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1 BASE MODEL CONSTRUCTION

1 Base model construction

1.1 Platform for infectious disease dynamics simulation

We developed a deterministic compartmental model of COVID-19 transmission using the AuTuMN plat-

form, publicly available at https://github.com/monash-emu/AuTuMN/. Our repository allows for the rapid

and robust creation and stratification of models of infectious disease epidemiology and includes plug-

gable modules to simulate heterogeneous population mixing, demographic processes, multiple circulating

pathogen strains, repeated stratification and other dynamics relevant to infectious disease transmission. The

platform was created to simulate tuberculosis dynamics, being an infectious disease whose epidemiology

differs markedly by setting, such that considerable flexibility is desirable [1]. We have progressively de-

veloped the structures of our platform over recent years, and further adapted it to be sufficiently flexible to

permit simulation of other infectious diseases for the purpose of this project.

1.2 Base COVID-19 model

Using the base framework of an SEIR model (susceptible, exposed, infectious, removed), we split the ex-

posed and infectious compartments into two sequential compartments each (SEEIIR). The two sequential

exposed compartments represent the non-infectious and infectious phases of the incubation period, with

the latter representing the “presymptomatic” phase such that infectiousness occurs during three of the six

sequential phases. For this reason, “active” is a more accurate term for the two sequential “I” compartments

and is preferred henceforward. The two infectious compartments represent early and late phases of active

disease, during which symptoms occur if the disease episode is symptomatic, and allow explicit represen-

tation of notification, case isolation, hospitalisation and admission to ICU. The “active” compartment also

includes some persons who remain asymptomatic throughout their disease episode, such that these com-

partments do not map directly to either persons who are infectious or those who are symptomatic (Figure

1).

The latently infected and infectious presymptomatic periods together comprise the incubation period,

with the incubation period and the proportion of this period for which patients are infectious defined by
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1 BASE MODEL CONSTRUCTION

input parameters described below. In general, two sequential compartments can be used to form a gamma-

distributed profile of transition to infectiousness following exposure if the progression rates for these two

compartments are equal, although in implementing this model the relative sojourn times in the two sequen-

tial compartments usually differed. Nevertheless, the profiles implemented are broadly consistent with the

empirically observed log-normal distribution of individual incubation periods [2].

The transition from early active to late active represents the point at which patients are detected (for

those persons for whom detection does eventually occur) and isolation then occurs from this point forward

(i.e. applies during the late disease phase only, see Section 2). This transition point is also intended to

represent the point of admission to hospital or transition from hospital ward to intensive care for patients

for whom this occurs (see Section 1.4).

Figure 1 – Unstratified compartmental model structure. S = susceptible, E = exposed, I =

active, R = recovered/removed. Depth of pink/red shading indicates the infectiousness of the

compartment.

1.3 Age stratification

All compartments of this base compartmental structure were stratified by age into five-year bands from 0-4

years of age through to 70-74 years of age, with the final age group being those aged 75 years and older.

Heterogeneous baseline contact patterns by age were incorporated using age-specific contact rates estimated

by Prem et al. 2017 [3], who combined survey response data with information on national demographic

characteristics to produce age-structured mixing matrices with these age groupings. These are then modified

by non-pharmaceutical interventions as described in Section 3. Our modelled age groups were chosen to

match these mixing matrices. The automatic demographic features of AuTuMN that can be used to simulate
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1 BASE MODEL CONSTRUCTION

births, ageing and deaths were not implemented, because the issues considered pertain to the short- to

medium-term and the immediate implementation of control strategies, for which population demographics

are less relevant.

1.4 Clinical stratification

The age-stratified late exposed/incubation and both the early and late active disease compartments were fur-

ther stratified into five “clinical” categories: 1) asymptomatic, 2) symptomatic ambulatory, never detected,

3) symptomatic ambulatory, ever detected, 4) ever hospitalised, never critical and 5) ever critically unwell

(Figure 2). The proportion of new infectious persons entering stratum 1 (asymptomatic) is age-dependent

(as described in Table 4). The proportion of symptomatic patients (strata 2 to 5) ever detected (strata 3

to 5) is set through a parameter that represents the time-varying proportion of all symptomatic patients

who are ever detected (the case detection rate, see Section 2). Of those ever symptomatic (strata 2 to 5), a

time-constant but age-specific proportion is considered to be hospitalised (entering strata 4 or 5). Of those

hospitalised (entering strata 4 or 5), a fixed proportion was considered to be critically unwell (entering

stratum 5, Figure 3).

