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Web Appendix A: Influence functions

This Web Appendix presents the explicit formulas for the influence functions of the estima-

tors developed in this article. The influence function for the working independence Aalen–

Johansen estimator P̂n,hj(s, t), for h ∈ T c and j ∈ S, with h 6= j, is

γihj(s, t) =
∑
l∈T c

∑
q∈S

∫ t

s

P0,hl(s, u−)P0,qj(u, t)

E {Y1·,l(u)}
dM̄ilq(u), 0 6 s 6 t 6 τ,

where

M̄ilq(t) = Ni·,lq(t)−
∫
(0,t]

Yi·,l(u)dA0,lq(u).

If h = j, then γihh(s, t) = −
∑

j ̸=h γihj(s, t). The empirical version γ̂ihj(s, t) of this influence

function can be obtained by replacing the unknown transition probabilities and cumulative

transition intensities with their uniformly consistent estimates, and the expectations with

sample averages over clusters.

The influence function for the weighted working independence Aalen–Johansen estimator

P̂ ′
n,hj(s, t), for h ∈ T c and j ∈ S, with h 6= j, is

γ′ihj(s, t) =
∑
l∈T c

∑
q∈S

∫ t

s

P ′
0,hl(s, u−)P ′

0,qj(u, t)

E
{
M−1

1 Y1·,l(u)
} dM̄ ′

ilq(u), 0 6 s 6 t 6 τ,

where

M̄ ′
ilq(t) =M−1

i

{
Ni·,lq(t)−

∫
(0,t]

Yi·,l(u)dA
′
0,lq(u)

}
.

If h = j, then γ′ihh(s, t) = −
∑

j ̸=h γ
′
ihj(s, t). The empirical version γ̂′ihj(s, t) of this influence

function can be obtained by replacing the unknown transition probabilities and cumulative

transition intensities with their uniformly consistent estimates, and the expectations with

sample averages over clusters.

The influence function for the state occupation probability estimator P̂n,j(t) is

ψij(t) =
∑
h∈T c

(
P0,h(0)γihj(0, t) + P0,hj(0, t)

[
Yi·,h(0+)− EY1·,h(0+)

π0EM1

−P0,h(0)

{
Mi − EM1

EM1

+
M−1

i Yi·,·(0+)− π0
π0

}])
,
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with Yi·,·(0+) =
∑

h∈T c Yi·,h(0+). The corresponding empirical version can be easily obtained

by replacing the unknown state occupation and transition probabilities with their consistent

estimates, γihj(0, t) with γ̂ihj(0, t) as described above, and the expectations with sample

averages over clusters.

The influence function for the weighted state occupation probability estimator P̂ ′
n,j(t) is

ψ′
ij(t) =

∑
h∈T c

(P ′
0,h(0)γ

′
ihj(0, t) + P ′

0,hj(0, t)π
−1
0 [M−1

i Yi·,h(0+)− E{M−1
1 Y1·,h(0+)}

−P ′
0,h(0){M−1

1 Y1·,·(0+)− π0}]).

The corresponding empirical version can be easily obtained by replacing the unknown state

occupation and transition probabilities with their consistent estimates, γ′ihj(0, t) with γ̂′ihj(0, t)

as described above, and the expectations with sample averages over clusters.

The classes of functions {ψij(t) : t ∈ [0, τ ]} and {ψ′
ij(t) : t ∈ [0, τ ]} are P -Donsker for any

j ∈ S. This is due to the fact that these classes consist of linear combinations of functions

that belong to P -Donsker classes by Theorem 2 in the main text, fixed functions, and random

variables with bounded second moments.

Web Appendix B: Asymptotic Theory Proofs

The proofs of the theorems provided in Section 2 of the manuscript rely on empirical process

theory (van der Vaart and Wellner, 1996; Kosorok, 2008). In this Appendix we use the

standard empirical processes notation

Pnf =
1

n

n∑
i=1

f(Di), and Pf =

∫
D
fdP = Ef,

where, for any measurable function f : D 7→ R, Di denotes the observed variables for

the ith cluster, D denotes the sample space, and P the true (induced) probability measure

defined on the Borel σ-algebra on D. We also use the supremum norm notation ‖f(t)‖∞ ≡

supt∈[0,τ ] |f(t)|. Let V be a generic constant that may differ from place to place. In this Web

Appendix we only prove the asymptotic properties of P̂n(s, t) since the properties of P̂′
n(s, t),
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P̂n,j(t), and P̂ ′
n,j(t), j ∈ S, can be established using the same arguments. Without loss of

generality and for simplicity of presentation we set the starting point s = 0. Before outlining

the proofs of Theorems 1-3 we provide and prove two useful lemmas.

Lemma 1: Let N(t) be an arbitrary counting process on [0, τ ] with P{N(τ)}2 < ∞ and

h(t) be a fixed and non-negative function with h(t) 6 V almost everywhere with respect to

the Lebesgue-Stieltjes measure generated by (the sample paths of) N(t). Then, the class of

functions

F1(s) =

{∫ t

s

h(u)dN(u) : t ∈ [s, τ ]

}
,

is P -Donsker for any s ∈ [0, τ).

Proof. Let ‖h‖Q,2 = (
∫
|h|2dQ)1/2 for any probability measure Q. Now, for any probability

measure Q and any t1, t2 ∈ [0, τ ] it follows that∥∥∥∥∫ t1

s

h(u)dN(u)−
∫ t2

s

h(u)dN(u)

∥∥∥∥
Q,2

6
∥∥∥∥∫ t2

t1

h(u)dN(u)

∥∥∥∥
Q,2

6 V ‖N(t2)−N(t1)‖Q,2.

By lemma 22.4 in Kosorok (2008), it follows that the class Φ1 = {N(t) : t ∈ [0, τ ]}

has a bounded uniform entropy integral (BUEI) with envelope 2N(τ), and is also point-

wise measurable (PM). This implies that, for any t ∈ [0, τ ] there exist a ti ∈ [0, τ ], i =

1, . . . , N(ϵ2‖N(τ)‖Q,2,Φ1, L2(Q)), such that ‖N(t)−N(ti)‖Q,2 < ϵ2‖N(τ2)‖Q,2, for any ϵ > 0

and any finitely discrete probability measure Q. Therefore, for any member of F1(s), there

exist a
∫ ti
s
h(u)dN(u), for i = 1, . . . , N(ϵ2‖N(τ)‖Q,2,Φ1, L2(Q)), such that∥∥∥∥∫ t

s

h(u)dN(u)−
∫ ti

s

h(u)dN(u)

∥∥∥∥
Q,2

6 ϵ2V ‖N(τ)‖Q,2,

for any ϵ > 0 and any finitely discrete probability measure Q. Consequently, by the minimal-

ity of the covering number it follows that for any ϵ > 0 and any finitely discrete probability

measure Q, we have that

N(ϵ2V ‖N(τ)‖Q,2,F1(s), L2(Q)) 6 N(ϵ2‖N(τ)‖Q,2,Φ1, L2(Q)),
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which yields a BUEI for F1(s) with envelope 2V N(τ). Using similar arguments to those used

in the example of page 142 of Kosorok (2008), it can be shown that the class F1(s) is also

PM. Therefore, by Theorem 2.5.2 in van der Vaart and Wellner (1996), the class F1(s) is

P -Donsker. Since s was arbitrary, the last statement is true for any s ∈ [0, τ).

Lemma 2: Let Y (t) be an arbitrary at-risk process, A(t) a continuous cumulative tran-

sition intensity function on [0, τ ], and h(t) a fixed and non-negative function with h(t) 6 V

almost everywhere with respect to the Lebesgue-Stieltjes measure generated by A(t). Then,

the class of functions

F2(s) =

{∫ t

s

h(u)Y (u)dA(u) : t ∈ [0, τ ]

}
is P -Donsker for any s ∈ [0, τ).

Proof. It is not hard to show that for any probability measure Q and any t1, t2 ∈ [0, τ ]∥∥∥∥∫ t1

s

h(u)Y (u)dA(u)−
∫ t2

s

h(u)Y (u)dA(u)

∥∥∥∥
Q,2

6 V |A(t2)− A(t1)|.

Now, the class of fixed functions Φ2 = {A(t) : t ∈ [0, τ ]} is a compact subset of R as

it consists of continuous functions on the compact set [0, τ ]. Therefore, this class of fixed

functions can be covered by V (1/ϵ) ϵ-balls and, thus, N(ϵ,Φ2, | · |) 6 V (1/ϵ). Consequently,

for any t ∈ [0, τ ] there exist a ti ∈ [0, τ ], i = 1, . . . , N(ϵ,Φ2, | · |), such that |A(t)−A(ti)| < ϵ,

for any ϵ > 0 and any finitely discrete probability measure Q. Therefore, for any member of

F2(s), there exist a
∫ ti
s
h(u)Y (u)dA(u), for i = 1, . . . , N(ϵ,Φ2, | · |), such that∥∥∥∥∫ t

s

h(u)Y (u)dA(u)−
∫ ti

s

h(u)Y (u)dA(u)

∥∥∥∥
Q,2

6 V ϵ.

for any ϵ > 0 and any finitely discrete probability measure Q. Consequently, by the minimal-

ity of the covering number, it follows that for any ϵ > 0 and any finitely discrete probability

measure Q, we have that

N(ϵV,F2(s), L2(Q)) 6 V

(
1

ϵ

)
,
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which yields a BUEI for F2(s). Finally, similar arguments to those used in the proof of

Lemma 1 lead to the conclusion that the class F2(s) is P -Donsker for any s ∈ [0, τ).

