Environ Health Perspect

DOI: 10.1289/EHP8795

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Multi- and Transgenerational Outcomes of an Exposure to a Mixture of Endocrine-Disrupting Chemicals (EDCs) on Puberty and Maternal Behavior in the Female Rat

David López-Rodríguez, Carlos Francisco Aylwin, Virginia Delli, Elena Sevrin, Marzia Campanile, Marion Martin, Delphine Franssen, Arlette Gérard, Silvia Blacher, Ezio Tirelli, Agnès Noël, Alejandro Lomniczi, and Anne-Simone Parent

Table of Contents

Figure S1. Body weight and ovarian weight measured at P60 in F1 (n=14/group), F2 (n=16/group) and F3 (n=9-10/group) females. Measurements are displayed in grams. Bars represent mean \pm s.e.m. (*P < 0.05, ***P < 0.001 vs. CTL, Student's t-test). Summary data are reported in Table S5.

Figure S2. Fold enrichment of gene ontology (GO) annotations using David pathway analysis across compared groups (CTL vs EDC) in the MBH-PoA of F3 generation females at P21. The gene enrichment analysis grouped the differentially expressed genes using GO annotations data. We selected enriched GO annotations using 2-fold enrichment criteria as a threshold and identifying annotations that were involved in brain and behavioral processes. Those annotations were then categorized in upregulated (orange) or downregulated (blue) annotations.

Figure S3. *Nr3c1*, *Crh*, *Grin2d*, *Grid2* and *Avp* mRNA expression in the female rat ancestrally (F3 generation) exposed to an EDC mixture or vehicle in the MBH-PoA of infant (P6), prepubertal (P1) and adult (P60) female rats as determined by qPCR (n=6/group). AU = arbitrary units. RNA expression data were normalized by dividing each individual value by the average of the control group at every time point. Bars represent mean \pm s.e.m. (*P < 0.05, **P < 0.01, ***P < 0.001 vs. CTL, Student's t-test). Summary data are reported in Table S5.

Figure S4. Abundance of the TrxG-dependent activating marks H3K4me3 and H3K9ac and the PcG-dependent repressive mark H3K27me3 and H3K9me3 at the *Kiss1, Esr1, Oxt, Pomc, Cart, Nr3c1, Crh* and *Grin2d* promoter in the prepubertal MBH-PoA of females EDC and control from the F3 generation, as measured by ChIP (n=6/group). Dotted red lines represent repressive histone modifications while green lines represent activatory histone modifications. All data was normalized to control. Bars represent mean \pm s.e.m. (*P < 0.05, **P < 0.01, ***P < 0.001 vs. CTL, Student's t-test). Summary data are reported in Table S5.

Figure S5. Maternal behavior displayed by F0 female rats directly exposed to a mixture of EDC or vehicle. Data shows time spent by dams displaying in-nest behavior (nest building, Archedback, blancked and passive nursing; and total time spent in-nest) or off-nest behaviors (eating/drinking, self-grooming, being active and total time off-nest) from P2 to P8. Plotted lines represent average of time \pm s.e.m. Summary data are reported in Table S5.

Figure S6. Maternal behavior displayed by F1 female rats exposed *in utero* to a mixture of EDC or vehicle. Data shows time spent by dams displaying in-nest behavior (nest building, Archedback, blancked and passive nursing; and total time spent in-nest) or off-nest behaviors (eating/drinking, self-grooming, being active and total time off-nest) from P2 to P8. Plotted lines represent average of time \pm s.e.m. Summary data are reported in Table S5.

Figure S7. Maternal behavior displayed by F2 female rats exposed as germ cells to a mixture of EDC or vehicle. Data shows time spent by dams displaying in-nest behavior (nest building, Arched-back, blancked and passive nursing; and total time spent in-nest) or off-nest behaviors (eating/drinking, self-grooming, being active and total time off-nest) from P2 to P8. Plotted lines represent average of time \pm s.e.m. Summary data are reported in Table S5.

Figure S8. Maternal behavior displayed by F3 female rats directly ancestrally exposed to a mixture of EDC or vehicle. Data shows time spent by dams displaying in-nest behavior (nest building, Arched-back, blancked and passive nursing; and total time spent in-nest) or off-nest behaviors (eating/drinking, self-grooming, being active and total time off-nest) from P2 to P8. Plotted lines represent average of time \pm s.e.m. Summary data are reported in Table S5.