1.5 Hospitalisation

For COVID-19 patients who are admitted to hospital, the sojourn time in the early and late active compart-

ments is modified, superseding the default values of the sojourn times for these compartments, as indicated

in Table 3. The point of admission to hospital is considered to be the transition from early to late active

disease, such that the sojourn time in the late disease represents the period of time admitted to hospital. For

patients admitted to ICU, admission to ICU occurs at this same transition point. For this group, the period

of time hospitalised prior to ICU admission is estimated as a proportion of the early active period, such that

the early active period represents both the period ambulatory in the community and the period in hospital

prior to ICU admission.
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1 BASE MODEL CONSTRUCTION

Figure 2 – Illustration of the implementation of the clinical stratification. Depth of pink/red

shading indicates the infectiousness of the compartment. Typical parameter values presented,

although the infectiousness of asymptomatic persons is varied in calibration.
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1 BASE MODEL CONSTRUCTION

Figure 3 – Illustration of the rationale for the clinical stratification.
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1 BASE MODEL CONSTRUCTION

1.6 Infectiousness

Asymptomatic persons are assumed to be less infectious per unit time active than symptomatic persons not

undergoing case isolation (typically by around 50%, although this is varied in calibration/uncertainty anal-

ysis). Infectiousness is also decreased for persons who have been detected to reflect case isolation, and for

those admitted to hospital or ICU to reflect infection control procedures (by 80% for both groups). Presymp-

tomatic individuals are presumed to have equivalent infectiousness to those with early active COVID-19.

1.7 Application of COVID-19-related death

Age-specific infection fatality rates (IFRs) were applied and distributed across strata 4 and 5, with no deaths

typically applied to the first three strata. A ceiling of 50% is set on the proportion of those admitted to ICU

(entering stratum 5) who die. If the infection fatality rate is greater than this ceiling, the proportion of

critically unwell persons dying was set to 50%, with the remainder of the infection fatality rate then applied

to the hospitalised proportion. Otherwise, if the infection fatality rate is less than half of the absolute

proportion of persons critically unwell, the infection fatality rate is applied entirely through stratum 5 (such

that the proportion of critically unwell persons dying in that age group becomes <50% and the proportion

of stratum 4 dying is set to zero). In the event that the infection fatality rate for an age group is greater

than the total proportion hospitalised (which is unusual, but could occur for the oldest age group under

certain parameter configurations), the remaining deaths are assigned to the asymptomatic stratum. This

approach was adopted for computational ease and is valid because the duration active for persons entering

this stratum is the same as for the other non-hospitalised strata, such that the dynamics are identical to

assigning the deaths to any of the first three strata. We used the age-specific IFRs previously estimated

from age-specific death data from 45 countries and results from national-level seroprevalence surveys [4]

as indicated in Table 4. We allowed IFRs to vary around the previously published point estimates in order

to incorporate uncertainty and to allow the IFRs to differ from the settings in which they were estimated

(see Calibration section).
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2 CASE DETECTION

Clinical stra-
tum

Stratum name Pre-symptomatic Early Late

1 Asymptomatic 0.5 0.5 0.5

2 Symptomatic ambulatory never detected 1 1 1

3 Symptomatic ambulatory ever detected 1 1 0.2

4 Hospitalised never critical 1 1 0.2

5 Ever critically unwell 1 1 0.2

Table 1 – Illustration of the relative infectiousness of disease compartments by clinical stratification
and stage of infection. Typical parameter values displayed.

2 Case detection

2.1 General approach

We calculate a time-varying case detection rate, being the proportion of all symptomatic cases (clinical

strata 2 to 5) that are detected (clinical strata 3 to 5). This proportion is informed by the number of tests

performed using the following formula:

CDR(time) = 1− e−shape×tests(time)

time is the time in days from the 31st December 2019 and tests(time) is the number of tests per capita

done on that date. To determine the value of the shape parameter, we solve this equation based on the

assumption that a certain daily testing rate tests(t) is associated with a certain CDR(t). Solving for shape

yields:

shape =
−log(1−CDR(t))

tests(t)

That is, if it is assumed that a certain daily per capita testing rate is associated with a certain proportion

of symptomatic cases detected, we can determine shape. As this relationship is not well understood and

unlikely to be consistent across all settings, we vary the CDR that is associated with a certain per capita

testing rate during uncertainty/calibration. Given that the CDR value can be varied widely, the purpose of

this is to incorporate changes in the case detection rate that reflect the empirical historical profile of changes
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3 IMPLEMENTATION OF NON-PHARMACEUTICAL INTERVENTIONS

in testing capacity over time.

3 Implementation of non-pharmaceutical interventions

A major part of the rationale for the development of this model was to capture the past impact of non-

pharmaceutical interventions (NPIs) and produce future scenarios projections with the implementation or

release of such interventions.

3.1 Isolation and quarantine

For persons who are identified with symptomatic disease and enter clinical stratum 3, self-isolation is as-

sumed to occur and their infectiousness is modified as described above. The proportion of ambulatory

symptomatic persons effectively identified through the public health response by any means is determined

by the case detection rate as described above.