B.1 Regularity Conditions

In this work we assume the following conditions:

C1. The potential left truncation Lim,1 and right censoring Lim,2 times are independent of the

underlying counting processes {Ňim,hj(t) : h 6= j, t ∈ [0, τ ]}, the initial state indicators

Y̌im,h(0+), h ∈ T c, and the cluster size Mi. Also, Lim,1 and Lim,2 are identically distributed

in the sense that E[{I(Lim,1 = 0) + I(Lim,1 < t)}I(Lim,2 > t)] ≡ ERim(t) = ERi1(t),

t ∈ [0, τ ], for any i = 1, . . . , n and m = 1, . . . ,Mi.

C2. The cluster size is bounded in the sense that there exists a (fixed) positive integer m0 such

that Pr(M > m0) = 0.

C3. The underlying counting processes are identically distributed conditionally on cluster size,

which implies that E{Ňim,hj(t)|Mi} = E{Ňi1,hj(t)|Mi} for any i = 1, . . . , n, m = 1, . . . ,Mi

and h 6= j. Also, E{Ňim,hj(τ)}2 <∞ for all h 6= j.

C4. The underlying at-risk processes are identically distributed conditionally on cluster size,

which implies that E{Y̌im,h(t)|Mi} = E{Y̌i1,h(t)|Mi} for any i = 1, . . . , n, m = 1, . . . ,Mi

and h ∈ S. Also, there exists a convex and compact set Jh ⊂ [0, τ ] such that

inft∈Jh E{
∑Mi

m=1 Y̌im,h(t)} > 0 for all h ∈ T c, and
∫
(0,t]∩Jc

h
dA0,hj(t) = 0 for all h ∈ T c and

j 6= h.

C5. The cumulative transition intensities {A0,hj(t) : h 6= j, t ∈ [0, τ ]} are continuous functions.

C6. Strengthen condition C4 to require inft∈[0,τ ]E{
∑Mi

m=1 Y̌im,h(t)} > 0 for all h ∈ T c.

Condition C1 implies that the right censoring and left truncation times are independent

of the at-risk processes {Y̌im,h(t) : h ∈ T c, t ∈ [0, τ ]}. Conditions C1 (except for the

independence between cluster size and right censoring/left truncation), C5, and the second

parts of conditions C3 and C4 ensure that the standard Aalen–Johansen estimator (Aalen
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and Johansen, 1978) of P0 based on i.i.d. data is uniformly consistent and its elements

convergence weakly to tight (and possibly degenerate) Gaussian processes. The additional

conditions needed for the situation with clustered data are that cluster sizes are bounded

(condition C2), the right censoring and left truncation times are independent of the cluster

size, and that the counting and at-risk processes are identically distributed within clusters,

conditionally on cluster size. These additional conditions are realistic in practical applica-

tions. It has to be mentioned that a violation of the additional condition C6 is associated

with weak convergence to degenerate Gaussian processes for the proposed estimators. In

Web Appendix A.5 we relax condition C6 and discuss the practical implications of this.

For the nonparametric two-sample Kolmogorov–Smirnov tests we refine conditions C3, C4

and C6 as follows:

C3’. The underlying counting processes are identically distributed conditionally on cluster size,

which implies that E{Ňipm,hj(t)|Mpi} = E{Ňip1,hj(t)|Mpi} for any i = 1, . . . , n, p = 1, 2,

m = 1, . . . ,Mpi and h 6= j. Also, E{Ňipm,hj(τ)}2 <∞ for all h 6= j.

C4’. The underlying at-risk processes are identically distributed conditionally on cluster size,

which implies that E{Y̌ipm,h(t)|Mpi} = E{Y̌ip1,h(t)|Mpi} for any i = 1, . . . , n, p = 1, 2,

m = 1, . . . ,Mpi and h ∈ S. Also, there exists a compact set Jh ⊂ [0, τ ] such that

inft∈Jh E{
∑Mpi

m=1 Y̌ipm,h(t)} > 0, p = 1, 2, for all h ∈ T c, and
∫
(0,τ ]∩Jc

h
dA0,phj(t) = 0, p = 1, 2,

for all h ∈ T c and j 6= h.

C6’. Strengthen condition C4’ to require inft∈[0,τ ]E{
∑Mpi

m=1 Y̌ipm,h(t)} > 0, p = 1, 2, for all

h ∈ T c.

Note that the counting and at-risk processes are also allowed to depend on the total cluster

size Mi. However, the assumption of identical distributions in conditions C3’ and C4’ is

defined conditional on the size of the pth sample within the ith cluster.
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B.2 Proof of Theorem 1

It is clear that Ňim,hj(t), h 6= j can be expressed as

Ňim,hj(t) =

Ňim,hj(τ)∑
v=1

I(Timv,hj 6 t)

=

v0∑
v=1

I(v 6 Ňim,hj(τ), Timv,hj 6 t), a.s.

where Timv,hj, v = 1, . . . , Ňim,hj(τ), are the random jump times of Ňim,hj(t), t ∈ [0, τ ], and

v0 ∈ N is a constant which is selected to satisfy Ňim,hj(τ) 6 v0 a.s. in light of condition

C3. The corresponding observable version, which is subject to right censoring and/or left

truncation, is

Nim,hj(t) =

Ňim,hj(τ)∑
v=1

I(Timv,hj 6 t, Rim(Timv,hj) = 1)

=

v0∑
v=1

I(v 6 Ňim,hj(τ), Timv,hj 6 t, Rim(Timv,hj) = 1), a.s.

Thus, by conditions C1 and C2,

ENi·,hj(t) =

m0∑
m=1

v0∑
v=1

Pr(m 6Mi, v 6 Ňim,hj(τ), Timv,hj 6 t, Rim(Timv,hj) = 1)

=

∫ t

0

E{Ri1(u)}dE
m0∑
m=1

v0∑
v=1

I(m 6Mi, v 6 Ňim,hj(τ), Timv,hj 6 u)

=

∫ t

0

E{Ri1(u)}dEŇi·,hj(u), t ∈ [0, τ ].

Additionally, the observed version of Y̌im,h(t), h ∈ T c, is Yim,h(t) = Y̌im,h(t)Rim(t−), t ∈ [0, τ ]

and thus, by conditions C1, C2, and C5

EYi·,h(t) = E{Ri1(t)}E{Y̌i·,h(t)}, t ∈ [0, τ ].

Next, in light of the assumption of identically distributed counting processes conditional on

cluster size (condition C3), condition C2, and the i.i.d. assumption of the observations across
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clusters it follows that for h 6= j and any t ∈ [0, τ ]

EŇ1·,hj(t) = E

[
E

{
M1∑
m=1

Ň1m,hj(t)

∣∣∣∣M1

}]

= E

[
E

{
Ň11,hj(t)

∣∣∣∣M1

} m0∑
m=1

I(m 6M1)

]

= E

[
E

{
Ň1m,hj(t)

∣∣∣∣M1

}
M1

]
= E

{
M1Ň1m,hj(t)

}
, t ∈ [0, τ ],

for any m = 1, . . . ,M1. Similarly, under conditions C2 and C4, it can be shown that

EY̌1·,h(t) = E{M1Y̌1m,h(t)}, h ∈ T c, t ∈ [0, τ ], for any cluster member m = 1, . . . ,M1.

As a result,

A0,hj(t) =

∫ t

0

dE{M1Ň1m,hj(u)}
E{M1Y̌1m,h(u)}

=

∫ t

0

dEŇ1·,hj(u)

EY̌1·,h(u)
, h 6= j

Taking all the pieces together, and using empirical process theory notation, if follows, by

condition C4, that

∫ t

0

dPN·,hj(u)

PY·,h(u)
=

∫
(0,t]∩Jh

dPN·,hj(u)

PY·,h(u)

=

∫
(0,t]∩Jh

PR1(u)dPŇ·,hj(u)

PR1(u)PY̌·,h(u)

= A0,hj(t),

since condition C4 ensures inft∈[0,t]∩Jh PR·,h(t) > 0 and
∫
(0,t]∩Jc

h
dA0,hj(t) = 0. Next, it is easy

to see that, for any h ∈ T c and j ∈ S, the following inequality holds:

∥∥∥Ân,hj(t)− A0,hj(t)
∥∥∥
∞
6

∥∥∥∥Pn

∫
(0,t]

{
1

PnY·,h(u)
− 1

PY·,h(u)

}
dN·,hj(u)

∥∥∥∥
∞

+

∥∥∥∥(Pn − P )

∫
(0,t]

dN·,hj(u)

PY·,h(u)

∥∥∥∥
∞

≡ Qn,1 +Qn,2. (1)
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The first term can be bounded as follows:

Qn,1 6 ‖PnY·,h(t)− PY·,h(t)‖∞
∥∥∥∥Pn

∫
(0,t]

dN·,hj(u)

PnY·,h(u)PY·,h(u)

∥∥∥∥
∞

6 V ‖PnY·,h(t)− PY·,h(t)‖∞
∥∥∥∥Pn

∫
(0,t]

dN·,hj(u)

PnY·,h(u)

∥∥∥∥
∞

where the last inequality follows from condition C4, which implies that there exists a constant

V such that {PY·,h(t)}−1 6 V a.e. (µN·,hj), with µN·,hj being the Lebesgue–Stieltjes measure

generated by (the sample paths of) N·,hj(t). By conditions C2 and C3, the class of functions

{Y·,h(t) =
∑m0

m=1 I(m 6M)Ym,h(t) : t ∈ [0, τ ]} can be expressed as a (finite) linear combina-

tion of monotone caglad square-integrable processes (Andersen et al., 2012), multiplied by

Rm(t−), which belong to Donsker classes by lemma 4.1 in Kosorok (2008). Thus, by lemma

4.1 and corollary 9.32 in Kosorok (2008), the classes {Y·,h(t) : t ∈ [0, τ ]}, h ∈ T c, are P -

Donsker and, therefore, also P -Glivenko–Cantelli. Consequently, ‖PnY·,h(t)−PY·,h(t)‖∞
as∗→ 0.

