ChemBioChem

Supporting Information

Binding Mode Characterization of Osteopontin on Hydroxyapatite by Solution NMR Spectroscopy

Julian Holzinger,* Harald Kotisch, Klaus W. Richter, and Robert Konrat

Supporting Information

S1 Expression of human OPN

Uniformly ¹⁵N-labelled OPN (residue 17 to 314 of the full-length protein; BMRB ID: P10451) was expressed and purified in its non-phosphorylated form as reported previously^{1,2}. As a final step, the buffer was exchanged to the desired measurement buffer (BisTris 50 mM, NaCl 50 mM, NaN₃ 1 mM, pH=6.5).

IPVK QADSGSSEEK QLYNKYPDAV ATWLNPDPSQ KQNLLAPQNA VSSEETNDFK QETLPSKSNE SHDHMDDMDD EDDDDHVDSQ DSIDSNDSDD VDDTDDSHQS DESHHSDESD ELVTDFPTDL PATEVFTPVV PTVDTYDGRG DSVVYGLRSK SKKFRRPDIQ YPDATDEDIT SHMESEELNG AYKAIPVAQD LNAPSDWDSR GKDSYETSQL DDQSAETHSH KQSRLYKRKA NDESNEHSDV IDSQELSKVS REFHSHEFHS HEDMLVVDPK SKEEDKHLKF

S2 Phosphorylation of OPN

¹⁵N OPN was phosphorylated *in vitro* employing the kinase Fam20C. Fam20C was expressed as described previously^{1,3}. The phosphorylation was performed as described previously¹ (BMRB ID: P50447).

S3 MTSL labelling

The ¹⁵N OPN(p) cysteine mutant T185C were incubated with an excess of DTT (10 mM; 15min, RT). A PD-10 Desalting-Column was equilibrated with 100 mM sodium phosphate buffer (1 mM EDTA, pH = 8.0), the protein loaded ($V_{tot} = 2.5$ mL) and eluted with 3.4 mL of buffer. Free thiol concentration was checked using a 300 mM DTNB (5,50-dithiobis-(2-nitrobenzoic acid)) solution at 412 nm. A threefold excess of *S*-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl) methyl methane-sulfonothioate (MTSL) was added and the sample was incubated under agitation (3 h, 37 °C). Afterwards, the free thiol concentration was checked again. Protein purity was verified via SDS-PAGE electrophoresis. MTSL is a nitroxide spin radical and thus the MTSL-labelled protein serves as the paramagnetic form. The nitroxide group is reduced with ascorbic acid in order to obtain the diamagnetic form.

S4 Synthesis and Characterization of Hydroxyapatite Nanoparticles

S4.1 Synthesis. Hydroxyapatite (HAP) nanoparticles were synthesized by precipitation titration, similar to Matlahov et al.⁴. 16 mL of $(NH_4)_2PO_4$ (0.075 M) were titrated into 56 mL solution consisting of Ca(NO₃)₂ (0.04 M) and NH₃ (0.2 M / 0.8%) at 37°C and pH=9, using a peristaltic pump (0.05 mL/min), and under continuous stirring (850 rpm). After the complete add of the phosphate solution, the mixture was stirred overnight at 60°C. The solid precipitate was filtered (0.45 µm), washed with ethanol and MilliQ water and dried at 37°C for 48h. The obtained HAP was ground finely in a porcelain mortar and stored as it is. For comparison and to confirm the right sample composition in powder XRD measurements, one HAP sample was calcined at 900°C for 24h.

S4.2 pXRD. Powder XRD patterns were obtained with a Bruker D8 Advance diffractometer (Cu K α) in pseudo-focussing Bragg-Brentano configuration using variable slits and a silicon strip detector (Lynxeye). Data were analyzed with the TOPAS software⁵ and a structural model of the hexagonal HAP (space group $P6_3/m$). Powder XRD diffractograms of the

synthesized HAP nanoparticles, the calcined HAP and the corresponding Rietveld refinements are shown in **Figure S1**. Background corrections, an amorphous foreign phase peak at 62.48° and four reflections of impurities (15.02° , 30.29° , 37.36° and 46.12°) are included in the refinements, resulting in R-values of $R_{wp} = 4.11$ (calcined HAP) and $R_{wp} = 6.35$ (HAP nanoparticles). The calcined sample exhibits sharp reflections (refined average crystalline domain size: 72 nm) at the positions of hexagonal HAP, revealing that the annealing at high temperature produced a highly crystalline HAP. The pattern of the HAP nanoparticles shows broader reflections that can be refined with the same hexagonal structure. The larger peak widths are caused by the average crystallite size of 12 nm (determined with the Scherrer equation). The peaks of the unknown impurity phase correspond either to a simple cubic cell (a = 5.898 Å; 001, 002, 211 and 003 reflexes) or a body centered cubic cell (a = 8.340 Å; 011, 022, 222 and 411 reflexes) according to an indexing attempt.