3.2 Community quarantine or “lockdown” measures

For all NPIs relating to reduction of human mobility or “lockdown” (i.e. all NPIs other than isolation

and quarantine), these interventions are implemented through dynamic adjustments to the age-assortative

mixing matrix. The baseline mixing matrices of Prem et al. [3] are synthetic and do not represent direct

observations or reports from surveys (in the case of the 144 countries to which they were extrapolated from

observations in the eight “POLYMOD” countries of Western Europe). Although synthetic, the matrices are

contextualised to national demographic information, including country-specific data that include household

size, workforce participation and school enrolment. Further, the matrices presented are easily machine-

readable and appear to be plausible representations of contact structures within these countries.

The matrices also have the major advantage of allowing for disaggregation of total contact rates by

location, i.e. home, work, school and other locations. This disaggregation allows for the simulation of

various NPIs in the local context by dynamically varying the contribution of each location to reflect the

historical implementation of the interventions.

The corresponding mixing matrix (denoted C0) is presented using the standard convention that a row
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3 IMPLEMENTATION OF NON-PHARMACEUTICAL INTERVENTIONS

represents the average number of age-specific contacts per day for a contact recipient of a given age-group.

In other words, the element C0i, j is the average number of contacts per day that an individual of age-group

j makes with individuals of age-group i.

This matrix results from the summation of the four location-specific contact matrices provided by Prem

et al.: C0 =CH +CS +CW +CL, where CH , CS, CW and CL are the age-specific contact matrices associated

with households, schools, workplaces and other locations, respectively.

In our model, the contributions of the matrices CS, CW and CL vary with time such that the input contact

matrix can be written:

C(t) =CH + s(t)2CS +w(t)2CW + l(t)2CL

The modifying functions are each squared to capture the effect of the mobility changes on both the

infector and the infectee in any given interaction that could potentially result in transmission. The modifying

functions incorporate both macro-distancing and microdistancing effects, depending on the location.

3.3 School closures/re-openings

Reduced attendance at schools is represented through the function s(t), which represents the proportion of

all school students currently attending on-site teaching. If schools are fully closed, s(t) = 0 and CS does not

contribute to the overall mixing matrix C(t). s(t) is calculated through a series of estimates of the proportion

of students attending schools, to which a smoothed step function is fitted. Note that the dramatic changes

in this contribution to the mixing matrix with school closures/re-openings is a more marked change than

is seen with the simulation of policy changes in workplaces and other locations (which are determined by

empiric data and so do not vary so abruptly and do not fall to zero).

3.4 Workplace closures

Workplace closures are represented by quadratically reducing the contribution of workplace contacts to

the total mixing matrix over time. This is achieved through the scaling term w(t)2 which modifies the

contribution of CW to the overall mixing matrix C(t). The profile of the function w(t) is set by fitting a

polynomial spline function to Google mobility data for workplace attendance (Table 2).
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3 IMPLEMENTATION OF NON-PHARMACEUTICAL INTERVENTIONS

3.5 Community-wide movement restriction

Community-wide movement restriction (or “lockdown”) measures are represented by proportionally reduc-

ing the contribution of the other locations contacts to the total mixing matrix over time. This is achieved

through the scaling term l(t)2 which modifies the contribution of CL to the overall mixing matrix C(t). The

profile of the function l(t) is set by fitting a polynomial spline function to an average of Google mobility

data for various locations, as indicated in Table 2.

3.6 Household contacts

The contribution of household contacts to the overall mixing matrix C(t) is fixed over time. Although

Google provides mobility estimates for residential contacts, the nature of these data are different from those

for each of the other Google mobility types in that they represent the time spent in that location rather

than the duration. The daily frequency with which people attend their residence is likely to be close to one

and we considered that household members likely have a daily opportunity for infection with each other

household member. Therefore, we did not implement a function to scale the contribution of household

contacts to the mixing matrix with time.

Prem “location” Approach Google mobility types

School Policy response Not applicable

Household Constant Not applicable

Workplace Google mobility Workplace

Other locations Google mobility Unweighted average of:

• Retail and recreation
• Grocery and pharmacy
• Parks
• Transit stations

Table 2 – Mapping of Google mobility data to contact locations (as defined by Prem et al.)
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4 PARAMETERS

3.7 Microdistancing

Interventions other than those that prevent people coming into contact with one another are thought to be

important to COVID-19 transmission and epidemiology, such as maintaining interpersonal physical distance

and the wearing of face coverings. We therefore implemented a “microdistancing” function to represent

reductions in the rate of effective contact that is not attributable to persons visiting specific locations and

so is not captured through Google mobility data. This microdistancing function reduces the values of all

elements of the mixing matrices by a certain proportion. These time-varying functions multiplicatively

scale the location-specific contact rate modifiers s(t), w(t) and l(t).

