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1 APPENDIX

1.1 Appendix A: the form of the spanned design matrix

The design matrix X
[M×K]

=
(
B(Z0),B(Z1), . . .B(ZP )

)
consists of the blocks

B(Zp)

(M×Lp)
=



B
(p)
1 (t11)× Zp1 . . . B

(p)
Lp

(t11)× Zp1
...

...

B
(p)
1 (t1m1)× Zp1 . . . B

(p)
Lp

(t1m1)× Zp1
B

(p)
1 (t21)× Zp2 . . . B

(p)
Lp

(t21)× Zp2
...

...

B
(p)
1 (t2m2)× Zp2 . . . B

(p)
Lp

(t2m2)× Zp2
...

...

B
(p)
1 (tNmN

)× ZpN . . . B
(p)
Lp

(tNmN)× ZpN



for p = 0, 1, . . . P,

where Z0i ≡ 1 for i = 1, 2 . . . N .

1.2 Appendix B: the P-IRLS step given the values of smoothing

parameters

One update in the P-IRLS estimation from step r to step r + 1 is

α(r+1) = (XTW (r)X +Aλ)−1XTW (r)S̃
(r)
,

where W (r) = Diag{w11, . . . w1m1 , w21, . . . w2m2 , . . . wNmN
} ∈ RM×M with wij = π

(r)
ij (1 −

π
(r)
ij ) is the weight matrix, and S̃

(r)
=
(
S̃
(r)
11 , . . . S̃

(r)
1m1

, S̃
(r)
21 , . . . S̃

(r)
2m2

, . . . S̃
(r)
NmN

)
∈ RM with

S̃
(r)
ij = g

(
π
(r)
ij

)
+ g′

(
π
(r)
ij

) (
η?ij − π

(r)
ij

)
is the vector of adjusted response (also called

pseudo response) variables.
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1.3 Appendix C: Laplace approximated restrictive log-likelihood

In the outer optimization, λ is estimated by maximizing the Laplace approximated re-

stricted likelihood (Wood, 2011), denoted by lr(λ),

2lr(λ) = 2l(α̂λ) + log (|Aλ|)− α̂λTAλα̂λ − log (|H +Aλ|) +MAlog(2π)

with H = −∂2l(α)/∂α∂αT = XTΛXWX. Here, l(α) is the log-likelihood derived from

the binomial distribution as defined in the main manuscript, and ΛX = Diag{X11, . . . , X1m1 , X21,

. . . , X2m2 , . . . , XNmN
} is the diagonal matrix with values of read-depths. H depends on

the vector λ via the dependence of Aλ and α̂ on α, and MA is the dimension of the null

space of Aλ.

1.4 Appendix D: Proof of Theorem 1

The proof of Theorem 1 is based on Lemmas 1 and 2. Lemma 1 shows the second derivatives

of the conditional log-likelihood Q(α | α?), and Lemma 2 obtains the Hessian matrix of

the marginal log-likelihood of Y .

Lemma 1. The second derivative of the conditional log-likelihood function Q(α | α?) with

respect to α is
∂2Q(α | α?)
∂α ∂αT

= −XTΛXWX−Aλ, (1)

where W = Diag{w11, . . . w1m1 , w21, . . . , w2m2 , . . . wNmN
} ∈ RM×M is the weight matrix

with element wij = πij(1−πij), and ΛX = Diag{X11, . . . , X1m1 , X21, . . . , X2m2 , . . . , XNmN
}

is the diagonal matrix with values of read-depths. The mixed second derivatives of Q(α | α?)

with respect to α and α? are

∂2Q(α | α?)
∂α ∂α?T

= XTΛ?
ηW

?X (2)
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where W ? is the weight matrix evaluated at π?, which is the current iteration estimates

and Λ?
η is a diagonal matrix with diagonal elements δ?ij, defined as,

δ?ij =
Yijp1p0[

p1π?ij + p0(1− π?ij)
]2 +

(Xij − Yij) (1− p1)(1− p0)(
(1− p1)π?ij + (1− p0)(1− π?ij)

)2 . (3)

Proof. The Q function takes the form

Q(α | α?) =
N∑
i=1

mi∑
j=1

{
η?ijθij −Xij log(1 + eθij)

}
− 1

2
αTAλα,

where θij = log (πij/ (1− πij)). The first term is the binomial log-likelihood function

evaluated at η?(α?), the conditional expectations of the true outcome Sij.