Figure S9. Fold enrichment of gene ontology (GO) annotations using David pathway analysis across compared groups (CTL vs EDC) in the MBH-PoA of F1 generation females at P21. The gene enrichment analysis grouped the differentially expressed genes using GO annotations data. We selected enriched GO annotations using 2-fold enrichment criteria as a threshold and identifying annotations that were involved in brain and behavioral processes. Those annotations were then categorized in upregulated (orange) or downregulated (blue) annotations.

Figure S10. *Nr3c1* and *Crh* mRNA expression and *Darpp32* and *Dard1* promoter chromatin state in the female rat *in utero* and lactationally (F1 generation) exposed to an EDC mixture or vehicle. (a) Expression of *Nr3c1* and *Crh* mRNA in the MBH-PoA prepubertal (P21) female rats as determined by qPCR (n=6/group). AU = arbitrary units. RNA expression data were normalized by dividing each individual value by the average of the control group at every time point. (**b-c**) Abundance of the TrxG-dependent activating marks H3K4me3 and H3K9ac and the PcGdependent repressive mark H3K27me3 and H3K9me3 at the *Darpp32* and *Drd1* promoter in the prepubertal MBH-PoA of females perinatally exposed to a mixture of EDC (F1 generation), as measured by ChIP (n=6/group). Dotted red lines represent repressive histone modifications while green lines represent activatory histone modifications. Bars represent mean \pm s.e.m. Summary data are reported in Table S5.

Figure S11. Abundance of the TrxG-dependent activating marks H3K4me3 (a) and H3K9ac (b) and the PcG-dependent repressive mark H3K27me3 (c) at the *Kiss1, Esr1, Oxt* and *Th* promoter in the prepubertal (P21) MBH-PoA of the transgenerationally-exposed EDC pups or control raised by either *in utero* EDC exposed dams or control, as measured by ChIP (n=6/group). CC= control pup raised by control dam; EC: control pup raised by *in utero* EDC exposed dam; EE= germ-cell EDC exposed pup raised by *in utero* EDC exposed dam; CE= germ-cell EDC exposed pup raised by *control* dam. Bars represent mean \pm s.e.m. (*P < 0.05, **P < 0.01 vs. CC, $\dagger P < 0.05$ vs. CE, one-way ANOVA). Summary data are reported in Table S6.

Table S1. Primer Sequence.

Table S2. List of primary antibodies.

Table S3. Report of descriptive and statistical data.

Table S4. Report of descriptive data and statistical analysis of crossfostering data.

Table S5. Report of descriptive and statistical data from supplementary material.

Table S6. Report of descriptive data and statistical analysis of crossfostering data from the supplementary material.

Figure S1. Body weight and ovarian weight measured at P60 in F1 (n=14/group), F2 (n=16/group) and F3 (n=9-10/group) females. Measurements are displayed in grams. Bars represent mean ±s.e.m. (*P < 0.05, ***P < 0.001 vs. CTL, Student's t-test). Summary data are reported in Table S5.

Figure S2. Fold enrichment of gene ontology (GO) annotations using David pathway analysis across compared groups (CTL vs EDC) in the MBH-PoA of F3 generation females at P21. The gene enrichment analysis grouped the differentially expressed genes using GO annotations data. We selected enriched GO annotations using 2-fold enrichment criteria as a threshold and identifying annotations that were involved in brain and behavioral processes. Those annotations were then categorized in upregulated (orange) or downregulated (blue) annotations.

Figure S3. *Nr3c1, Crh, Grin2d, Grid2* and *Avp* mRNA expression in the female rat ancestrally (F3 generation) exposed to an EDC mixture or vehicle in the MBH-PoA of infant (P6), prepubertal (P1) and adult (P60) female rats as determined by qPCR (n=6/group). AU = arbitrary units. RNA expression data were normalized by dividing each individual value by the average of the control group at every time point. Bars represent mean \pm s.e.m. (*P < 0.05, **P < 0.01, ***P < 0.001 vs. CTL, Student's t-test). Summary data are reported in Table S5