This result and the fact that {PnY·,h(t)}−1 is bounded a.e. (µN·,hj) with probability 1 lead

to the conclusion that Qn,1
as∗→ 0. For Qn,2, conditions C1 and C4 imply that there exists a

constant V such that

1

PY·,h(t)
6 V a.e. (µN·,hj).

Thus, by conditions C2, C3, and Lemma 1, it follows that the class {
∫
(0,t]

{PY·,h(u)}−1dN·,hj(u) :

t ∈ [0, τ ]} is P -Donsker and thus also P -Glivenko–Cantelli. This implies that Qn,2
as∗→ 0 and,

consequently, by inequality (1) it follows that ‖Ân,hj(t)−A0,hj(t)‖∞
as∗→ 0, for all h ∈ T c and

j ∈ S. This result along with the continuity of the product integral (Andersen et al., 2012)

lead to the conclusion that

R
(0,t]

{Ik + dÂn(u)}
as∗→ R

(0,t]

{Ik + dA0(u)},

uniformly in t ∈ [0, τ ].
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B.3 Proof of Theorem 2

The class of functions {N·,hj(t) =
∑m0

m=1 I(m 6 M)Nm,hj(t) : [0, τ ]} is P -Donsker for any

h ∈ T c and j ∈ S, by conditions C2 and C3, and lemma 4.1 and corollary 9.32 in Kosorok

(2008). Also, the class {Y·,h(t) : [0, τ ]} is P -Donsker for any h ∈ T c as argued in the proof of

Theorem 1. Therefore

√
n

PnN·,hj − PN·,hj

PnY·,h − PY·,h

 
G̃1hj

G̃2h

 in (D[0, τ ])2,

for h 6= j, where G̃1hj and G̃2h are tight zero mean Gaussian processes with covariance func-

tions PN·,hj(t1)N·,hj(t2) − PN·,hj(t1)PN·,hj(t2) and PY·,h(t1)Y·,h(t2) − PY·,h(t1)PY·,h(t2), re-

spectively, for t1, t2 ∈ [0, τ ]. The cross-covariance between G̃1hj(t1) and G̃2h(t2) is PN·,hj(t1)Y·,h(t2)−

PN·,hj(t1)PY·,h(t2). Moreover, the map (F1, F2) 7→
∫
[0,t]

F−1
1 dF2 is Hadamard differentiable

on the domain

{
(F1, F2) : inf

t∈[0,τ ]
|F1(t)| > ϵ,

∫
[0,τ ]

|dF2(t)| <∞
}

for ϵ > 0 and F−1
1 of bounded variation (Kosorok, 2008), with derivative at (f1, f2) given by

∫
[0,t]

df1
F2

−
∫
[0,t]

f2
F 2
2

dF1.
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These facts along with condition C6 and the functional delta method (van der Vaart, 2000),

lead to the conclusion that

√
n{Ân,hj(t)− A0,hj(t)} =

√
nPn

[∫
(0,t]

d{(Pn − P )N·,hj(u)}
PY·,h(u)

−
∫
(0,t]

(Pn − P )Y·,h(u)

PY·,h(u)
dA0,hj(u)

]
+ op(1)

=
√
nPn

{∫
(0,t]

dN·,hj(u)

PY·,h(u)
−
∫
(0,t]

Y·,h(u)

PY·,h(u)
dA0,hj(u)

}
−
√
n

{∫
(0,t]

dPN·,hj(u)

PY·,h(u)
− A0,hj(t)

}
+ op(1)

=
√
nPn

{∫
(0,t]

dN·,hj(u)

PY·,h(u)
−
∫
(0,t]

Y·,h(u)

PY·,h(u)
dA0,hj(u)

}
+ op(1)

=
√
nPn

∫
(0,t]

dM̄hj(u)

PY·,h(u)
+ op(1)

≡
√
nPnϕhj(t) + op(1), t ∈ [0, τ ].

The class of the influence functions {ϕhj(t) : t ∈ [0, τ ]} is P -Donsker by the Donsker property

of the class {N·,hj(t) : [0, τ ]}, conditions C2–C5, Lemmas 1 and 2, and corollary 9.32 in

Kosorok (2008). Therefore,
√
n(Ân,hj−A0,hj) converges weakly to a tight zero mean Gaussian

process G̃3hj in D[0, τ ] with covariance function Pϕhj(t1)ϕhj(t2), t1, t2 ∈ [0, τ ], for h 6= j. For

h = j,
√
n{Ân,hh(t)−A0,hh(t)} = −

√
nPn

∑
h̸=j ϕhj(t) + op(1), where the influence functions

belong obviously to a P -Donsker class. Thus, the joint sequence
√
n(Ân,hj − A0,hj) for h 6=

j, converges weakly to a tight zero mean Gaussian process with cross-covariance between

G̃3hj(t1) and G̃3lq(t2) equal to Pϕhj(t1)ϕlq(t2), for h 6= j, l 6= q, t1, t2 ∈ [0, τ ]. Therefore,
√
n(Ân −A0) converges weakly to a tight zero mean Gaussian process in (D[0, τ ])k

2 . Now,

the Hadamard differentiability of the product integral map (proposition II.8.7 in Andersen

et al., 2012)

A0 7→ R(Ik − dA0),
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and the functional delta method (van der Vaart, 2000; Andersen et al., 2012) lead to the

conclusion that

√
n{P̂n(0, t)−P0(0, t)} =

√
nPn

∫ t

0
R
[0,u)

{Ik + dA0(v)}ϕ(du)R
(u,·]

{Ik + dA0(v)}+ op(1)

≡
√
nPnγ(0, t) + op(1), t ∈ [0, τ ]

where the matrix ϕi(t) contains the elements ϕihj(t), and the matrix γi(0, t) contains the

elements

γihj(0, t) =
∑
l∈T c

∑
q∈S

∫ t

0

P0,hl(0, u−)P0,qj(u, t)

PY·,l(u)
dM̄ilq(u), t ∈ [0, τ ].

By the P -Donsker property of the classes {N·,hj(t) : t ∈ [0, τ ]}, for h 6= t, and {Y·,h(t) : t ∈

[0, τ ]}, for h ∈ T c, conditions C3-C5, corollary 9.32 in Kosorok (2008), and Lemmas 1 and

2, it follows that the classes {γhj(0, t) : t ∈ [0, τ ]} are P -Donsker for all h ∈ T c, j ∈ S. This

concludes the proof of part (i) of Theorem 2.

Before showing the weak convergence results which are conditional on the observed data,

we provide a more formal definition of what does conditional weak convergence mean. Clearly,

conditionally on the observed data, the only source of randomness in B̂n,hj(s, ·) and B̂′
n,hj(s, ·)

are the standard normal variates ξi. Weak convergence of conditional laws of a random

sequence Gn(ξ,O), that depends on the simulation realizations ξ and the observed data O,

to a tight process G in some metric space (D, d) is defined as follows (Kosorok, 2008)

sup
f∈BL1

|Eξf [Gn(ξ,O)]− Ef(G)| p→ 0,

where BL1 is the space of Lipschitz functions f : D 7→ R, with Lipschitz norm bounded

by 1, and Eξ denotes conditional expectation with respect to the simulation realizations ξ,

given the observed data O. This type of weak convergence is denoted as Gn(ξ,O)
p 
ξ
G.

Weak convergence of conditional laws of the cluster bootstrap processes is defined in a

similar manner. More precisely, let (Un1, . . . , Unn) be a random vector from the multinomial

distribution with n trials and probabilities 1/n for each trial. Then, the nonparametric cluster
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bootstrap versions of the proposed estimators are

P̂∗
n(s, t) = R

(s,t]

{Ik + dÂ∗
n(u)}

and

P̂′∗
n (s, t) = R

(s,t]

{Ik + dÂ′∗
n (u)},

where Â∗
n(t) and Â′∗

n (t) involve the components

Â∗
n,hj(t) =

∫ t

0

d {
∑n

i=1 UniNi·,hj(u)}∑n
i=1 UniYi·,h(u)

, h 6= j, t ∈ [0, τ ],

and

Â′∗
n,hj(t) =

∫ t

0

d
{∑n

i=1 UniM
−1
i Ni·,hj(u)

}∑n
i=1 UniM

−1
i Yi·,h(u)

, h 6= j, t ∈ [0, τ ],

respectively. Weak convergence of conditional laws of the corresponding bootstrap processes

is defined, conditionally on the observed data, with respect to the multinomial bootstrap

weights U and is denoted as p 
U

.