We derive the first and second derivatives of Q(α | α?) with respect to α and α?. First,

it is easy to show that

∂Q(α | α?)
∂α

=
∑
(i,j)

{[
η?ij −Xijπij

] [
(X)(l,·)

]T}
−



λ0A0α0

λ1A1α1

. . .

λPAPαP


. (4)

Here we use (X)(l,·) to denote the lth row of the design matrix, which is the row corresponding

to the CpG j of sample i.

Differentiation of equation (4) with respect to α and α? yields respectively(
∂2Q(α | α?)
∂α ∂αT

)
(m,m′)

=
∑
(i,j)

{
−Xijπij(1− πij) (X)(l,m) (X)(l,m′)

}
− λp̃ (Ap)(k,k̃) I(m,m′),(5)

(
∂2Q(α | α?)
∂α ∂α?T

)
(m,m′)

=
∑
(i,j)

{
∂η?ij
∂π?ij

π?ij(1− π?ij) (X)(l,m) (X)(l,m′)

}
, (6)

for m,m′ = 1, 2, . . . K. In the above formulas, (•)(m,m′) represents the (m,m′) entry of

a matrix. I(m,m′) = 1 if αm and αm′ are the basis coefficients for the same functional

parameter βp(t), and I(m,m′) = 0 otherwise. For the pairs (m,m′) that satisfy I(m,m′) = 1,
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we use k and k̃ to denote the index of the bases associated with coefficients αm and αm′ ; in

other words, αm and αm′ are the kth and k̃th basis coefficients in the linear expansion that

are used to represent functional parameter βp(t). In addition, the ∂η?ij/∂π
?
ij in the formula

(6) equals to δ?ij, as defined in (3). The values of δij reduce to 0 when error parameters

p0 = 1− p1 = 0.

Finally, we rewrite the expressions in (5) and (6) in a compact way using matrices

ΛX ,W ,Λ?
η, and obtain the expressions in (1) and (2).

Lemma 2. The Hessian matrix of the marginal log-likelihood of Y has the form

H(α) = XT (−ΛX + Λη)WX−Aλ,

where Λη is a diagonal matrix with elements δij, which is of the similar form as δ?ij in (3)

but replacing π?ij with πij.

Proof. Due to the presence of the latent methylation state Sij, the observed counts Yij

follow a mixture of two binomial distributions. A direct calculation of the observed Fisher

information (Hessian matrix) from this marginal distribution is analytically intractable.

However, Oakes (1999) showed that, although the marginal log-likelihood itself is not ex-

pressible, its observed Fisher information, can be expressed in terms of the Q function (i.e.

the conditional expectation of the log-likelihood of Sij given the observed data Yij) and

its derivatives. Specifically, we rely on the work done by Oakes (1999) and calculate the

Hessian matrix of the marginal log-likelihood of Y for parameter α, H(α), as the sum of

two second derivatives of the Q function,

H(α) =

{
∂2Q(α | α?)
∂α ∂αT

+
∂2Q(α | α?)
∂α ∂α?T

}∣∣∣∣
α?=α

.

Using the results in Lemma 1, it can be easily shown that the Hessian matrix H(α) of the

marginal log-likelihood of Y is

H(α) = XT (−ΛX + Λη)WX−Aλ.
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The diagonal matrix Λη will be equal to 0 when error parameters p0 = 1− p1 = 0, which

corresponds to the case with no experimental error present in the data.

Theorem 1. Under the usual regularity conditions for maximum likelihood, we have the

following asymptotic results for the estimators α̂ obtained from the smoothed-EM algorithm,

√
M (α̂−α)

L−→MVNK(0,I−1), as M →∞.