4 Parameters

4.1 Non-age-stratified parameters

Parameter Value Rationale

Incubation period Calibration
parameter, truncated
normal distribution,
mean 5.5 days

Estimates of the incubation period have included
5.1 days, 5.2 days and 4.8 days [5] [6] [7] [8]. A
systematic review [2] found that data are best
fitted by a log-normal distribution (mean 5.8 days,
CI 5.0 to 6.7, median 5.1 days). Our systematic
review [9] found that estimates of the mean
incubation period have varied from 3.6 to 7.4
days.

Proportion of incubation
period infectious

50% Infectiousness is considered to be present
throughout a considerable proportion of the
incubation period, based on analyses of
confirmed source-secondary pairs [10] and early
findings that the incubation period was similar to
the serial interval [5]. The study of
source-secondary pairs was also the primary
reference cited by a review of the infectious period
that identified studies that quantified the
pre-symptomatic period, which concluded that the
median pre-symptomatic period could range from
less than one to four days [11].
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4 PARAMETERS

Continuation of Table 3

Parameter Value Rationale

Active period (regardless of
detection/isolation, for
clinical strata 1 to 3)

Calibration
parameter, truncated
normal distribution,
mean 8 days

This quantity is difficult to estimate, given that
identified cases are typically quarantined. Studies
in settings of high case ascertainment and an
effective public health response have suggested a
duration of greater than 5.5 days [8]. PCR
positivity, which may continue for up to two to
three weeks from the point of symptom onset [10]
[11], is difficult to interpret and does not
necessarily indicate infectiousness. Consistent
with these findings, the duration infectious for
asymptomatic persons has been estimated at 6.5
to 9.5 days [11] (although in our model, this would
include the pre-symptomatic infectious period).

Proportion of infectious
period before isolation or
hospitalisation can occur

0.333 Assumed

Disease duration prior to
admission for hospitalised
patients not critically unwell
(i.e. early active sojourn
time, stratum 4)

7.7 days Mean value from ISARIC cohort, as reported on
4th October 2020 in Table 6 [12], and similar to
the expected mean from earlier reports from
ISARIC [13]. This cohort represents high-income
countries better than low and middle-income
countries, with the United Kingdom contributing
data on the greatest number of patients, followed
by France. Earlier estimates of this quantity from
China included 4.4 days [5].

Duration of hospitalisation if
not critically unwell (late
active sojourn time, stratum
4)

12.8 days Mean value from the ISARIC cohort, as reported
on 4th October 2020 in Table 6 [12].

ICU duration (late active
sojourn time, stratum 5)

10.5 days Mean duration of stay in ICU/HDU from ISARIC
cohort for patients with complete data, as
reported on 10th October 2020 Table 6 [12]. Many
other studies reporting on the average duration of
ICU stay suffer from right-truncation issues, often
estimating 7-10 days length of stay.

Duration of time prior to ICU
for patients admitted to ICU

10.5 days Calculated as the sum of the time from symptom
onset to hospital admission (7.7 days above) plus
the duration from hospital admission to ICU
admission reported by October ISARIC report
(2.8 days) [12].
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4 PARAMETERS

Continuation of Table 3

Parameter Value Rationale

Relative infectiousness of
asymptomatic persons (per
unit time with active
disease)

0.5 Assumed

Relative infectiousness of
persons admitted to hospital
or ICU

0.2 Assumed

Relative infectiousness of
identified persons in
isolation

0.2 Assumed

Proportion of hospitalised
patients ever admitted to
ICU

0.17 Assumed

Table 3 – Universal (non-age-stratified) model parameters. Point estimates are used as model
parameters except where ranges are indicated in calibration parameter table below in calibration
table.

4.2 Age-specific parameters
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4 PARAMETERS

Age group
(years)

Clinical
fractiona

Relative
susceptibility to
infection

Infection fatality
rate

Proportion of
symptomatic
patients hospi-
talised

0 to 4 0.29 0.36 3 ×10-5 0.0777

5 to 9 0.29 0.36 1 ×10-5 0.0069

10 to 14 0.21 0.36 1 ×10-5 0.0034

15 to 19 0.21 1 3 ×10-5 0.0051

20 to 24 0.27 1 6 ×10-5 0.0068

25 to 29 0.27 1 1.3 ×10-4 0.0080

30 to 34 0.33 1 2.4 ×10-4 0.0124

35 to 39 0.33 1 4.0 ×10-4 0.0129

40 to 44 0.40 1 7.5 ×10-4 0.0190

45 to 49 0.40 1 1.21 ×10-3 0.0331

50 to 54 0.49 1 2.07 ×10-3 0.0383

55 to 59 0.49 1 3.23 ×10-3 0.0579

60 to 64 0.63 1 4.56 ×10-3 0.0617

65 to 69 0.63 1.41 1.075 ×10-2 0.1030

70 to 74 0.69 1.41 1.674 ×10-2 1.072

75 and above 0.69 1.41 5.748 ×10-2, b 0.0703

Source/
rationale

Model fitting to
age-distribution
of early cases in
China, Italy,
Japan,
Singapore, South
Korea and
Canada taken
from upper-left
panel of Figure
2b of [14].