For the first conditional weak convergence result in part (ii) of Theorem 2, define the

process B̃hj(0, t) =
√
nPnγhj(0, t)ξ. By the P -Donsker property of the class {γhj(0, t) : t ∈

[0, τ ]} and the conditional multiplier central limit theorem (Kosorok, 2008) it follows that

B̃hj(0, ·)
p 
ξ
Ghj(0, ·). Thus, it remains to show that

‖B̂hj(0, t)− B̃hj(0, t)‖∞ = op(1),

unconditionally on the observed data. After some algebra it can be shown that

‖B̂hj(0, t)− B̃hj(0, t)‖∞ 6
∑
l∈T c

∑
q∈S

(Q̃n,lq1 + Q̃n,lq2 + Q̃n,lq3), (2)

where

Q̃n,lq1 =

∥∥∥∥∥√nPn

∫ t

0

{
P̂n,hl(0, u−)P̂n,qj(u, t)

PnY·,l(u)
− P0,hl(0, u−)P0,qj(u, t)

PY·,l(u)

}
dN·,lq(u)ξ

∥∥∥∥∥
∞

,

Q̃n,lq2 =

∥∥∥∥∥√nPn

∫ t

0

{
P̂n,hl(0, u−)P̂n,qj(u, t)

PnY·,l(u)
− P0,hl(0, u−)P0,qj(u, t)

PY·,l(u)

}
dÂn,lq(u)ξ

∥∥∥∥∥
∞

,
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and

Q̃n,lq3 =

∥∥∥∥∫ t

0

P0,hl(0, u−)P0,qj(u, t)

PY·,l(u)
{
√
nPnY·,l(u)ξ}d{Ân,lq(u)− A0,lq(u)}

∥∥∥∥
∞
.

Next, it is easy to see that∣∣∣∣∣ P̂n,hl(0, u−)P̂n,qj(u, t)

PnY·,l(u)
− P0,hl(0, u−)P0,qj(u, t)

PY·,l(u)

∣∣∣∣∣ 6 V

{
sup
u∈[0,t]

|P̂n,hl(0, u−)− P0,hl(0, u−)|

+ sup
u∈[0,t]

|P̂n,hl(u, t)− P0,hl(u, t)|

+ sup
u∈[0,t]

∣∣∣∣ 1

PnY·,l(u)
− 1

PY·,l(u)

∣∣∣∣
}
,

almost everywhere with respect to both µN·,lq and µÂn,lq
(which is the Lebesgue–Stieltjes

measure generated by Ân,lq). Therefore, by condition C3 and C6, the outer almost sure

consistency of the transition probability estimators, arguments similar to those used in the

proof of Theorem 1, and the central limit theorem, it follows that

Q̃n,lq1 6 oas∗(1)Op(1)V = op(1).

By similar arguments and condition C5 it follows that Q̃n,lq2 = op(1). Finally, by the P -

Donsker property of the class {Y·,l(t) : t ∈ [0, τ ]}, the uniform consistency of the cumulative

transition intensity, and the same arguments to those used in the proof of proposition 7.27 in

Kosorok (2008), it follows that Q̃n,lq3 = op(1), since convergence in distribution to a constant

implies convergence in probability. Thus, by (2), ‖B̂hj(0, t) − B̃hj(0, t)‖∞ = op(1) and this

concludes the proof of the first conditional weak convergence result in part (ii) of Theorem

2.

For the second conditional weak convergence result in part (ii) of Theorem 2, the P -Donsker

property of the classes {N·,hj(t) : t ∈ [0, τ ]} and {Y·,h(t) : t ∈ [0, τ ]}, condition C3, the weak

convergence of the sequence
√
n(Ân,hj−A0,hj), the bootstrap central limit theorem (Kosorok,

2008), and the bootstrap functional delta method (Kosorok, 2008, Theorem 12.1), imply that
√
n(Â∗

n,hj − Ân,hj)
p 
U

G̃3hj in D[0, τ ], for h ∈ T c and j 6= h. A second application of the

bootstrap functional delta method and the bootstrap continuous mapping theorem (Theorem
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10.8, Kosorok, 2008) lead to the conclusion that
√
n{P̂ ∗

n,hj(0, ·)− P̂n,hj(0, ·)}
p 
U

Ghj(0, ·). The

proof of part (iii) of Theorem 2 follows from the same arguments.

B.4 Proof of Theorem 3

By Theorem 2 and the uniform consistency of Ŵhj(t), it follows that

√
nŴhj(t)∆̂(0, t) = {Ŵhj(t)−Whj(t)}

√
nPn{γ1,hj(0, t)− γ2,hj(0, t)}

+
√
nPnWhj(t){γ1,hj(0, t)− γ2,hj(0, t)}+ op(1)

=
√
nPnWhj(t){γ1,hj(0, t)− γ2,hj(0, t)}+ op(1).

The boundedness of the fixed function Whj(t) and the P -Donsker property of {γp,hj(0, t) :

t ∈ [0, τ ]}, p = 1, 2, imply that the class {Whj(t){γ1,hj(0, t) − γ2,hj(0, t)} : t ∈ [0, τ ]} is

P -Donsker. Therefore,
√
nŴhj(·)∆̂(0, ·)  Zhj(0, ·) in D[0, τ ], with the covariance function

of the process Zhj(0, ·) being

Whj(t1)Whj(t2)P [{γ1,hj(0, t1)− γ2,1hj(0, t1)}{γ1,hj(0, t2)− γ2,1hj(0, t2)}],

for t1, t2 ∈ [0, τ ].

Next, by the conditional multiplier central limit theorem it follows that

C̃n,hj(0, ·) ≡
√
P nWhj(·){γ1,hj(0, ·)− γ2,hj(0, ·)}ξ

p 
ξ
Zhj(0, ·) in D[0, τ ].

Also, by the uniform boundedness ofWhj(t) and the P -Donsker property of the class {γp,hj(0, t)ξ :

t ∈ [0, τ ]}, it follows that

sup
t∈[0,τ ]

∣∣∣Ĉn,hj(0, t)− C̃n,hj(0, t)
∣∣∣ 6 2∑

p=1

[
sup
t∈[0,τ ]

∣∣∣{Ŵhj(t)−Whj(t)}

×
√
nPn{γ̂p,hj(0, t)− γp,hj(0, t)}ξ

∣∣∣
+V sup

t∈[0,τ ]

∣∣∣√nPn{γ̂p,hj(0, t)− γp,hj(0, t)}ξ
∣∣∣

+Op(1) sup
t∈[0,τ ]

∣∣∣Ŵhj(t)−Whj(t)
∣∣∣ ].

The uniform consistency of Ŵhj(t) and the arguments used in the proof of part (ii) in
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Theorem 2 lead to the conclusion that supt∈[0,τ ]

∣∣∣Ĉn,hj(0, t)− C̃n,hj(0, t)
∣∣∣ = op(1) and, thus,

Ĉn,hj(0, ·)
p 
ξ
Zhj(0, ·) in D[0, τ ].

By Theorem 2 and the bootstrap continuous mapping theorem it follows that

√
nWhj(·){∆̂∗

n,hj(0, ·)− ∆̂n,hj(0, ·)}
p 
U

Zhj(0, ·) in D[0, τ ].

By the (unconditional) multiplier central limit theorem (van der Vaart and Wellner, 1996)

and a double application of the functional delta method, it follows that
√
n{P̂ ∗

n,phj(0, ·) −

P̂n,phj(0, ·)}, p = 1, 2, converge weakly (unconditionally) to tight mean zero Gaussian pro-

cesses in D[0, τ ]. This result along with the uniform consistency of Ŵhj(t) lead to the

conclusion that∣∣∣√n{Ŵhj(t)−Whj(t)}{∆̂∗
n,hj(0, t)− ∆̂n,hj(0, t)}

∣∣∣
∞

= op(1),

unconditionally. Consequently,

√
nŴhj(·){∆̂∗

n,hj(0, ·)− ∆̂n,hj(0, ·)}
p 
U

Zhj(0, ·) in D[0, τ ].

Part (ii) of Theorem 3 can be shown using similar arguments.

It has to be noted that the proposed Kolmogorov–Smirnov-type tests are consistent for

any fixed alternative hypothesis. This follows from Theorem 3, the uniform consistency of

the proposed estimators, the continuity of these tests in the differences ∆̂n,hj(s, t), ∆̂n,j(t),

∆̂′
n,hj(s, t), and ∆̂′

n,j(t), and Lemma 14.15 in van der Vaart (2000).