Here, K is the dimension of the spline coefficients α, and I = E [−Hij(α)]. Specifically

Hij(α) has the form

Hij(α) = XT
(l,) (−Xijwij + δijwij)X(l,) −Aλ, (7)

where X(l,) is the lth row of the design matrix X, which corresponds to the CpG j of sample

i, and wij = πij(1− πij) is the element of the weight matrix.

Proof. Based on the results in Lemma 2, we can show that the Hessian matrix calculated

from the individual contribution from observation i at position j, Hij(α), can be expressed

as in equation (7).

Hence, the asymptotic result follows from the fact that smoothed-EM estimate α̂ is a

MLE of α for the marginal distribution of Y (Dempster et al., 1977), and Hij(α) is the

Hessian matrix of α for the marginal distribution of Y ij (Oakes, 1999).

2 ADDITIONAL SIMULATION RESULTS

In this section, we present additional Figures and Tables referenced in Sections 4 and 5 in

the main manuscript.
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2.1 Simulation settings and additional results for Type I Error

assessment

Figure S1 displays the 14 simulation settings of functional parameters β0(t) and β1(t) in

Scenario 2. Each pairs of β0(t) and β1(t) correspond to the 14 settings for π0(t) and π1(t)

shown in Figure 2 in the main manuscript (the black solid lines). Once we fixed the shapes

of π0(t) and π1(t) (in Figure 2 in the main manuscript), β0(t) and β1(t) have the forms

β0(t) = log
π0(t)

1− π0(t)

β1(t) = log
π1(t)

1− π1(t)
− β0(t).

−
1.

0
−

0.
5

0.
0

0.
5

β1(t)

Genomic Position
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2.
5

3.
0
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5
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0
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Figure S1: The 14 simulation settings of functional parameters β0(t) and β1(t) in Scenario

2, which correspond to the 14 settings for π0(t) shown in Figure 2 in the main manuscript.
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Table S1: Simulation settings outlined in Section 4.1 in the main manuscript, for the

functional parameters βp(t), sample size N , and error parameters p0 and p1.

Simulation Possibilities

parameters

βp(t) Scenario 1: three covariates: Z1 ∼ Bernoulli(0.51), Z2 ∼ Bernoulli(0.58) and Z3 ∼ Bernoulli(0.5)

with effects β1(t), β2(t) and β3(t) and intercept β0(t), shown in the red curves in Figure 1 of the

main manuscript.

Scenario 2: one covariate Z ∼ Bernoulli(0.5)

with 14 different settings of (β0(t), β1(t)), as shown in Figure S1 in the Supporting Information.

N (40, 100, 150, 400)

(p0, p1) p0 = 0.003; p1 = 0.9

Table S1 summarizes the simulation settings outlined in Section 4.1 in the main manuscript.

Figure S2 shows the distribution of p-values for the regional effect of the null covariate Z3

when data were generated with error.
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Figure S2: Quantile-Quantile (Q-Q) plots of the region-based p-values for the null co-

variate Z3, obtained from the six methods, over 1000 simulations. Data were gener-

ated with error with a range of sample sizes (N = 40, 100, 150, 400), under simula-

tion Scenario 1. Here, the Expected p-values are uniformly distributed numbers, equal

to = (1/1001, 2/1001, . . . , 1000/1001) and both axes are transformed with −log10(p).

2.2 Sensitivity to Bisulfite Sequencing Error Parameters

We explored additional simulation scenarios where the error parameters p0 and p1 were mis-

specified. Specifically, the data were generated subject to errors p0 = 0.003 and 1−p1 = 0.1

but analyses were conducted using a grid of values for p0 and p1, constructed from p0 =

(0, 0.003, 0.005, 0.1, 0.2) and p1 = (0.88, 0.89, 0.9, 0.95, 1). We considered the 14 settings

of Scenario 2 that were described in Section 4.1 and graphed in Figure 2 in the main

manuscript. These results are shown in columns named S1-S14 in Table S2. We also
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included one simulation with a null covariate effect and with varying error parameters,

and these results are shown in a column named S0 in Table S2. These 15 settings S0-

S14 correspond to increasing levels of differences between methylation patterns from two

groups, i.e. with increasing maximum deviation (MD) between the methylation levels of

Z = 0 and Z = 1.