S4.3 Transmission Electron Microscopy. HAP nanoparticles were suspended and sonicated in ethanol, and deposited on 200 mesh copper R 1.2/1.3 Quantifoil holey carbon grids (Großlöbichau, Germany) for TEM with an additional 2 nm continuous carbon film. After the solvent had evaporated grids were imaged using a Thermo Scientific Glacios transmission electron microscope operated at 200 kV and micrographs were digitally recorded using a Falcon3 direct electron detector in linear mode. Images of the HAP nanoparticles are shown in **Figure S2**. The nanoparticles appear in clusters of seemingly detachable crystallites of platelet-like morphology with an approximate size of 10-20 nm by 5 nm, which is in accordance with the determined crystallite size from the pXRD pattern refinement. Crystal planes can be observed in some crystallites in the micrograph upon the highest magnification (**Figure S2**, bottom).

S5 Preparation of MeCe Hydrogel

The commercially available MethoceI® A4M (Sigma-Aldrich) was dispersed in the preheated (80° C) measurement buffer (BisTris 50mM, NaCl 50mM, NaN₃ 1uM, pH=6.5). The mixture was stirred for 15min until the MeCe was thoroughly wetted and in suspension. Afterwards, more buffer was added to the mixture to reach the desired concentration of 2 wt% and it was incubated at 4°C overnight under agitation.

S6 Preparation of NMR Sample

S6.1 Samples in MeCe. 480 μ L of MeCe (2wt%) were mixed with 60 μ L D₂O and 60 μ L of the respective protein solution (final concentration: 0.08 – 0.1 mM for wt; 0.03 – 0.05 mM for T185C mutant), resulting in a MeCe concentration of 1.6 wt%.

S6.2 Samples w/ HAP. 0.6 mg HAP were suspended in 480μ L of the MeCe hydrogel/measurement buffer + 60 μ L D₂O applying 3x1' of sonication (70 W; 30% amplitude; 1s/1s on/off duty cycle), resulting in a HAP concentration of 0.1 wt%. Afterwards, the suspension was extensively mixed with 60 μ L of the respective protein solution.

S7 NMR Experiments

NMR spectra have been acquired at 293K on a Bruker Avance III HD+ 800 spectrometer (18.8 T), using a Bruker RT 5mm TXI probe. ¹⁵N-T₂ relaxation data was determined using CPMG delays of 0.017, 0.034, 0.136, 0.271 and 0.543 s. For the STD ¹H-¹⁵N HSQC experiments, an irradiation pulse (1s; 1.8 kHz) was employed at -5 ppm and -50 ppm for the on- and off-resonance experiment, respectively. For the PRE measurements, ¹H^N-R₂ rates for hOPN(p) T185C were determined employing a pseudo 3-D ¹H^N-T₂ HSQC NMR. Six relaxation delays (0.001, 0.005, 0.01, 0.02, 0.05 and 0.1 s) were used in order to obtain the relaxation rates from exponential decay function fits.

NMR data was processed with nmrPipe⁶ and analysed with Sparky⁷. Chemical shift perturbations (CSP) were read out from the respective ¹H-¹⁵N HSQC spectra and calculated according to:

$$CSP = \Delta \delta = \sqrt{(\Delta \delta_{\rm H})^2 + (\Delta \delta_{\rm N}/5)^2}$$

Binding affinities of Ca²⁺ to OPN(p) from titration NMR experiments (**Figure S3** and **S4**) were analyzed and fitted with a low-binding event equation⁸ from which the affinities K_D were determined (c(OPN) = 0.1 mM; c(OPNp) = 0.05 mM):

 $CSP = \Delta \delta_{max} \{ ([P]_{tot} + [L]_{tot} + K_D) - [([P]_{tot} + [L]_{tot} + K_D)^2 - 4[P]_{tot} [L]_{tot}]^{1/2} \} / 2[P]_{tot} \}$

Figures S3 and S4 show the fit analysis performed for selected sets of residues from the regions with the largest chemical shift perturbations.

