Supporting Information

Extended-release of metronidazole drug using chitosan/graphene oxide bionanocomposite beads as drug carrier

Gyanendra Kumar¹, Karan Chaudhary¹, Navin Kumar Mogha^{1,2}, Arun Kant¹ and Dhanraj T. Masram¹*

¹Department of Chemistry, University of Delhi, Delhi-110007, India ²Shriram Institute for Industrial Research, Delhi-110007, India

TABLE OF CONTENTS

 Thermogravimetric analysis (TGA) Digital photograph of MTD-Chi/GO bio-nanocomposite beads Drug release kinetics 	S2
	S3
	S4

1. Thermogravimetric analysis (TGA)

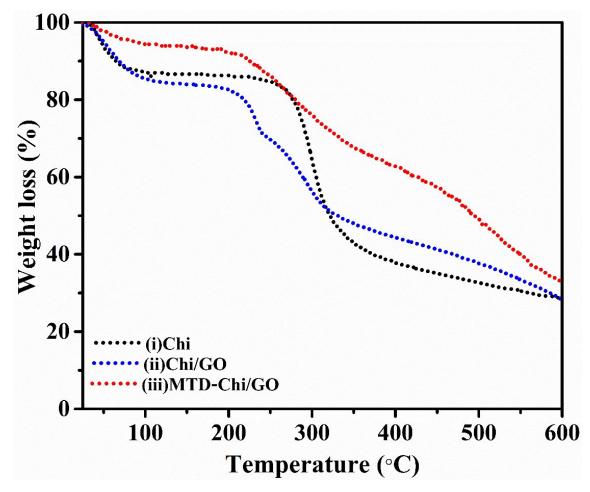


Figure. S1. TGA spectra of (i) Chi, (ii) Chi/GO and (iii) MTD-Chi/GO bio-nanocomposite beads.

$\textbf{2. Digital photograph of pure chitosan, MTD-Chi} \ \textbf{Amp MTD-Chi/GO bio-nano composite beads}$

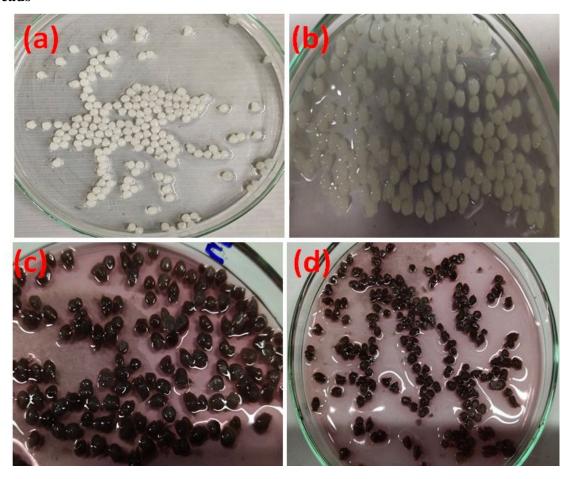
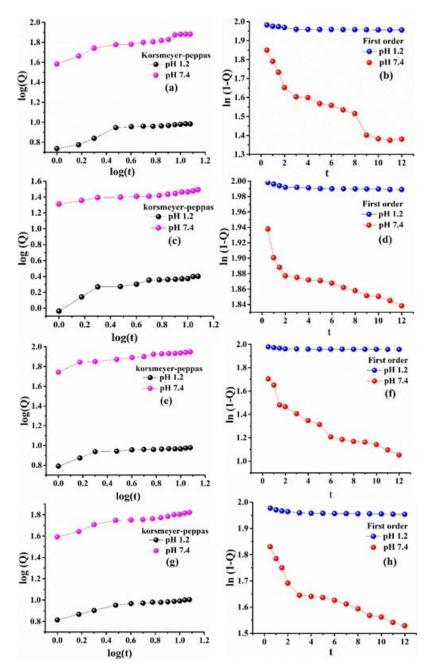



Figure: S2. Digital photograph showing of (a) Pure chitosan (b) MTD-Chi and (c-d) MTD-Chi/GO bionanocomposite beads.

3. Drug release kinetics

Figure. S3. Drug release kinetics of (a and b) Korsmeyer-pappas & First-order reaction of MC6, (c and d) Korsmeyer-pappas & First-order reaction of MC8, (e and f) Korsmeyer-pappas & First-order reaction of MCG12, (g and h) Korsmeyer-pappas & First-order reaction of MCG16 at pH 7.4 and pH 1.2 respectively.