The powers to detect DMRs for different configurations of p0 and p1 under each simu-

lation setting (S0-S14) were given in Table S2 (note that the power under S0 is the type I

error rate). The actual region-based p-values from the 100 simulations for setting S1 with

small methylation differences, and setting S14 with large methylation differences, were dis-

played in Figure S3 and Figure S4, respectively. In Figures S3 and S4, the region-based

p-values using the (mis)specified p0 and p1 (vertical axis) were plotted against the ones

using the correct p0 and p1 (horizontal axis).

Figure S3 and Figure S4 show that misspecified error rates can lead to minor differences

in regional p-values from the ones with correctly-specified error rates. This difference tends

to be greater when the effect size of the covariate of interest is large and when the bias in the

error parameters are big. Despite the differences in the actual regional p-values, the powers

under various misspecified error rates are shown to be similar to the case with known error

rates, as demonstrated in Table S2. In addition, when the error rates are specified with

strong bias, the EM algorithm will not converge. For example, for the simulation scenarios

considered in Table S2, the analyses using p1 ≤ 0.88 failed to converge. This also provides

a sign of error misspecification.
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Table S2: Powers to detect DMRs using SOMNiBUS when the error parameters p0 and p1 were

specified differently, under the 14 settings as shown in Figure 2 in the main manuscript (S1-S14)

and 1 setting under Null (S0). The powers were calculated over 100 simulations and the data were

generated based on the error parameters p0 = 0.003 and p1 = 0.9 (in gray shade), and sample