The STD effect (Δ STD) was quantified by a normalization of the spectral intensities by running the same experiment with and without the saturation pulse (STD_x and HSQC_x) and under the compared conditions (*a* and *b*; e.g. +HAP and apo). It was calculated as follows:

 $\Delta \text{STD} = (\text{STD}_a/\text{HSQC}_a) / (\text{STD}_b/\text{HSQC}_b)$

The PRE effect $(\Delta({}^{1}H^{N})\Gamma_{2})$ is quantified according to: $\Delta({}^{1}H^{N})\Gamma_{2}=({}^{1}H^{N})R_{2,para}-({}^{1}H^{N})R_{2,dia}$

S8 Adsorption Isotherms (OPN(p) + HAP)

Known initial concentrations of OPN(p) ($c_0 = 0.004 - 0.08 \text{ mM}$; $V_0 = 0.4 \text{ mL}$) were equilibrated with 0.6 mg of HAP nanoparticles for 4h under agitation. Nanoparticles were separated from the supernatant by centrifugation (13k rpm, 20 min). The equilibrium protein concentration c_{eq} in the separated supernatant was determined by UV-vis spectrophotometry using a NanoDropTM (Thermo Fisher). The equilibrium fractional saturation q_{eq} was calculated as follows:

$$q_{\rm eq} = \left(c_0 - c_{\rm eq}\right) V_0 / m_{\rm HAP}$$

The data (Figure S5) was fitted with a Langmuir isotherm from which the monolayer sorption saturation capacity $X_{\rm m}$ and the dissociation constant $K_{\rm D}$ were determined ($a_{\rm L}$: Langmuir constant):

$$q = (X_{\rm m}a_{\rm L} c_{\rm eq}) / (1 + a_{\rm L} c_{\rm eq}) = X_{\rm m}c_{\rm eq}/(a_{\rm L}^{-1} + c_{\rm eq}) = X_{\rm m}c_{\rm eq}/(K_{\rm D} + c_{\rm eq})$$

The obtained dissociation constants K_D for OPN and OPNp adsorbing onto HAP nanoparticles are 28(17) μ M and 14(4) μ M, respectively; the monolayer sorption saturation capacities X_m are 0.011(3) μ mol/mg and 0.006(1) μ mol/mg, respectively.

S9 Table of chemical shift perturbations

The CSPs of all residues in OPN and OPNp upon interaction to Ca^{2+} (ratio 1:120 and saturated) and HAP can be found in a table on page S13.

reflection angles are marked with a blue bar. calculated intensities (red), amorphous peak (pink) and difference intensities (grey), using a hexagonal HAP with P63/m symmetry. Impurities and the corresponding Figure S1. Rietveld refinement of the powder XRD patterns of the calcined HAP (top) and the HAP nanoparticles (bottom), including the observed intensities (blue),

Figure S2. TEM micrographs of the synthesized HAP nanoparticles, recorded at three different magnifications with pixel size of 4.12, 0.38 and 0.27 Å, respectively (top to bottom).

Figure S3. Selected titration curves from ¹H-¹⁵N HSQC NMR spectra for ¹⁵N-labelled OPN titrated with CaCl₂ for the residues T73, D87, D95, E132, H134, T185 and L297, together with the corresponding low-binding event fit (thin lines).

Figure S4. Selected titration curves from ¹H-¹⁵N HSQC NMR spectra for ¹⁵N-labelled OPNp titrated with CaCl₂ for the residues Q31, T73, V97, S108, S117, D178, E226 and S308, together with the corresponding low-binding event fit (thin lines).

Figure S5. Adsorption isotherms for OPN (open triangles) and OPNp (filled squares) interacting with HAP, including standard deviations and corresponding fits, from which the monolayer sorption saturation capacities X_m and dissociation constants K_D were obtained (X_m (OPN) = 0.011(3) µmol/mg and K_D (OPN) = 28(17) µM; X_m (OPNp) = 0.006(1) µmol/mg and K_D (OPNp) = 14(4) µM).

Figure S6. Effect of the interaction of the OPN cysteine mutant T185C with HAP on long-range interactions measured by ${}^{1}\text{H}^{N}$ -T₂ NMR experiments. PRE profiles $\Delta\Gamma_{2}$ of the apo form (top) and OPN + HAP (middle). PRE rates difference plot Δ PRE = Γ_{2} (OPN_HAP)- Γ_{2} (OPN_apo) (bottom). Orange bars indicate the mutated cysteine residue with the attached MTSL label.

Figure S7. Effect of the interaction of the phosphorylated OPNp cysteine mutant T185C with HAP on long-range interactions measured by ${}^{1}\text{H}^{N}\text{-}\text{T}_{2}$ NMR experiments. PRE profiles $\Delta\Gamma_{2}$ of the apo form (top) and OPNp + HAP (middle). PRE rates difference plot Δ PRE = Γ_{2} (OPNp_HAP)- Γ_{2} (OPNp_apo) (bottom). Orange bars indicate the mutated cysteine residue with the attached MTSL label.