Conversion of odds
ratios presented in
Table S15 of Zhang
et al. 2020 to relative
risks using data
presented in Table
S14 of the same
study [15].c

Estimated from
pooled analysis of
data from 45
countries from Table
S3 of O’Driscoll et al
[4]. Values
consistent with
previous estimates
using serosurveys
performed in Spain
[16].

Estimates from
the Netherlands
as the first wave
of infections de-
clined from 4th
May to 21st July
[17].

Table 4 – Age-stratified parameter values. Age-stratified parameters not varied during calibra-
tion, or varied through a common adjuster parameter.
a Proportion of incident cases developing symptoms.
b Weighted average of IFR estimates for 70 to 79 and 80 and above age groups.
c Note the relative magnitude of these values are similar to those estimated by the analysis we use to estimate the age-specific clinical
fraction.[14]
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5 CALCULATION OF OUTPUTS

5 Calculation of outputs

5.1 Incidence

Incidence is calculated as any transitions into the early active compartment (“I”).

5.2 Hospital occupancy

This is calculated as the sum of three quantities:

1. All persons in the late active compartment in clinical stratum 4, representing those admitted to hos-

pital but never critically unwell.

2. All persons in the late active compartment in clinical stratum 5, representing those currently admitted

to ICU.

3. A proportion of the early active compartment in clinical stratum 5, representing those who will be

admitted to ICU at a time in the future. This proportion is calculated as the quotient of 1) the differ-

ence between the pre-ICU period and the pre-hospital period for clinical stratum 4, divided by 2) the

total pre-ICU period. That is, a proportion of the pre-ICU period is considered to represent patients

in hospital who have not yet been admitted to ICU.

5.3 ICU occupancy

This is calculated as all persons in the late active compartment in clinical stratum 5.

5.4 Seropositive proportion

This is calculated as the proportion of the population in the recovered (“R”) compartment. Although very

similar numerically to the attack rate, persons who died of COVID-19 are not included in the denominator.

5.5 COVID-19-related mortality

This is calculated as all transitions representing death, exiting the model. This is implemented as depletion

of the late active compartment.
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6 CALIBRATION

5.6 Notifications

Local case notifications are calculated as transitions from the early to the late active compartment for clinical

strata 3 to 5.

6 Calibration

6.1 General approach

The model was calibrated using an adaptive Metropolis (AM) algorithm. In particular, we used the algo-

rithm based on adaptive Gaussian proposal functions proposed by Haario et al. to sample parameters from

their posterior distributions [18]. We ran seven independent AM chains and combined the samples of the

seven chains to project epidemic trajectories over time. The definitions of the prior distributions and the

likelihood are detailed as follows.

6.2 Likelihood function

Likelihood functions are derived from comparing model outputs to target data at each time point nominated

for calibration. The dispersion parameters of these distribution are included as calibration parameters and

varied during the calibration approach to improve calibration efficiency.

6.3 Variation of infection fatality rate and symptomatic proportions

Whether age-specific infection fatality rates (IFRs) are significantly different in low- and middle-income

settings from those in high-income settings remains highly uncertain. For this application to the Philippines,

we adjust the IFRs described above according to a factor that modifies the age-specific IFR for each age

group relative to the baseline values described in the previous section, allowing them to vary from those

reported up to two-fold those values. The age-specific IFRs used in the model are obtained from:

IRF∗i =
IFRi×ω

IFRi(ω−1)+1
,

where IRF∗i is the modelled IFR for age group i, IFRi is the point estimate reported by O’Driscoll et al.

for the IFR of age group i [4], and ω is the uncertainty adjuster varied during model calibration.
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6 CALIBRATION

Similarly, we incorporated uncertainty around the age-specific proportions of symptomatic individuals

by applying an uncertainty adjuster:

s∗i =
si× γ

si(γ−1)+1
,

where s∗i is the modelled symptomatic proportion for age group i, si is the point estimate reported by

Davies et al. for the IFR of age group i [14], and γ is the associated uncertainty adjuster varied during

model calibration.