B.5 Violation of condition C6

It is possible that, in some applications, condition C6 is not satisfied. This happens when

there are transient states with 0 probability of occupation in a subset of the observation

time interval [0, τ ]. This is the case, for example, in situations where P0,h(0) = 0 for some

transient state(s) h. Even though the consistency of the proposed estimators requires only

conditions C1-C5, Theorems 2 and 3 additionally require condition C6. If condition C6 is
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violated for some h ∈ T c, and in light of condition C4, it follows that

A0,hj(t) =

∫
(0,t]∩Jh

dPN·,hj(u)

PY·,h(u)
,

and

Ân,hj(t) =

∫
(0,t]∩Jh

dPnN·,hj(u)

PnY·,h(u)
,

where A0,hj(t) = Ân,hj(t) = 0 if t ∈ [0, t]∩J c
h. In this case, the map (F1, F2) 7→

∫
[0,t]∩Jh

F−1
1 dF2

is Hadamard differentiable on the domain{
(F1, F2) : inf

t∈Jh
|F1(t)| > ϵ,

∫
Jh

|dF2(t)| <∞
}

for ϵ > 0 and F−1
1 of bounded variation (Kosorok, 2008). Therefore, the same calculations

to those used in the proof of Theorem 2 lead to the conclusion that

√
n{Ân,hj(t)− A0,hj(t)} =

√
nPn

∫
(0,t]∩Jh

dM̄hj(u)

PY·,h(u)
+ op(1)

=
√
nPnϕhj(t) + op(1), t ∈ Jh,

with the class {ϕhj(t) : t ∈ Jh} being P -Donsker. This means that
√
n(Ân,hj − A0,hj)

converges weakly to a tight zero mean Gaussian process G̃3hj in DJh with covariance function

Pϕhj(t1)ϕhj(t2), t1, t2 ∈ Jh, for h 6= j. The same arguments to those used in the proof of

Theorem 2 can be used to show that this theorem holds for t restricted to ∩h∈T cJh. This

means that inference about P0,hj(s, t), h 6= j, is possible for s and t in ∩h∈T cJh. From a

practical standpoint one needs to restrict the time interval for confidence intervals/bands

and hypothesis tests to a set such that there are at least some observations in all transient

states.

B.6 A remark on non-Markov processes

As mentioned in the main manuscript, inference with non-Markov processes can be performed

as indicated in Theorems 2 and 3, with the exception that the influence functions for the

landmark versions of P̂n,hj(s, t) and P̂ ′
n,hj(s, t) involve the modified processes Ñim,lj(t;h, s),

l 6= j, and Ỹim,l(t;h, s), l ∈ T c. However, note that the influence functions of the estimators
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P̂n,hj(0, t), P̂ ′
n,hj(0, t), P̂n,j(t), and P̂ ′

n,j(t) involve the quantities P0,qj(u, t) and P ′
0,qj(u, t), for

u > 0. With non-Markov processes, these quantities are defined as the (q, j) element of the

matrices P(u,t]{Ik + dA0(s)} and P(u,t]{Ik + dA′
0(s)}, respectively. The latter matrices are

not necessarily equal to the true (conditional on the prior history) transition probability

matrices under a non-Markov process. Nevertheless, the true influence functions depend on

these matrices regardless of the Markov assumption. This is because, given the consistency

of the estimators, the derivation of the influence functions in the proof of Theorem 2 (Web

Appendix B.3) does not utilize the Markov assumption. The same phenomenon is observed

for the independent observations setting (Glidden, 2002). Since these matrices are continuous

in A0(s) and A′
0(s) (Andersen et al., 2012), they can be consistently estimated by P(u,t]{Ik+

dÂn(s)} and P(u,t]{Ik + dÂ′
n(s)}. These can be used to estimate the influence functions of

the estimators P̂n,hj(0, t), P̂ ′
n,hj(0, t), P̂n,j(t), and P̂ ′

n,j(t).

Web Appendix C: Test for Informative Cluster Size

For situations where cluster size is random, the proposed Kolmogorov–Smirnov tests can be

applied for testing the null hypotheses H0 : P0,hj(s, ·) = P ′
0,hj(s, ·), for s ∈ [0, τ), or H0 :

P0,j = P ′
0,j, for the transition or state of the main scientific interest, respectively. Rejecting

such a null hypotheses provides evidence for a violation of the non-informative cluster size

assumption. The weighted difference functions for this hypothesis testing problem become

Ŵ (t){P̂n,hj(s, t) − P̂ ′
n,hj(s, t)} and Ŵ (t){P̂n,j(t) − P̂ ′

n,j(t)}. In light of Theorem 2 and the

discussion in Section 2.4 of the main manuscript, these differences are asymptotically linear

with influence functions W (t){γihj(s, t) − γ′ihj(s, t)} and W (t){ψij(t) − ψ′
ij(t)} respectively,

which both belong to P -Donsker classes. Furthermore, the cluster bootstrap versions of the

weighted differences are

Ŵ (t)[{P̂ ∗
n,hj(s, t)− P̂ ′∗

n,hj(s, t)} − {P̂n,hj(s, t)− P̂ ′
n,hj(s, t)}]
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and Ŵ (t)[{P̂ ∗
n,j(t)− P̂ ′∗

n,j(t)}−{P̂n,j(t)− P̂ ′
n,j(t)}]. With these (slight) modifications, a similar

version of Theorem 3 holds for the aforementioned weighted differences and, thus, testing the

null hypothesis H0 : P0,hj(s, ·) = P ′
0,hj(s, ·), for s ∈ [0, τ), or H0 : P0,j = P ′

0,j can be performed

using the test statistics supt∈[s,τ ] |Ŵ (t){P̂n,hj(s, t) − P̂ ′
n,hj(s, t)}| or supt∈[0,τ ] |Ŵ (t){P̂n,j(t) −

P̂ ′
n,j(t)}|, as described in the last paragraph of Section 2.5 of the main manuscript.

Web Appendix D: Additional Simulation Results

This Web Appendix includes additional simulation results. The population-averaged prob-

abilities of interest under the main simulation setup are depicted in Figure 1. Since, under

the simulation setup the intensity for the transition 1 → 2 was lower for larger clusters,

the population-averaged probabilities over the population of all cluster members P0,2(t) and

P0,12(0.5, t) were lower compared to the corresponding ones for the population of typical

cluster members P ′
0,2(t) and P ′

0,12(0.5, t) (Figure 1). This illustrates the fact that larger

clusters have a larger influence on the population-averaged probabilities over the population

of all cluster members. Web Appendix D.1 provides simulation results regarding the meth-

ods for the transition probabilities P0,12(0.5, t) and P ′
0,12(0.5, t) under right censoring. Web

Appendix D.2 presents additional simulation results for the methods for state occupation

and transition probabilities under both right censoring and left truncation. Finally, Web

Appendix D.3 presents simulation results under a more variable cluster size and a very small

number of clusters, in the presence of right censoring.

[Figure 1 about here.]

D.1 Right Censoring

Simulation results regarding the estimators of the population-averaged transition prob-

abilities P0,12(0.5, t) and P ′
0,12(0.5, t) under right censoring are presented in Tables 1-4.

Ignoring the within-cluster dependence was associated with underestimated standard errors
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and poor coverage probabilities of the 95% pointwise confidence intervals and simultaneous

confidence bands. This poor performance of the naïve methods for the transition probabilities

P0,12(0.5, t) and P ′
0,12(0.5, t) was less pronounced compared to the case of the state occupation

probabilities P0,2(t) and P ′
0,2(t). This is because estimation of P0,12(0.5, t) and P ′

0,12(0.5, t)

under a non-Markov process only utilizes observations at state 1 at time s = 0.5 and,

thus, it uses a smaller number of observations per cluster which leads to a less pronounced

intracluster dependence issue. Also, the working-independence Aalen–Johansen estimator of

P ′
0,12(0.5, t) exhibited some bias as a result of the informative cluster-size. On the contrary,

the proposed methods performed well with the exception of somewhat lower coverage prob-

abilities for the pointwise 95% confidence intervals and simultaneous confidence bands for

the case of a very small number of clusters (n = 20) with only 5-15 observations per cluster.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

D.2 Right Censoring and Left Truncation

Simulation results for the situation with both right censoring and left truncation are pre-

sented in Tables 5-12. As expected, the naïve methods which ignore the within-cluster depen-

dence were associated with underestimated standard errors and poor coverage probabilities

of the 95% pointwise confidence intervals and simultaneous confidence bands. The proposed

methods performed well with the exception of lower coverage probabilities (reaching 91% in

a few cases for the influence function-based intervals) for cases with a very small number

of clusters (n = 20), and a small number of clusters (n = 40) with only 5-15 observations

per cluster. This is attributed to the fact that with such small cluster sizes and under both
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right censoring and left truncation, the amount of available information for estimating the

parameters of interest was quite small. For such cases, the performance of the nonparametric

cluster bootstrap was somewhat better compared to the influence function-based inference,

indicating that the nonparametric cluster bootstrap may have a better performance for cases

with a very small number of clusters. It is important to note that, even in such cases, the

proposed methods outperformed their naïve counterparts.

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]

[Table 10 about here.]

[Table 11 about here.]

[Table 12 about here.]

D.3 More Variable Cluster Size and Small Number of Clusters

In order to evaluate the performance of the proposed methods under a larger cluster size

variability and a very small number of clusters, we conducted an additional set of simulations

experiments. Cluster size in these experiments was simulated from the discrete uniform dis-

tribution U [5, 200], while the number of clusters was either 15 or 20. These simulation results

are presented in Tables 13-16. The naïve methods that ignore the within-cluster dependence

provided seriously under-estimated standard errors and poor coverage probabilities, ranging

from 31% to 67%. The performance of the proposed methods was still satisfactory with small

bias, average standard error estimates close to the Monte Carlo standard deviation of the
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estimates, and empirical type I error rates for the proposed Kolmogorov–Smirnov-type tests

close to the 0.05 level in all cases. However, the empirical coverage probabilities for the 95%

pointwise confidence intervals and simultaneous confidence bands were somewhat lower than

the nominal level in some cases (reaching 91% in a few cases with only n = 15 clusters). The

somewhat lower coverage probabilities are attributed to the very small numbers of clusters.