Figure S8. Correlation map of the PRE rates difference Δ PRE = $\Gamma_2(\text{OPN}(p)_\text{HAP})$ - $\Gamma_2(\text{OPN}(p)_\text{apo})$ and the PRE rates $\Delta\Gamma_2$ of the apo form of OPN (left) and OPNp (right). The red dots are from residues in the vicinity of the mutation site (residue 150-210).

References

- [1] B. Mateos, J. Holzinger, C. Conrad-Billroth, G. Platzer, S. Żerkob, M. Sealey-Cardonac, D. Anrather, W. Koźmiński, R. Konrat, *Biochemistry* **2021**, *XX*, XXX-XXX.
- [2] G. Platzer, S. Żerko, S. Saxena, W. Koźmiński, R. Konrat, Biomol. NMR Assign. 2015, 9, 289–292.
- [3] V. S. Tagliabracci, J. L. Engel, J. Wen, S. E. Wiley, C. A. Worby, L. N. Kinch, J. Xiao, N. V. Grishin, J. E. Dixon, *Science* 2012, 336, 1150–1153.
- [4] I. Matlahov, T. Iline-Vul, M. Abayev, E. M. Y. Lee, M. Nadav-Tsubery, K. Keinan-Adamsky, J. J. Gray, G. Goobes, *Chem. Mater.* 2015, 27, 5562–5569.
- [5] A. X. S. Bruker, *TOPAS V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data* **2009**, Karlsruhe, Germany.
- [6] F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, A. Bax, J. Biomol. NMR 1995, 6, 277–293.
- [7] W. Lee, M. Tonelli und J. L. Markley, *Bioinformatics* 2014, 31, 1325-1327.
- [8] M. P. Williamson, Prog. Nucl. Magn. Reson. Spectrosc. 2013, 73, 1-16.

OPN					OPNp				
residue	AA	CSP	CSP	CSP	residue	AA	CSP	CSP	CSP
		+ Ca2+	+ Ca2+				+ Ca2+	+ Ca2+	
		(1:120)	(1:300)	+ HAP			(1:120)	(1:750)	+ HAP
17	I	0.043	0.038	0.017	17	I	0.011	0.027	0.002
18	Р				18	Р			
19	V	0.000	0.001	0.000	19	V	0.031	0.030	0.003
20	К	0.003	0.003	0.000	20	К	0.004	0.012	0.001
21	Q	0.009	0.014	0.000	21	Q	0.021	0.062	0.006
22	А	0.004	0.001	0.004	22	А	0.017	0.042	0.002
23	D	0.005	0.007	0.005	23	D	0.034	0.096	0.005
24	S	0.008	0.014	0.013	24	pS	0.069	0.181	0.017
25	G	0.001	0.005	0.000	25	G	0.021	0.037	0.018
26	S	0.004	0.007	0.027	26	pS	0.021	0.011	0.048
27	S	0.002	0.001	0.009	27	pS	0.054	0.068	0.054
28	E	0.001	0.002	0.004	28	Ē	0.007	0.021	0.017
29	E				 29	E	0.028	0.041	0.019
30	К	0.006	0.013	0.000	30	К	0.059	0.067	0.017
31	Q	0.010	0.025	0.004	31	Q	0.055	0.144	0.014
32	L	0.010	0.016	0.003	32	L	0.044	0.115	0.007
33	Y	0.011	0.016	0.005	33	Y	0.038	0.099	0.010
34	N	0.001	0.007	0.000	34	N	0.025	0.071	0.004
35	K	0.004	0.002	0.000	35	K	0.001	0.017	0.022
36	Y				36	Y	0.003	0.010	0.003
37	P				37	P			
38	D	0.009	0.008	0.003	38	D	0.002	0.012	0.003
39	A	0.003	0.009	0.000	39	A	0.005	0.009	0.007
40	V	0.003	0.001	0.000	40	V	0.007	0.003	0.000
41	A	0.000	0.002	0.000	41	A	0.006	0.006	0.004
42	T	0.003	0.003	0.004	42	T	0.003	0.003	0.004
43	W	0.003	0.003	0.005	43	W	0.005	0.009	0.004
44	L	0.005	0.006	0.004	44		0.009	0.018	0.002
45	N	0.009	0.004	0.004	45	N	0.002	0.017	0.000
46	P				46	P	0.001	0.017	0.000
47	D				47	D			
48	P				 48	P			
49	S	0.001	0.005	0.000	49	S	0.005	0.005	0.000
50	0	0.0012	0.000	0.006	50	0	0.000	0.005	0.000
51	к 	0.003	0.006	0.000	51	ĸ	0.012	0 009	0 004
52	0	0.003	0.000	0.000	52	0	0.012	0.009	0.000
52	N	0.005	0.024	0.000	52	<u> </u>	0.010	0.005	0.000
53	1	0.000	0.005	0.000	53	1	0.010	0.011	0.004
54		0.012	0.000	0.011	 55	<u></u> Г	0.000	0.013	0.005
55	Δ	0.012	0.012	0.004	56	Δ	0.010	0.031	0.000

S9 Table of chemical shift perturbations, including CSPs (in ppm) of all residues in OPN and OPNp upon interaction to Ca^{2+} (ratio 1:120 and saturated) and HAP.