6.4 Calibration parameters

Parameter name Distribution type Distribution parameters

Incubation period Truncated normal Mean 5.5 days, standard

deviation 0.97 days,

truncation <1 day

Infectious period (for clinical

strata 1 to 3)

Truncated normal Mean 6.5 days, standard

deviation 0.77 days,

truncation <4 days

Risk of infection per contact Uniform 0.03 to 0.05

Infection fatality rate adjuster

(ω)

Uniform Range 1.8 to 2.28

Proportion of symptomatic

cases that would be detected

with a daily per capita testing

rate of one test per ten

thousand population

Uniform Range 0.02 to 0.15
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Continuation of Table 5

Parameter name Distribution type Distribution parameters

Infectious seed Uniform Range 10 to 100

Maximal effect of Minimum

Health Standards

Uniform 0.1 to 0.6

Adjuster applied to

age-specific proportion of

infections leading to

symptoms (“Clinical fraction”)

Uniform 0.2 to 2

Adjuster applied to

age-specific proportion of

symptomatic infections

leading to hospitalisations

Uniform 0.2 to 2

Adjuster applied to

age-specific infection fatality

rate

Uniform 0.2 to 2

Table 5 – Epidemiological calibration parameters.

6.5 Calibration targets

We calibrated each of the Philippines models to the daily notification rate (with seven-day moving average

smoothing) observed nationally or for the sub-region simulated over time.

For ICU occupancy, we only considered the most recent estimate of ICU occupancy and did not cali-

brate to multiple time points for this indicator. Similarly for cumulative infection-related deaths, we only

calibrated to the most recent data time point available.
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7 Ordinary differential equations

For the clearest description of the model, we refer the reader to our code repository, because our object-

oriented approach to software development is intended to be highly transparent and readable. For those who

prefer dynamical systems such as those presented in the form of ordinary differential equations, we present

the following.

dSa

dt
=−λa(t)×σa×Sa

dEa

dt
= λa(t)×σa×Sa−αEa

dPa,c

dt
= pa,c(t)×αEa−νPa,c

dIa,c

dt
= νPa,c− γcIa,c

dLa,c

dt
= γcIa,c−δa,cLa,c−µa,cLa,c

dRa

dt
= ∑

c
δa,cLa,c

where

λa = β

[
∑
j,c

ε×Pj

N j
×Ca, j(t)+∑

j,c

I j,c× ιc +L j,c×κc

N j
×Ca, j(t)

]

∑
c

pa,c(t) = 1,∀t ∈ R

C0 = CH +CS +CW +CL

C(t) = h(t)×CH + s(t)×CS +w(t)×CW + l(t)×CL

l(t) =
re(t)+gr(t)+ pa(t)+ tr(t)

4
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Symbol Explanation

S Persons susceptible to infection

E Persons in the non-infectious incubation period

P Persons in the incubation period

I Persons in the early active disease period, before isolation or hospitalisation may occur

L Persons in the late active disease period, after isolation or hospitalisation may have

occurred

R Persons in the recovered period, from which re-infection cannot occur
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Symbol Explanation

t Time

a Compartment of age group a

c Compartment of clinical stratification c

σ Relative susceptibility to infection

α Rate of progression from non-infectious to infectious incubation period

ν Rate of progression from infectious incubation to early active disease

γ Rate of progression from early active disease to late active disease

µ Rate of disease-related death

ε Relative infectiousness of pre-symptomatic compartment

ι Clinical stratification infectiousness vector for early active compartment

κ Clinical stratification infectiousness vector for late active compartments

β Probability of infection per contact between an infectious and susceptible individual

j Infectious populations

p Proportion progressing to each clinical stratification
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Symbol Explanation

C Mixing matrix

H Household contribution to mixing matrix

W Workplace contribution to mixing matrix

O Other locations contribution to mixing matrix

S Schools contribution to mixing matrix

l Other locations macrodistancing function of time

w Function fit to Google mobility data for workplaces

s Function fit to Google mobility data for schools

re Function fit to Google mobility data for retail and recreation

gr Function fit to Google mobility data for grocery and pharmacy

pa Function fit to Google mobility data for parks

tr Function fit to Google mobility data for transit stations

8 Supplemental figures and tables to main text

8.1 Supplemental Tables
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Table 6 – Laboratory testing facilities by region.

Facility Name Region

Batangas Medical Center GeneXpert Laboratory Calabarzon

Daniel O. Mercado Medical Center Calabarzon

De La Salle Medical and Health Sciences Institute Calabarzon

Greencity Medical Center Calabarzon

Lucena United Doctors Hospital and Medical Center Calabarzon

Mary Mediatrix Medical Center Calabarzon

Ospital ng Imus Calabarzon

Qualimed Hospital Sta. Rosa Calabarzon

San Pablo College Medical Center Calabarzon

San Pablo District Hospital Calabarzon

UPLB Covid-19 Molecular Laboratory Calabarzon

Allegiant Regional Care Hospital Central Visayas

Cebu Doctors University Hospital Inc Central Visayas

CebuTBReferenceLaboratory-MolecularFacilityforCOVID-19Testing Central Visayas

Chong Hua Hospital Central Visayas

Governor Celestino Gallares Memorial Medical Center Central Visayas
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Facility Name Region