size N = 100.
p1 p0 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

0.88

0 0.04 0.13 0.24 0.38 0.59 0.71 0.85 0.94 0.97 0.99 1 1 1 1 1

0.003 0.04 0.13 0.24 0.38 0.59 0.71 0.85 0.94 0.97 0.99 1 1 1 1 1

0.005 0.04 0.13 0.24 0.38 0.59 0.71 0.85 0.94 0.97 0.99 1 1 1 1 1

0.1 0.04 0.13 0.24 0.38 0.59 0.7 0.85 0.95 0.98 1 1 1 1 1 1

0.2 0.04 0.13 0.24 0.38 0.58 0.7 0.85 0.95 0.98 1 1 1 1 1 1

0.89

0 0.04 0.12 0.21 0.39 0.55 0.67 0.81 0.9 0.96 0.98 1 1 1 1 1

0.003 0.04 0.12 0.21 0.39 0.55 0.67 0.81 0.9 0.96 0.98 1 1 1 1 1

0.005 0.04 0.12 0.21 0.39 0.55 0.67 0.81 0.9 0.96 0.98 1 1 1 1 1

0.1 0.04 0.12 0.21 0.39 0.55 0.67 0.81 0.9 0.96 0.98 1 1 1 1 1

0.2 0.04 0.12 0.21 0.38 0.55 0.67 0.81 0.9 0.96 0.98 1 1 1 1 1

0.9

0 0.04 0.14 0.22 0.37 0.53 0.65 0.77 0.87 0.94 0.99 1 1 1 1 1

0.003 0.04 0.14 0.22 0.37 0.53 0.65 0.77 0.87 0.94 0.99 1 1 1 1 1

0.005 0.04 0.14 0.22 0.37 0.53 0.65 0.77 0.87 0.94 0.99 1 1 1 1 1

0.1 0.04 0.14 0.23 0.37 0.53 0.65 0.77 0.87 0.94 0.99 1 1 1 1 1

0.2 0.04 0.14 0.23 0.37 0.52 0.65 0.77 0.87 0.93 0.99 1 1 1 1 1

0.95

0 0.06 0.12 0.2 0.31 0.44 0.58 0.7 0.78 0.87 0.94 0.97 1 1 1 1

0.003 0.06 0.12 0.2 0.31 0.43 0.58 0.7 0.78 0.87 0.94 0.97 1 1 1 1

0.005 0.06 0.12 0.2 0.31 0.43 0.58 0.7 0.78 0.87 0.94 0.97 1 1 1 1

0.1 0.06 0.12 0.2 0.3 0.44 0.59 0.68 0.77 0.88 0.95 0.98 1 1 1 1

0.2 0.06 0.11 0.2 0.32 0.43 0.59 0.68 0.78 0.87 0.95 0.99 1 1 1 1

1

0 0.06 0.13 0.18 0.29 0.42 0.54 0.67 0.75 0.87 0.91 0.97 1 1 1 1

0.003 0.06 0.13 0.18 0.29 0.42 0.54 0.67 0.75 0.87 0.91 0.97 1 1 1 1

0.005 0.06 0.13 0.18 0.29 0.42 0.54 0.67 0.75 0.87 0.91 0.97 1 1 1 1

0.1 0.06 0.13 0.18 0.29 0.42 0.54 0.65 0.75 0.87 0.91 0.98 1 1 1 1

0.2 0.06 0.13 0.18 0.27 0.42 0.52 0.66 0.75 0.86 0.91 0.97 1 1 1 1
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Figure S3: Scatter plots of the region-based p-values using the specified p0 and p1 (vertical

axis) compared to the region-based p-values using the correct p0 and p1 (horizontal axis),

for various settings of p0 and p1 specified in the facet labels, under 100 simulations. Here,

data were simulated under S1 where MD between the methylation curves in two groups is

0.01 – small effect size.
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Figure S4: Scatter plots of the region-based p-values using the specified p0 and p1 (vertical

axis) compared to the region-based p-values using the correct p0 and p1 (horizontal axis),

for various settings of p0 and p1 specified in the facet labels, under 100 simulations. Here,

data were simulated under S14 where MD between the methylation curves in two groups

is 0.06 - large effect size.

2.3 Runtime Comparison

Figure S5 shows the runtime when fitting a single covariate using the methods under in-

vestigation. For dmrseq, we used three different numbers of permutations for comparison
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(10, 100 and 500). SOMNiBUS No Error refers to assuming no sequencing errors in SOM-

NiBUS, which reduces the full model to a pure generalized additive model. Figure S5 shows

that SOMNiBUS requires longer computational times than GlobalTest, BSmooth, SMSC and

BiSeq, but less than dmrseq. Note that our proposed method, SOMNiBUS, is capable of es-

timating the effects of multiple covariates simultaneously, whereas, other methods require

repeating the analysis for each covariate, which will multiply the runtime by the number

of covariates.

3 ADDITIONAL DATA APPLICATION RESULTS

In addition to the BANK1 region (Orozco et al., 2009), described in Section 3 in the

main manuscript, we considered three more regions which overlap with genes BLK, HLA-

DRB and PTPN22. These genes have been known associated with risk of rheumatoid

arthritis (RA) (Zhang et al., 2012; Balsa et al., 2010; Hinks et al., 2006). We applied

our method SOMNiBUS, along with the five alternative methods—BiSeq, BSmooth, SMSC,

dmrseq and GlobalTest—to each targeted region of interest. Table S3 presents the region-

based p-values for covariate effects on the four methylation regions. This table shows that

SOMNiBUS reports smaller regional p-values, and exhibits an improved power to detect these

RA-related methylation regions, as compared to the alternative methods.
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SOMNiBUS

SOMNiBUS No Error

GlobalTest
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dmrseq_nperm_100
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Figure S5: Summary of runtime under 100 replications. Time axis is presented on the

log scale. Data were generated from the S1 of Scenario 2 (with small maximum deviance

among the 14 settings in Figure 1) and subject to error p0 = 0.003 and p1 = 0.9. (Sample

size N = 100)
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4 SOFTWARE AND DATA

R-package for SOMNiBUS routine: R-package SOMNiBUS contains code to perform

the methods described in the article. (GNU zipped tar file) (https://github.com/

kaiqiong/SOMNiBUS)

SOMNiBUS Vignette: A user guide of how to use SOMNiBUS package. The vignette

also contains the codes for replicating the data example results in this article. (Rmd

and HTML files) (https://github.com/kaiqiong/SOMNiBUS/tree/master/vignettes)

Simulation Codes: Codes to replicate the simulation results in the article are deposited

in the Github repository https://github.com/kaiqiong/SOMNiBUS_Simu.
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