[Table 13 about here.]

[Table 14 about here.]

[Table 15 about here.]

[Table 16 about here.]
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Figure 1: True population-averaged state occupation (A) and transition probabilities (B)
under the basic simulation scenario.
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Table 1: Simulation results for the analysis of P0,12(0.5, τ0.4) and P ′
0,12(0.5, τ0.4), where τ0.4

is the 40th percentile of the follow-up time conditional on survival at t = 0.5, based on the
standard approach which ignores the within-cluster dependence (naïve) and the proposed
method with i) the influence function-based variance estimator (IF) and ii) the nonparametric
cluster bootstrap (CB). Results under right censoring. (n: number of clusters; FM : discrete
uniform distribution of the cluster size; ∗: ×102; MCSD: Monte Carlo standard deviation of
the estimates; ASE: average estimated standard error; CP: coverage probability).

P0,12(0.5, τ0.4) P ′
0,12(0.5, τ0.4)

n FM Method Bias∗ MCSD∗ ASE∗ CP Bias∗ MCSD∗ ASE∗ CP
20 U [5, 15] Naïve 0.296 3.603 3.065 0.913 -0.540 3.603 3.065 0.896

IF 0.296 3.603 3.349 0.930 0.242 3.956 3.665 0.923
CB 0.296 3.603 3.407 0.934 0.242 3.956 3.703 0.927

U [10, 30] Naïve 0.184 2.653 2.158 0.897 -0.621 2.653 2.158 0.886
IF 0.184 2.653 2.632 0.949 0.199 2.914 2.874 0.941
CB 0.184 2.653 2.669 0.948 0.199 2.914 2.896 0.947

40 U [5, 15] Naïve -0.048 2.389 2.142 0.924 -0.884 2.389 2.142 0.904
IF -0.048 2.389 2.370 0.945 -0.033 2.615 2.623 0.945
CB -0.048 2.389 2.387 0.945 -0.033 2.615 2.633 0.942

U [10, 30] Naïve 0.073 1.874 1.518 0.888 -0.732 1.874 1.518 0.869
IF 0.073 1.874 1.880 0.945 0.035 2.010 2.043 0.941
CB 0.073 1.874 1.892 0.945 0.035 2.010 2.050 0.939

80 U [5, 15] Naïve -0.017 1.729 1.517 0.910 -0.853 1.729 1.517 0.878
IF -0.017 1.729 1.699 0.941 -0.037 1.886 1.882 0.941
CB -0.017 1.729 1.705 0.939 -0.037 1.886 1.886 0.940

U [10, 30] Naïve 0.092 1.389 1.076 0.871 -0.713 1.389 1.076 0.825
IF 0.092 1.389 1.349 0.941 0.055 1.501 1.472 0.942
CB 0.092 1.389 1.354 0.942 0.055 1.501 1.476 0.942
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Table 2: Simulation results for the analysis of P0,12(0.5, τ0.6) and P ′
0,12(0.5, τ0.6), where τ0.6

is the 60th percentile of the follow-up time conditional on survival at t = 0.5, based on the
standard approach which ignores the within-cluster dependence (naïve) and the proposed
method with i) the influence function-based variance estimator (IF) and ii) the nonparametric
cluster bootstrap (CB). Results under right censoring. (n: number of clusters; FM : discrete
uniform distribution of the cluster size; ∗: ×102; MCSD: Monte Carlo standard deviation of
the estimates; ASE: average estimated standard error; CP: coverage probability).

P0,12(0.5, τ0.6) P ′
0,12(0.5, τ0.6)

n FM Method Bias∗ MCSD∗ ASE∗ CP Bias∗ MCSD∗ ASE∗ CP
20 U [5, 15] Naïve 0.403 4.265 3.672 0.913 -0.591 4.265 3.672 0.909

IF 0.403 4.265 3.919 0.916 0.339 4.717 4.264 0.915
CB 0.403 4.265 3.989 0.924 0.339 4.717 4.314 0.918

U [10, 30] Naïve 0.147 3.184 2.574 0.884 -0.807 3.184 2.574 0.872
IF 0.147 3.184 3.037 0.927 0.103 3.436 3.303 0.933
CB 0.147 3.184 3.076 0.933 0.103 3.436 3.327 0.933

40 U [5, 15] Naïve 0.039 2.774 2.573 0.934 -0.954 2.774 2.573 0.921
IF 0.039 2.774 2.801 0.950 0.059 3.077 3.086 0.945
CB 0.039 2.774 2.824 0.949 0.059 3.077 3.099 0.947

U [10, 30] Naïve 0.026 2.218 1.814 0.896 -0.928 2.218 1.814 0.853
IF 0.026 2.218 2.175 0.933 -0.002 2.409 2.362 0.932
CB 0.026 2.218 2.189 0.936 -0.002 2.409 2.368 0.935

80 U [5, 15] Naïve -0.001 2.019 1.815 0.922 -0.994 2.019 1.815 0.896
IF -0.001 2.019 1.989 0.937 -0.008 2.214 2.203 0.949
CB -0.001 2.019 1.995 0.938 -0.008 2.214 2.208 0.946

U [10, 30] Naïve 0.082 1.572 1.287 0.889 -0.871 1.572 1.287 0.839
IF 0.082 1.572 1.560 0.952 0.044 1.716 1.700 0.942
CB 0.082 1.572 1.565 0.953 0.044 1.716 1.703 0.942
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Table 3: Simulation results regarding the coverage probabilities of the 95% simultaneous
confidence bands for P0,12(0.5, ·) and P ′

0,12(0.5, ·) based on the standard method that ignores
the within-cluster dependence (naïve) and the proposed method with i) the estimated
processes B̂n,12(0.5, ·) and B̂′

n,12(0.5, ·) (IF) and ii) the nonparametric cluster bootstrap (CB).
Results under right censoring. (n: number of clusters; FM : discrete uniform distribution of
the cluster size).

P0,12(0.5, ·) P ′
0,12(0.5, ·)

n FM Naïve IF CB Naïve IF CB
20 U [5, 15] 0.909 0.931 0.942 0.890 0.911 0.927

U [10, 30] 0.880 0.935 0.943 0.855 0.928 0.943

40 U [5, 15] 0.907 0.943 0.946 0.881 0.937 0.941
U [10, 30] 0.887 0.945 0.952 0.853 0.946 0.951

80 U [5, 15] 0.915 0.941 0.946 0.870 0.940 0.946
U [10, 30] 0.892 0.941 0.944 0.833 0.946 0.945
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Table 4: Simulation results regarding the empirical type I error (H0) and the empirical power
(H1) of the proposed two-sample Kolmogorov–Smirnov-type tests for H0 : P0,112(0.5, ·) =
P0,212(0.5, ·) and H0 : P ′

0,112(0.5, ·) = P ′
0,212(0.5, ·) at the α = 0.05 level. Significance levels

were calculated based on either the estimated processes Ĉn,12(0.5, ·) and Ĉ ′
n,12(0.5, ·) (IF)

or the nonparametric cluster bootstrap (CB). Results under right censoring. (n: number of
clusters; FM : distribution of the cluster size).

P0,p12(0.5, ·), p = 1, 2 P ′
0,p12(0.5, ·), p = 1, 2

H0 H1 H0 H1

n FM IF CB IF CB IF CB IF CB
20 U [5, 15] 0.039 0.038 0.125 0.106 0.041 0.042 0.111 0.103

U [10, 30] 0.036 0.029 0.197 0.169 0.040 0.034 0.172 0.150

40 U [5, 15] 0.046 0.037 0.217 0.206 0.038 0.032 0.187 0.181
U [10, 30] 0.047 0.041 0.389 0.363 0.046 0.044 0.343 0.321

80 U [5, 15] 0.063 0.061 0.424 0.405 0.068 0.061 0.359 0.353
U [10, 30] 0.049 0.046 0.729 0.714 0.051 0.046 0.658 0.656
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Table 5: Simulation results for the analysis of P0,2(τ0.4) and P ′
0,2(τ0.4), where τ0.4 is the 40th

percentile of the follow-up time, based on the standard approach which ignores the within-
cluster dependence (naïve) and the proposed method with i) the influence function-based
variance estimator (IF) and ii) the nonparametric cluster bootstrap (CB). Results under both
right censoring and left truncation. (n: number of clusters; FM : discrete uniform distribution
of the cluster size; ∗: ×102; MCSD: Monte Carlo standard deviation of the estimates; ASE:
average estimated standard error; CP: coverage probability).