Prime Care Alpha Covid-19 Testing Laboratory Central Visayas

University of Cebu Medical Center Central Visayas

Vicente Sotto Memorial Medical Center (VSMMC) Central Visayas

Amang Rodriguez Memorial Center GeneXpert Laboratory National Capital Region

Asian Hospital and Medical Center National Capital Region

Chinese General Hospital National Capital Region

De Los Santos Medical Center National Capital Region

Dr. Jose N. Rodriguez Memorial Hospital and Sanitarium (TALA) GeneXpert

Laboratory

National Capital Region

Dr. Jose N. Rodriguez Memorial Hospital and Sanitarium (TALA) RT PCR National Capital Region

Fe del Mundo Medical center National Capital Region

Hi-Precision Diagnostics (QC) National Capital Region

Lung Center of the Philippines (LCP) National Capital Region

Lung Center of the Philippines GeneXpert Laboratory National Capital Region

Makati Medical Center (MMC) National Capital Region

Marikina Molecular Diagnostics Laboratory (MMDL) National Capital Region

National Kidney and Transplant Institute National Capital Region

National Kidney and Transplant Institute GeneXpert Laboratory National Capital Region

Philippine Children’s Medical Center National Capital Region
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Facility Name Region

Philippine Heart Center GeneXpert Laboratory National Capital Region

SafeguardDNADiagnosticsInc National Capital Region

San Miguel Foundation Testing Laboratory National Capital Region

Singapore Diagnostics National Capital Region

St. Luke’s Medical Center - BGC (HB) GeneXpert Laboratory National Capital Region

St. Luke’s Medical Center - BGC (SLMC-BGC) National Capital Region

St. Luke’s Medical Center - Quezon City (SLMC-QC) National Capital Region

Sta. Ana Hospital - Closed System Molecular Laboratory (GeneXpert) National Capital Region

The Medical City (TMC) National Capital Region

Tondo Medical Center GeneXpert Laboratory National Capital Region

Tropical Disease Foundation National Capital Region

University of Perpetual Help DALTA Medical Center Inc National Capital Region

UP-PGH Molecular Laboratory National Capital Region

UP National Institutes of Health (UP-NIH) National Capital Region

UP Philippine Genome Center National Capital Region

Veteran Memorial Medical Center National Capital Region

Victoriano Luna - AFRIMS National Capital Region
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8.2 Supplemental Figures

0−4

10−14

15−19

20−24

25−29

30−34

35−39

40−44

45−49

50−54

55−59

60−64

65−69

70−74

75W

0.0 0.5 1.0 1.5

Population size hmillionsf

Calabarzon

0−4

10−14

15−19

20−24

25−29

30−34

35−39

40−44

45−49

50−54

55−59

60−64

65−69

70−74

75W

0.0 0.2 0.4 0.6 0.8

Population size hmillionsf

Central Visayas

0−4

10−14

15−19

20−24

25−29

30−34

35−39

40−44

45−49

50−54

55−59

60−64

65−69

70−74

75W

0.0 0.5 1.0

Population size hmillionsf

A
ge
gr
ou
p

National Capital Region

0.5

1.0

1.5

Apr 2020 Jul 2020 Oct 2020 Jan 2021

C
ha
ng
e
in
m
ob
ili
ty
fr
om

ba
se
lin
e

Home

Work

Other locations

0.5

1.0

1.5

Apr 2020 Jul 2020 Oct 2020 Jan 2021

0.5

1.0

1.5

Apr 2020 Jul 2020 Oct 2020 Jan 2021

Figure 4 – Population size and mobility included in the age-structured COVID-19 for three

regions of the Philippines. Starting population age distribution (top row) and community

quarantine driven mobility adjustments applied to the mixing matrices (bottom row) for

Calabarzon (left), Central Visayas (middle), and the National Capital Region (right). Other

locations in the mobility plots include retail and recreation, supermarket and pharmacy,

parks, and public transport.
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seven chains overlap for each parameter, indicating model convergence.
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Figure 6 – Comparison of models that included and did not include Minimum Health Stan-

dards (MHS) with daily confirmed cases for Calabarzon. We calibrated the Calabarzon

model to daily confirmed cases (black dots; same in both plots), which included MHS (left)

and ran a counterfactual scenario that did not include MHS (right). The red curve repre-

sents the effect of MHS (i.e., reduced transmission risk per contact) in the model through

time. The MHS effect value is squared in the model to account for the reduction in the

probability of an infected person passing on the infection and the probability of a contact

being infected, prior to adjustment of each cell of the mixing matrix.
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Figure 7 – Comparison of models that included and did not include Minimum Health Stan-

dards (MHS) with daily confirmed cases for Central Visayas. We calibrated the Central