57	Р				57	Р			
58	Q	0.005	0.007	0.003	58	Q	0.016	0.028	0.006
59	Ν	0.009	0.009	0.000	59	Ν	0.012	0.011	0.000
60	А	0.005	0.009	0.000	60	А	0.024	0.041	0.012
61	V	0.005	0.005	0.003	61	V	0.010	0.027	0.010
62	S	0.008	0.012	0.004	62	pS	0.025	0.069	0.047
63	S	0.002	0.005	0.002	63	pS	0.119	0.173	0.086
64	E	0.005	0.008	0.003	64	E	0.032	0.048	0.003
65	Е				65	E			
66	Т	0.013	0.019	0.000	66	Т	0.035	0.080	0.002
67	Ν	0.004	0.003	0.007	67	Ν	0.014	0.021	0.006
68	D	0.011	0.012	0.000	68	D	0.022	0.031	0.002
69	F	0.007	0.009	0.001	69	F	0.014	0.024	0.006
70	К	0.029	0.037	0.009	70	К	0.028	0.015	0.008
71	Q	0.013	0.010	0.014	71	Q	0.011	0.019	0.000
72	E	0.018	0.015	0.003	72	E	0.034	0.056	0.006
73	Т	0.031	0.036	0.010	73	Т	0.050	0.092	0.019
74	L	0.017	0.023	0.006	74	L	0.039	0.077	0.014
75	Р				75	Р			
76	S	0.021	0.024	0.012	76	S	0.021	0.047	0.005
77	K	0.009	0.011	0.005	77	К	0.010	0.015	0.002
78	S	0.035	0.050	0.015	78	pS	0.057	0.165	0.025
79	Ν	0.013	0.015	0.014	79	Ν	0.013	0.077	0.004
80	E				80	E	0.008	0.039	0.025
81	S				81	pS	0.019	0.006	0.043
82	Н				82	Н	0.011	0.036	0.008
83	D	0.001	0.008	0.000	83	D	0.025	0.034	0.015
84	Н	0.004	0.014	0.037	84	Н	0.023	0.038	0.013
85	М	0.034	0.043	0.007	85	M			
86	D	0.022	0.036	0.022	86	D	0.009	0.012	0.008
87	D	0.083	0.105	0.054	87	D	0.019	0.028	0.021
88	M	0.049	0.064	0.030	88	M			
89	D	0.030	0.043	0.009	89	D			
90	D –				90	D _			
91	E				91	E			
92	D				92	D			
93	D				93	D			
94		0.025	0.042	0.000	94				
95		0.035	0.042	0.009	95		0.072	0.120	0.020
96	H	0.026	0.033	0.015	96	H	0.073	0.126	0.036
97	V	0.030	0.039	0.022	97	V	0.082	0.135	0.005
98	D s	0.012	0.008	0.005	98	ں بر	0.037	0.050	0.011
99 100	3	0.020	0.023	0.015	33 100	h2 C	0.041	0.011	0.051
100	<u>ч</u>		0.023	0.005	100	ע ר	0.022		0.014
101	ں د	0.005	0.015	0.007	102	ں د	0.044	0.052	0.025
102	<u>з</u>	0.041	0.040	0.021	102	<u>з</u>	0.039	0.054	
103	I	0.017	0.010	0.007	103	I	0.047	0.007	0.025