P0,2(τ0.4) P ′
0,2(τ0.4)

n FM Method Bias∗ MCSD∗ ASE∗ CP Bias∗ MCSD∗ ASE∗ CP
20 U [5, 15] Naïve 0.270 3.823 3.332 0.926 -0.795 3.823 3.332 0.908

IF 0.270 3.823 3.635 0.934 0.245 4.194 4.001 0.932
CB 0.270 3.823 3.663 0.937 0.245 4.194 4.008 0.935

U [10, 30] Naïve 0.041 2.926 2.352 0.884 -1.024 2.926 2.352 0.865
IF 0.041 2.926 2.839 0.929 -0.024 3.206 3.079 0.924
CB 0.041 2.926 2.858 0.929 -0.024 3.206 3.084 0.923

40 U [5, 15] Naïve -0.068 2.674 2.339 0.917 -1.133 2.674 2.339 0.887
IF -0.068 2.674 2.579 0.932 -0.118 2.966 2.839 0.942
CB -0.068 2.674 2.590 0.936 -0.118 2.966 2.844 0.944

U [10, 30] Naïve 0.030 2.118 1.664 0.890 -1.035 2.118 1.664 0.827
IF 0.030 2.118 2.045 0.940 -0.027 2.314 2.226 0.940
CB 0.030 2.118 2.050 0.941 -0.027 2.314 2.225 0.937

80 U [5, 15] Naïve 0.011 1.857 1.663 0.916 -1.054 1.857 1.663 0.864
IF 0.011 1.857 1.854 0.941 -0.039 2.060 2.049 0.937
CB 0.011 1.857 1.855 0.943 -0.039 2.060 2.047 0.938

U [10, 30] Naïve -0.097 1.442 1.174 0.889 -1.162 1.442 1.174 0.774
IF -0.097 1.442 1.457 0.955 -0.164 1.567 1.595 0.952
CB -0.097 1.442 1.458 0.955 -0.164 1.567 1.594 0.954



30 Biometrics, January 2016

Table 6: Simulation results for the analysis of P0,2(τ0.6) and P ′
0,2(τ0.6), where τ0.6 is the 60th

percentile of the follow-up time, based on the standard approach which ignores the within-
cluster dependence (naïve) and the proposed method with i) the influence function-based
variance estimator (IF) and ii) the nonparametric cluster bootstrap (CB). Results under both
right censoring and left truncation. (n: number of clusters; FM : discrete uniform distribution
of the cluster size; ∗: ×102; MCSD: Monte Carlo standard deviation of the estimates; ASE:
average estimated standard error; CP: coverage probability).

P0,2(τ0.6) P ′
0,2(τ0.6)

n FM Method Bias∗ MCSD∗ ASE∗ CP Bias∗ MCSD∗ ASE∗ CP
20 U [5, 15] Naïve 0.144 4.229 3.784 0.928 -0.940 4.229 3.784 0.920

IF 0.144 4.229 3.988 0.932 0.082 4.621 4.366 0.932
CB 0.144 4.229 4.036 0.937 0.082 4.621 4.393 0.933

U [10, 30] Naïve 0.037 3.212 2.681 0.909 -1.047 3.212 2.681 0.871
IF 0.037 3.212 3.080 0.931 -0.029 3.505 3.354 0.924
CB 0.037 3.212 3.106 0.934 -0.029 3.505 3.365 0.929

40 U [5, 15] Naïve 0.010 2.973 2.676 0.925 -1.074 2.973 2.676 0.911
IF 0.010 2.973 2.862 0.935 -0.060 3.267 3.125 0.926
CB 0.010 2.973 2.882 0.938 -0.060 3.267 3.139 0.929

U [10, 30] Naïve 0.110 2.253 1.902 0.901 -0.974 2.253 1.902 0.874
IF 0.110 2.253 2.216 0.943 0.057 2.460 2.411 0.941
CB 0.110 2.253 2.223 0.944 0.057 2.460 2.412 0.942

80 U [5, 15] Naïve 0.111 1.993 1.902 0.934 -0.973 1.993 1.902 0.904
IF 0.111 1.993 2.062 0.949 0.070 2.219 2.263 0.945
CB 0.111 1.993 2.066 0.951 0.070 2.219 2.264 0.948

U [10, 30] Naïve -0.086 1.543 1.339 0.904 -1.169 1.543 1.339 0.820
IF -0.086 1.543 1.576 0.953 -0.143 1.687 1.725 0.957
CB -0.086 1.543 1.577 0.955 -0.143 1.687 1.724 0.960
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Table 7: Simulation results regarding the coverage probabilities of the 95% simultaneous
confidence bands for P0,2(·) and P ′

0,2(·) based on the standard method that ignores the
within-cluster dependence (naïve) and the proposed method with i) the estimated processes
B̂n,2 and B̂′

n,2 (IF) and ii) the nonparametric cluster bootstrap (CB). Results under both
right censoring and left truncation. (n: number of clusters; FM : discrete uniform distribution
of the cluster size).

P0,2(·) P ′
0,2(·)

n FM Naïve IF CB Naïve IF CB
20 U [5, 15] 0.884 0.933 0.945 0.869 0.928 0.931

U [10, 30] 0.838 0.920 0.922 0.814 0.916 0.916

40 U [5, 15] 0.872 0.915 0.928 0.839 0.916 0.917
U [10, 30] 0.848 0.938 0.943 0.794 0.939 0.942

80 U [5, 15] 0.906 0.948 0.950 0.848 0.950 0.949
U [10, 30] 0.850 0.946 0.955 0.740 0.954 0.954
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Table 8: Simulation results regarding the empirical type I error (H0) and the empirical power
(H1) of the proposed two-sample Kolmogorov–Smirnov-type tests for H0 : P0,12(·) = P0,22(·)
and H0 : P ′

0,12(·) = P ′
0,22(·) at the α = 0.05 level. Significance levels were calculated based

on either the estimated processes Ĉn,2 and Ĉ ′
n,2 (IF) or the nonparametric cluster bootstrap

(CB). Results under both right censoring and left truncation. (n: number of clusters; FM :
distribution of the cluster size).

P0,p2(·), p = 1, 2 P ′
0,p2(·), p = 1, 2

H0 H1 H0 H1

n FM IF CB IF CB IF CB IF CB
20 U [5, 15] 0.051 0.048 0.249 0.240 0.051 0.044 0.245 0.246

U [10, 30] 0.053 0.049 0.472 0.465 0.054 0.055 0.430 0.448

40 U [5, 15] 0.051 0.049 0.455 0.455 0.043 0.046 0.415 0.410
U [10, 30] 0.053 0.051 0.724 0.724 0.044 0.045 0.687 0.685

80 U [5, 15] 0.055 0.048 0.738 0.728 0.055 0.049 0.695 0.686
U [10, 30] 0.047 0.044 0.962 0.961 0.047 0.048 0.941 0.941
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Table 9: Simulation results for the analysis of P0,12(0.5, τ0.4) and P ′
0,12(0.5, τ0.4), where τ0.4

is the 40th percentile of the follow-up time conditional on survival at t = 0.5, based on the
standard approach which ignores the within-cluster dependence (naïve) and the proposed
method with i) the influence function-based variance estimator (IF) and ii) the nonparametric
cluster bootstrap (CB). Results under both right censoring and left truncation. (n: number of
clusters; FM : discrete uniform distribution of the cluster size; ∗: ×102; MCSD: Monte Carlo
standard deviation of the estimates; ASE: average estimated standard error; CP: coverage
probability).

P0,12(0.5, τ0.4) P ′
0,12(0.5, τ0.4)

n FM Method Bias∗ MCSD∗ ASE∗ CP Bias∗ MCSD∗ ASE∗ CP
20 U [5, 15] Naïve 0.326 3.852 3.493 0.941 -0.542 3.852 3.493 0.930

IF 0.326 3.852 3.728 0.943 0.327 4.346 4.112 0.942
CB 0.326 3.852 3.805 0.948 0.327 4.346 4.168 0.944

U [10, 30] Naïve 0.220 3.094 2.471 0.897 -0.617 3.094 2.471 0.865
IF 0.220 3.094 2.864 0.930 0.187 3.376 3.121 0.922
CB 0.220 3.094 2.906 0.933 0.187 3.376 3.148 0.923

40 U [5, 15] Naïve 0.024 2.723 2.448 0.924 -0.844 2.723 2.448 0.918
IF 0.024 2.723 2.669 0.947 -0.023 3.022 2.935 0.939
CB 0.024 2.723 2.691 0.947 -0.023 3.022 2.949 0.941

U [10, 30] Naïve 0.236 2.102 1.751 0.903 -0.600 2.102 1.751 0.880
IF 0.236 2.102 2.078 0.944 0.240 2.316 2.268 0.937
CB 0.236 2.102 2.093 0.946 0.240 2.316 2.278 0.941

80 U [5, 15] Naïve 0.021 1.902 1.739 0.921 -0.847 1.902 1.739 0.898
IF 0.021 1.902 1.902 0.949 -0.017 2.095 2.100 0.945
CB 0.021 1.902 1.913 0.949 -0.017 2.095 2.109 0.944

U [10, 30] Naïve 0.055 1.515 1.228 0.890 -0.782 1.515 1.228 0.828
IF 0.055 1.515 1.477 0.942 0.048 1.669 1.621 0.940
CB 0.055 1.515 1.483 0.943 0.048 1.669 1.625 0.944
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Table 10: Simulation results for the analysis of P0,12(0.5, τ0.6) and P ′
0,12(0.5, τ0.6), where τ0.6

is the 60th percentile of the follow-up time conditional on survival at t = 0.5, based on the
standard approach which ignores the within-cluster dependence (naïve) and the proposed
method with i) the influence function-based variance estimator (IF) and ii) the nonparametric
cluster bootstrap (CB). Results under both right censoring and left truncation. (n: number of
clusters; FM : discrete uniform distribution of the cluster size; ∗: ×102; MCSD: Monte Carlo
standard deviation of the estimates; ASE: average estimated standard error; CP: coverage
probability).

