206 [143-312]

116 [72-196] 497 [327-772]

Sweden
530 [343-832]

546
974 [711-1363]

389 [237-607] 2224 [1690-2982]

United Kingdom
279 [182-412] 257 [172-377]

599
125 [83-182] 140 [93-200]

Table S8. As per Table 1. Sensitivity analysis assuming mean of 17 days in onset-to-death distribution. Absolute and relative

approach deaths per million estimates shown in red and blue text respectively.
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Recipient Country

Denmark Sweden United Kingdom

Donor Country

Denmark 105
93 [59-154] 206 [140-315]

114 [69-191] 455 [295-706]

Sweden
537 [332-842]

546
985 [711-1396]

391 [236-619] 2176 [1616-2938]

United Kingdom
282 [182-421] 259 [169-373]

599
131 [85-194] 144 [97-214]

Table S9. As per Table 1. Sensitivity analysis assuming mean of 19 days in onset-to-death distribution. Absolute and relative

approach deaths per million estimates shown in red and blue text respectively.

S9 MCMC specifics and Diagnostic Summary

Adaptive Hamiltonian Monte Carlo7 was used for posterior inference with 1000 iterations (500 warm up 500 sampling) over 4

chains, with target acceptance rates of 0.95 and tree depth of 15.

Posterior predictive checks for our fits all show a well calibrated posterior. Trace files for all chains, along with R-hat statistics

(see Figure S7) indicated convergence, well mixed chains, and no pathological behaviour. We summarise here two metrics of

this performance relevant to Hamiltonian Monte Carlo14. Figure S5 shows the energy plot. identifying the presence of overly

heavy tails that are challenging for sampling or that suggest high autocorrelation. The similarity of the histograms suggests no

pathological behaviour. Figure S6 shows that no divergent transitions were observed, suggesting good exploration of the target

posterior distribution. Low acceptance rates and concentrated log posterior scores would indicate that parts the posterior were

not explored.
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Figure S5. Energy plot. The momentum resampling in a Hamiltonian Markov transition induces a change of energies and a

walk across level sets. The figure shows energy distribution induced by momentum resampling is similar to the marginal energy

distribution suggesting rapid exploration of the posterior and minimal autocorrelation.

Figure S6. Divergence plot. Divergences often indicate that some part of the posterior distribution is not being explored.

These plots show our model has no divergent transitions and a high acceptance rate.
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Figure S7. The degree of convergence of a random Markov chain can be estimated using the Gelman-Rubin convergence

statistic. Values close to one indicate convergence to the underlying distribution. Values greater than 1.1 indicate inadequate

convergence.
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