104	D	0.058	0.059	0.027	104	D	0.028	0.029	0.010
105	S	0.014	0.019	0.008	105	pS	0.095	0.025	0.053
106	Ν	0.023	0.030	0.008	106	N	0.023	0.029	0.032
107	D	0.000	0.016	0.006	107	D	0.051	0.093	0.013
108	S	0.039	0.058	0.017	108	pS	0.227	0.287	0.085
109	D	0.023	0.031	0.008	109	D	0.028	0.064	0.045
110	D	0.011	0.018	0.009	110	D	0.008	0.006	0.025
111	V	0.020	0.020	0.013	111	V	0.047	0.047	0.026
112	D	0.033	0.038	0.007	112	D	0.008	0.017	0.016
113	D	0.038	0.037	0.014	113	D	0.030	0.085	0.034
114	Т	0.033	0.032	0.013	114	Т	0.080	0.112	0.043
115	D	0.014	0.020	0.013	115	D	0.031	0.048	0.002
116	D	0.036	0.041	0.012	116	D	0.043	0.045	0.029
117	S	0.001	0.005	0.006	117	pS	0.165	0.186	0.092
118	Н	0.003	0.009	0.008	118	Н	0.036	0.065	0.023
119	Q				119	Q	0.029	0.052	0.013
120	S	0.008	0.008	0.004	120	pS	0.077	0.076	0.059
121	D	0.012	0.016	0.004	121	D	0.050	0.047	0.058
122	E	0.024	0.025	0.009	122	E	0.040	0.061	0.012
123	S	0.028	0.026	0.005	123	pS	0.009	0.031	0.036
124	Н	0.025	0.043	0.017	124	Н	0.007	0.019	0.017
125	Н				125	Н	0.023	0.074	0.016
126	S	0.009	0.002	0.012	126	pS	0.054	0.083	0.049
127	D	0.014	0.014	0.005	127	D	0.021	0.020	0.006
128	E	0.012	0.022	0.012	128	E	0.024	0.064	0.017
129	S	0.004	0.009	0.008	129	pS	0.064	0.010	0.044
130	D	0.008	0.012	0.011	130	D	0.010	0.036	0.018
131	Е	0.005	0.010	0.000	131	E	0.059	0.039	0.019
132	L	0.039	0.049	0.006	132	L	0.078	0.144	0.020
133	V	0.013	0.011	0.012	133	V	0.019	0.036	0.007
134	Т	0.046	0.054	0.014	134	Т	0.058	0.102	0.016
135	D	0.009	0.010	0.003	135	D	0.011	0.022	0.000
136	F	0.009	0.011	0.002	136	F	0.030	0.043	0.013
137	Р				137	Р			
138	Т	0.027	0.035	0.009	138	Т	0.033	0.060	0.010
139	D	0.005	0.010	0.000	139	D	0.017	0.009	0.024
140	L	0.005	0.002	0.005	140	L	0.017	0.020	0.004
141	Р				141	Р			
142	А	0.010	0.008	0.000	142	А	0.063	0.112	0.004
143	Т	0.014	0.021	0.006	143	Т	0.035	0.075	0.004
144	E	0.004	0.005	0.004	144	E	0.021	0.034	0.000
145	V	0.007	0.007	0.003	145	V	0.027	0.056	0.004
146	F	0.008	0.013	0.005	146	F	0.019	0.026	0.008
147	Т	0.008	0.007	0.006	147	Т	0.020	0.041	0.000
148	Р				148	Р			
149	V	0.003	0.009	0.004	149	V			
150	V	0.010	0.009	0.009	150	V	0.031	0.054	0.005

151	Р				151	Р			
152	Т	0.007	0.005	0.003	152	Т	0.020	0.032	0.009
153	V	0.004	0.017	0.004	153	V	0.021	0.033	0.000
154	D	0.004	0.015	0.000	154	D	0.021	0.032	0.008
155	Т	0.002	0.013	0.000	155	Т	0.006	0.009	0.003
156	Y	0.002	0.006	0.000	156	Y	0.006	0.009	0.000
157	D	0.004	0.009	0.000	157	D	0.035	0.022	0.005
158	G	0.002	0.006	0.003	158	G	0.004	0.007	0.003
159	R	0.008	0.014	0.005	159	R	0.006	0.018	0.005
160	G	0.013	0.025	0.003	160	G	0.003	0.030	0.000
161	D	0.011	0.009	0.003	161	D	0.001	0.017	0.004
162	S	0.005	0.002	0.000	162	S	0.003	0.005	0.005
163	V	0.009	0.007	0.008	163	V	0.009	0.011	0.002
164	V	0.009	0.002	0.011	164	V	0.034	0.036	0.015
165	Y	0.011	0.006	0.013	165	Y	0.033	0.054	0.010
166	G	0.003	0.010	0.008	166	G	0.020	0.023	0.010
167	L	0.003	0.010	0.000	167	L	0.005	0.008	0.000
168	R				168	R	0.010	0.026	0.017
169	S				169	S	0.042	0.092	0.019
170	K				170	К	0.015	0.044	0.010
171	S				171	S	0.038	0.070	0.012
172	K				172	K	0.019	0.051	0.012
173	K				173	K	0.021	0.020	0.009
174	F				 174	F	0.081	0.066	0.004
175	R				175	R			
176	R				176	R			
177	Р				177	Р			
178	D	0.012	0.045	0.026	178	D	0.083	0.188	0.017
179	I	0.005	0.023	0.021	179	I	0.044	0.138	0.017
180	Q	0.003	0.010	0.010	180	Q	0.017	0.055	0.002
181	Y	0.008	0.004	0.016	181	Y	0.016	0.017	0.005
182	P	0.000	0.005	0.000	182	Р Р	0.000	0.000	0.000
183	D	0.002	0.005	0.006	183	D	0.022	0.060	0.002
184	A T	0.006	0.032	0.009	184	A	0.029	0.117	0.012
185		0.021	0.023	0.007	105		0.034	0.255	0.098
100		0.011	0.020	0.004	100				
188		0.004	0.048	0.040	188		0.016	0.043	0.004
189	 	0.000	0.011	0.005	189	 	0.010	0.043	0.004
190	T	0.004	0.010	0.010	190	T	0.008	0.024	0.010
191	S	0.003	0.011	0.012	191	nS	0.071	0.040	0.052
192	H	0.024	0.040	0.007	192	H	0.009	0.010	0.004
193	М				193	М	0.057	0.052	0.019
194	E	0.008	0.001	0.018	194	E	0.003	0.021	0.009
195	S	0.003	0.010	0.008	195	pS	0.017	0.017	0.059
196	E	0.011	0.015	0.004	196	E	0.033	0.069	0.011
197	E				197	E	0.021	0.038	0.022