P0,12(0.5, τ0.6) P ′
0,12(0.5, τ0.6)

n FM Method Bias∗ MCSD∗ ASE∗ CP Bias∗ MCSD∗ ASE∗ CP
20 U [5, 15] Naïve 0.342 4.514 4.138 0.934 -0.662 4.514 4.138 0.927

IF 0.342 4.514 4.362 0.927 0.356 4.965 4.817 0.940
CB 0.342 4.514 4.466 0.935 0.356 4.965 4.900 0.943

U [10, 30] Naïve 0.219 3.503 2.931 0.901 -0.747 3.503 2.931 0.893
IF 0.219 3.503 3.292 0.926 0.175 3.857 3.566 0.916
CB 0.219 3.503 3.340 0.929 0.175 3.857 3.599 0.916

40 U [5, 15] Naïve 0.070 3.235 2.904 0.938 -0.935 3.235 2.904 0.912
IF 0.070 3.235 3.107 0.952 0.037 3.590 3.419 0.942
CB 0.070 3.235 3.133 0.957 0.037 3.590 3.436 0.946

U [10, 30] Naïve 0.342 2.523 2.079 0.899 -0.624 2.523 2.079 0.900
IF 0.342 2.523 2.390 0.929 0.307 2.766 2.593 0.932
CB 0.342 2.523 2.405 0.931 0.307 2.766 2.602 0.932

80 U [5, 15] Naïve 0.035 2.193 2.064 0.940 -0.969 2.193 2.064 0.898
IF 0.035 2.193 2.215 0.952 -0.021 2.424 2.441 0.949
CB 0.035 2.193 2.224 0.954 -0.021 2.424 2.446 0.945

U [10, 30] Naïve 0.022 1.773 1.452 0.884 -0.945 1.773 1.452 0.843
IF 0.022 1.773 1.691 0.944 -0.002 1.943 1.847 0.931
CB 0.022 1.773 1.695 0.942 -0.002 1.943 1.849 0.933
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Table 11: Simulation results regarding the coverage probabilities of the 95% simultaneous
confidence bands for P0,12(0.5, ·) and P ′

0,12(0.5, ·) based on the standard method that ignores
the within-cluster dependence (naïve) and the proposed method with i) the estimated
processes B̂n,12(0.5, ·) and B̂′

n,12(0.5, ·) (IF) and ii) the nonparametric cluster bootstrap (CB).
Results under both right censoring and left truncation. (n: number of clusters; FM : discrete
uniform distribution of the cluster size).

P0,12(0.5, ·) P ′
0,12(0.5, ·)

n FM Naïve IF CB Naïve IF CB
20 U [5, 15] 0.892 0.916 0.941 0.882 0.906 0.928

U [10, 30] 0.881 0.914 0.935 0.869 0.909 0.917

40 U [5, 15] 0.903 0.931 0.937 0.879 0.923 0.936
U [10, 30] 0.903 0.941 0.950 0.866 0.933 0.940

80 U [5, 15] 0.919 0.939 0.944 0.875 0.935 0.936
U [10, 30] 0.906 0.949 0.952 0.846 0.941 0.942
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Table 12: Simulation results regarding the empirical type I error (H0) and the empirical power
(H1) of the proposed two-sample Kolmogorov–Smirnov-type tests for H0 : P0,112(0.5, ·) =
P0,212(0.5, ·) and H0 : P ′

0,112(0.5, ·) = P ′
0,212(0.5, ·) at the α = 0.05 level. Significance levels

were calculated based on either the estimated processes Ĉn,12(0.5, ·) and Ĉ ′
n,12(0.5, ·) (IF)

or the nonparametric cluster bootstrap (CB). Results under both right censoring and left
truncation. (n: number of clusters; FM : distribution of the cluster size).

P0,p12(0.5, ·), p = 1, 2 P ′
0,p12(0.5, ·), p = 1, 2

H0 H1 H0 H1

n FM IF CB IF CB IF CB IF CB
20 U [5, 15] 0.037 0.037 0.139 0.124 0.037 0.040 0.129 0.111

U [10, 30] 0.044 0.044 0.235 0.200 0.049 0.043 0.195 0.192

40 U [5, 15] 0.062 0.052 0.239 0.219 0.059 0.057 0.234 0.216
U [10, 30] 0.049 0.042 0.410 0.385 0.041 0.044 0.374 0.366

80 U [5, 15] 0.060 0.048 0.379 0.407 0.052 0.049 0.332 0.368
U [10, 30] 0.054 0.048 0.708 0.700 0.054 0.056 0.661 0.650
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Table 13: Simulation results for the analysis of P0,2(τ0.4) and P ′
0,2(τ0.4), where τ0.4 is the 40th

percentile of the follow-up time, based on the standard approach which ignores the within-
cluster dependence (naïve) and the proposed method with i) the influence function-based
variance estimator (IF) and ii) the nonparametric cluster bootstrap (CB). Results under
right censoring, a large variability of cluster size Mi, and a small number of clusters. (n:
number of clusters; FM : discrete uniform distribution of the cluster size; ∗: ×102; MCSD:
Monte Carlo standard deviation of the estimates; ASE: average estimated standard error;
CP: coverage probability).

P0,2(τ0.4) P ′
0,2(τ0.4)

n FM Method Bias∗ MCSD∗ ASE∗ CP Bias∗ MCSD∗ ASE∗ CP
15 U [5, 200] Naïve -0.040 2.216 0.917 0.590 -1.876 2.216 0.917 0.440

IF -0.040 2.216 2.092 0.918 -0.143 2.504 2.484 0.934
CB -0.040 2.216 2.131 0.922 -0.143 2.504 2.486 0.931

20 Naïve 0.040 1.957 0.798 0.587 -1.797 1.957 0.798 0.425
IF 0.040 1.957 1.867 0.925 0.041 2.332 2.187 0.926
CB 0.040 1.957 1.894 0.927 0.041 2.332 2.190 0.924
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Table 14: Simulation results for the analysis of P0,2(τ0.6) and P ′
0,2(τ0.6), where τ0.6 is the 60th

percentile of the follow-up time, based on the standard approach which ignores the within-
cluster dependence (naïve) and the proposed method with i) the influence function-based
variance estimator (IF) and ii) the nonparametric cluster bootstrap (CB). Results under
right censoring, a small number of clusters, and a large variability of cluster size Mi. (n:
number of clusters; FM : discrete uniform distribution of the cluster size; ∗: ×102; MCSD:
Monte Carlo standard deviation of the estimates; ASE: average estimated standard error;
CP: coverage probability).

P0,2(τ0.6) P ′
0,2(τ0.6)

n FM Method Bias∗ MCSD∗ ASE∗ CP Bias∗ MCSD∗ ASE∗ CP
15 U [5, 200] Naïve -0.069 2.297 1.062 0.637 -1.991 2.297 1.062 0.507

IF -0.069 2.297 2.102 0.913 -0.201 2.674 2.527 0.934
CB -0.069 2.297 2.143 0.922 -0.201 2.674 2.529 0.935

20 Naïve -0.003 1.939 0.924 0.668 -1.925 1.939 0.924 0.466
IF -0.003 1.939 1.875 0.931 -0.114 2.312 2.217 0.933
CB -0.003 1.939 1.902 0.935 -0.114 2.312 2.218 0.934
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Table 15: Simulation results regarding the coverage probabilities of the 95% simultaneous
confidence bands for P0,2(·) and P ′

0,2(·) based on the standard method that ignores the
within-cluster dependence (naïve) and the proposed method with i) the estimated processes
B̂n,2 and B̂′

n,2 (IF) and ii) the nonparametric cluster bootstrap (CB). Results under right
censoring, a small number of clusters, and a large variability of cluster size Mi. (n: number
of clusters; FM : discrete uniform distribution of the cluster size).

P0,2(·) P ′
0,2(·)

n FM Naïve IF CB Naïve IF CB
15 U [5, 200] 0.478 0.907 0.924 0.359 0.925 0.925
20 0.488 0.930 0.940 0.313 0.926 0.923
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Table 16: Simulation results regarding the empirical type I error (H0) and the empirical power
(H1) of the proposed two-sample Kolmogorov–Smirnov-type tests for H0 : P0,12(·) = P0,22(·)
and H0 : P ′

0,12(·) = P ′
0,22(·) at the α = 0.05 level. Significance levels were calculated based

on either the estimated processes Ĉn,2 and Ĉ ′
n,2 (IF) or the nonparametric cluster bootstrap

(CB). Results under right censoring, a small number of clusters, and a large variability of
cluster size Mi. (n: number of clusters; FM : distribution of the cluster size).

P0,p2(·), p = 1, 2 P ′
0,p2(·), p = 1, 2

H0 H1 H0 H1

n FM IF CB IF CB IF CB IF CB
15 U [5, 200] 0.056 0.052 0.981 0.975 0.038 0.041 0.844 0.848
20 0.064 0.052 0.997 0.994 0.053 0.060 0.917 0.914