Visayas model to daily confirmed cases (black dots; same in both plots), which included

MHS (left) and ran a counterfactual scenario that did not include MHS (right). The red curve

represents the effect of MHS (i.e., reduced transmission risk per contact) in the model

through time. The MHS effect value is squared in the model to account for the reduction

in the probability of an infected person passing on the infection and the probability of a

contact being infected, prior to adjustment of each cell of the mixing matrix. The recent

uptick in cases could be due to a new SARS-CoV-2 Variant of Concern.
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Figure 8 – Comparison of models that included and did not include Minimum Health Stan-

dards (MHS) with daily confirmed cases for the National Capital Region. We calibrated

the National Capital Region model to daily confirmed cases (black dots; same in both

plots), which included MHS (left) and ran a counterfactual scenario that did not include

MHS (right). The red curve represents the effect of MHS (i.e., reduced transmission risk

per contact) in the model through time. The MHS effect value is squared in the model to

account for the reduction in the probability of an infected person passing on the infec-

tion and the probability of a contact being infected, prior to adjustment of each cell of the

mixing matrix.
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Figure 9 – Proportional modeled (blue bars) versus reported (black bars) cumulative cases

by age group. The model over predicted cumulative cases for young age groups and under

predicted cumulative cases for middle aged groups, with good fit for age groups over 40

years. There were 2,174 reported cases excluded from these plots because there was no

age recorded.
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Figure 10 – Model estimated epidemic indices from the calibrated Calabarzon model. Mod-

eled median cumulative deaths, ICU occupancy, incidence, and percentage of the popula-

tion recovered from COVID-19 (blue line) with shaded areas for 25th to 75th centile (dark

blue) and 2·5th to 97·5th centile (light blue) and overlaid with reported cumulative deaths

and ICU occupancy (black dots).
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Figure 11 – Model estimated epidemic indices from the calibrated Central Visayas model.

Modeled median cumulative deaths, ICU occupancy, incidence, and percentage of the pop-

ulation recovered from COVID-19 (blue line) with shaded areas for 25th to 75th centile (dark

blue) and 2·5th to 97·5th centile (light blue) and overlaid with reported cumulative deaths

and ICU occupancy (black dots).
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Figure 12 – Model estimated epidemic indices from the calibrated National Capital Region

model. Modeled median cumulative deaths, ICU occupancy, incidence, and percentage of

the population recovered from COVID-19 (blue line) with shaded areas for 25th to 75th cen-

tile (dark blue) and 2·5th to 97·5th centile (light blue) and overlaid with reported cumulative

deaths and ICU occupancy (black dots).
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Figure 13 – Prior distributions overlaid with posterior density plots for epidemiological

parameters for the Philippines national model. MHS refers to Minimum Health Standards.

All parameters with the term “adjuster” allow for modification to the best estimates from

the literature (i.e., the priors). The parameter value of the posterior provides the odds ratio

used in the model to adjust the odds of an event. Note that the posterior distributions do

not exceed the priors even though they appear to do so on some plots because they are

plotted as densities.
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Figure 14 – Model estimated case detection rates varied across regions and through time.

We derived values for the symptomatic cases detected through time from the daily num-

ber of tests performed, the population size, and the calibrated parameter representing the

value of the case detection rate given a testing rate of one test per 10,000 persons per day.

We provide a list of laboratory facilities that conducted tests in the three regional models

in supplemental Table 6.
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Figure 15 – Epidemic scenario projections for Calabarzon. Median estimates of daily con-

firmed cases expected under different policy changes (left). Median estimates of daily con-

firmed cases (lines) with 25th to 75th centiles (dark shading) and 2·5th to 97·5th centiles

(light shading) for the baseline scenario (where current conditions are carried forward) and

for the scenario where MHS policy ends. Note the different y-axes on each plot.
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Figure 16 – Epidemic scenario projections for Central Visayas. Median estimates of daily

confirmed cases expected under different policy changes (left). Median estimates of daily

confirmed cases (lines) with 25th to 75th centiles (dark shading) and 2·5th to 97·5th centiles

(light shading) for the baseline scenario (where current conditions are carried forward) and

for the scenario where MHS policy ends. Note the different y-axes on each plot.
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Figure 17 – Epidemic scenario projections for the National Capital Region. Median es-

timates of daily confirmed cases expected under different policy changes (left). Median

estimates of daily confirmed cases (lines) with 25th to 75th centiles (dark shading) and

2·5th to 97·5th centiles (light shading) for the baseline scenario (where current conditions

are carried forward) and for the scenario where MHS policy ends. Note the different y-axes

on each plot.
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