198	L	0.004	0.013	0.006	198	L	0.016	0.035	0.006
199	Ν	0.008	0.019	0.011	199	N	0.010	0.032	0.006
200	G	0.003	0.011	0.005	200	G	0.004	0.008	0.007
201	А	0.003	0.011	0.000	201	А	0.005	0.015	0.000
202	Y	0.005	0.013	0.000	202	Y	0.004	0.023	0.005
203	К	0.010	0.009	0.008	203	К	0.011	0.018	0.003
204	А	0.004	0.004	0.004	204	А	0.004	0.009	0.002
205	Ι	0.008	0.010	0.004	205	I	0.020	0.030	0.009
206	Р				206	Р			
207	V	0.006	0.006	0.000	207	V	0.020	0.026	0.005
208	А	0.012	0.017	0.002	208	А	0.034	0.054	0.012
209	Q	0.014	0.012	0.004	209	Q	0.020	0.037	0.007
210	D	0.004	0.014	0.000	210	D	0.016	0.019	0.003
211	L	0.005	0.010	0.006	211	L	0.007	0.012	0.004
212	N	0.001	0.010	0.000	212	N	0.033	0.036	0.010
213	А	0.003	0.002	0.002	213	А	0.036	0.046	0.008
214	Р				214	Р			
215	S	0.013	0.020	0.000	215	pS	0.022	0.039	0.011
216	D	0.006	0.012	0.006	216	D	0.012	0.019	0.005
217	W	0.006	0.010	0.007	217	W	0.013	0.048	0.010
218	D	0.005	0.004	0.000	218	D	0.027	0.052	0.010
219	S	0.007	0.006	0.002	219	pS	0.049	0.044	0.082
220	R	0.008	0.009	0.001	220	R	0.017	0.006	0.009
221	G	0.000	0.005	0.006	221	G	0.014	0.027	0.006
222	К	0.012	0.008	0.010	222	К	0.002	0.028	0.000
223	D	0.006	0.004	0.000	223	D	0.014	0.014	0.010
224	S	0.006	0.013	0.001	224	pS	0.048	0.039	0.068
225	Y	0.003	0.017	0.003	225	Y	0.018	0.049	0.014
226	E	0.003	0.015	0.004	226	E	0.049	0.097	0.008
227	Т	0.005	0.006	0.000	227	Т	0.029	0.032	0.010
228	S	0.007	0.007	0.010	228	pS	0.011	0.072	0.041
229	Q	0.006	0.008	0.004	229	Q	0.025	0.042	0.008
230	L	0.010	0.015	0.005	230	L			
231	D	0.005	0.013	0.004	231	D			
232	D				232	D			
233	Q	0.004	0.006	0.007	233	Q			
234	S	0.007	0.003	0.006	234	pS	0.076	0.066	0.052
235	А	0.009	0.014	0.004	235	А	0.016	0.039	0.013
236	E	0.005	0.011	0.006	236	E	0.023	0.052	0.019
237	Т	0.003	0.005	0.007	237	Т	0.018	0.047	0.020
238	Н				238	Н	0.021	0.033	0.004
239	S				239	S	0.014	0.024	0.004
240	Н				240	Н	0.000	0.029	0.006
241	K				241	K			
242	Q				242	Q			
243	S				243	S	0.024	0.028	0.007
244	R				244	R	0.015	0.020	0.012

245	L	0.028	0.036	0.000	245	L	0.006	0.026	0.008
246	Y	0.017	0.025	0.007	246	Y	0.013	0.046	0.010
247	К	0.021	0.035	0.006	247	К	0.003	0.028	0.007
248	R	0.004	0.004	0.008	248	R	0.010	0.015	0.003
249	К	0.003	0.006	0.008	249	К	0.008	0.022	0.000
250	А	0.002	0.007	0.004	250	А	0.014	0.027	0.007
251	Ν	0.011	0.022	0.012	251	Ν	0.009	0.037	0.001
252	D	0.014	0.020	0.002	252	D	0.012	0.024	0.006
253	E	0.011	0.024	0.004	253	E	0.013	0.058	0.010
254	S	0.004	0.007	0.008	254	pS	0.041	0.031	0.080
255	N	0.009	0.030	0.017	255	N	0.030	0.057	0.020
256	E	0.004	0.005	0.005	256	E	0.008	0.008	0.007
257	Н	0.027	0.037	0.012	257	Н	0.014	0.025	0.005
258	S	0.014	0.023	0.015	258	pS	0.016	0.023	0.008
259	D	0.002	0.002	0.007	259	D	0.007	0.011	0.002
260	V	0.004	0.002	0.005	260	V	0.070	0.087	0.016
261	1	0.006	0.003	0.007	261	- 1	0.071	0.127	0.022
262	D	0.005	0.006	0.004	262	D	0.006	0.040	0.007
263	S	0.006	0.014	0.004	263	pS	0.025	0.050	0.064
264	Q	0.002	0.006	0.010	264	Q	0.011	0.009	0.006
265	E				265	E	0.010	0.016	0.009
266	L	0.004	0.012	0.004	266	L	0.021	0.016	0.006
267	S	0.017	0.031	0.005	267	S	0.013	0.019	0.000
268	К	0.006	0.009	0.003	268	К	0.029	0.043	0.001
269	V	0.007	0.014	0.000	269	V	0.035	0.062	0.005
270	S	0.007	0.006	0.014	270	pS	0.035	0.107	0.029
271	R	0.004	0.005	0.017	271	R			
272	E				272	E			
273	F	0.024	0.027	0.013	273	F			
274	Н				274	Н			
275	S				275	pS	0.031	0.071	0.024
276	Н				276	Н	0.027	0.047	0.010
277	E				277	E	0.014	0.018	0.015
278	F				278	F	0.017	0.022	0.020
279	Н				279	Н	0.036	0.018	0.000
280	S				280	pS	0.031	0.115	0.020
281	H				281	H	0.041	0.105	0.016
282	E				282	E	0.044	0.043	0.011
283	D				283	D			
284	M	0.007	0.010	0.007	284	M	0.018	0.035	0.001
285		0.012	0.020	0.000	285		0.047	0.097	0.010
286	V	0.011	0.014	0.004	286	V	0.009	0.006	0.006
287	V	0.001	0.001	0.004	287	V	0.030	0.045	0.008
288	D	0.002	0.002	0.001	288	D	0.020	0.031	0.004
289	Р 	0.007	0.000	0.001	289	Р 			
290	K	0.005	0.009	0.004	290	K			
291	S	0.004	0.006	0.003	291	S			

292	К	0.007	0.009	0.003	292	К			
293	E				293	E			
294	E				294	E			
295	D				295	D			
296	К	0.014	0.013	0.014	296	К			
297	Н	0.041	0.048	0.010	297	Н			
298	L	0.003	0.006	0.000	298	L			
299	К	0.033	0.064	0.008	299	К			
300	F				300	F			
301	R				301	R			
302	-				302	I			
303	S				303	S			
304	Н				304	Н			
305	Е				305	E			
306	L	0.014	0.020	0.006	306	L	0.049	0.066	0.015
307	D	0.035	0.039	0.016	307	D	0.027	0.023	0.022
308	S	0.004	0.016	0.002	308	pS	0.060	0.047	0.114
309	А	0.005	0.014	0.007	309	А	0.090	0.159	0.025
310	S	0.008	0.009	0.004	310	pS	0.089	0.065	0.103
311	S	0.009	0.011	0.006	311	pS	0.024	0.041	0.016
312	E	0.005	0.005	0.002	312	E	0.025	0.048	0.000
313	V	0.009	0.011	0.004	313	V	0.044	0.084	0.020
314	N	0.012	0.023	0.002	314	N	0.021	0.049	0.007