Figure S4. Abundance of the TrxG-dependent activating marks H3K4me3 and H3K9ac and the PcGdependent repressive mark H3K27me3 and H3K9me3 at the *Kiss1, Esr1, Oxt, Pomc, Cart, Nr3c1, Crh* and *Grin2d* promoter in the prepubertal MBH-PoA of females EDC and control from the F3 generation, as measured by ChIP (n=6/group). Dotted red lines represent repressive histone modifications while green lines represent activatory histone modifications. All data was normalized to control. Bars represent mean ± s.e.m. (*P < 0.05, **P < 0.01, ***P < 0.001 vs. CTL, Student's t-test). Summary data are reported in Table S5

Figure S5. Maternal behavior displayed by F0 female rats directly exposed to a mixture of EDC or vehicle. Data shows time spent by dams displaying in-nest behavior (nest building, Arched-back, blancked and passive nursing; and total time spent in-nest) or off-nest behaviors (eating/drinking, self-grooming, being active and total time off-nest) from P2 to P8. Plotted lines represent average of time ± s.e.m. Summary data are reported in Table S5

Figure S6. Maternal behavior displayed by F1 female rats exposed *in utero* to a mixture of EDC or vehicle. Data shows time spent by dams displaying in-nest behavior (nest building, Arched-back, blancked and passive nursing; and total time spent in-nest) or off-nest behaviors (eating/drinking, self-grooming, being active and total time off-nest) from P2 to P8. Plotted lines represent average of time ± s.e.m. Summary data are reported in Table S5

Figure S7. Maternal behavior displayed by F2 female rats exposed as germ cells to a mixture of EDC or vehicle. Data shows time spent by dams displaying in-nest behavior (nest building, Arched-back, blancked and passive nursing; and total time spent in-nest) or off-nest behaviors (eating/drinking, self-grooming, being active and total time off-nest) from P2 to P8. Plotted lines represent average of time ± s.e.m. Summary data are reported in Table S5

Figure S8. Maternal behavior displayed by F3 female rats directly ancestrally exposed to a mixture of EDCor vehicle. Data shows time spent by dams displaying in-nest behavior (nest building, Arched-back,blancked and passive nursing; and total time spent in-nest) or off-nest behaviors (eating/drinking, self-
grooming, being active and total time off-nest) from P2 to P8. Plotted lines represent average of time ±
s.e.m.SummarydataarereportedinTableS5

Figure S9. Fold enrichment of gene ontology (GO) annotations using David pathway analysis across compared groups (CTL vs EDC) in the MBH-PoA of F1 generation females at P21. The gene enrichment analysis grouped the differentially expressed genes using GO annotations data. We selected enriched GO annotations using 2-fold enrichment criteria as a threshold and identifying annotations that were involved in brain and behavioral processes. Those annotations were then categorized in upregulated (orange) or downregulated (blue) annotations.

Figure S10. *Nr3c1* and *Crh* mRNA expression and *Darpp32* and *Dard1* promoter chromatin state in the female rat *in utero* and lactationally (F1 generation) exposed to an EDC mixture or vehicle. (a) Expression of *Nr3c1* and *Crh* mRNA in the MBH-PoA prepubertal (P21) female rats as determined by qPCR (n=6/group). AU = arbitrary units. RNA expression data were normalized by dividing each individual value by the average of the control group at every time point. (b-c) Abundance of the TrxG-dependent activating marks H3K4me3 and H3K9ac and the PcG-dependent repressive mark H3K27me3 and H3K9me3 at the *Darpp32* and *Drd1* promoter in the prepubertal MBH-PoA of females perinatally exposed to a mixture of EDC (F1 generation), as measured by ChIP (n=6/group). Dotted red lines represent repressive histone modifications while green lines represent activatory histone modifications. Bars represent mean \pm s.e.m. Summary data are reported in Table S5

Figure S11. Abundance of the TrxG-dependent activating marks H3K4me3 (a) and H3K9ac (b) and the PcG-dependent repressive mark H3K27me3 (c) at the *Kiss1, Esr1, Oxt* and *Th* promoter in the prepubertal (P21) MBH-PoA of the transgenerationally-exposed EDC pups or control raised by either *in utero* EDC exposed dams or control, as measured by ChIP (n=6/group). CC= control pup raised by control dam; EC: control pup raised by *in utero* EDC exposed dam; EE= germ-cell EDC exposed pup raised raised by *in utero* EDC exposed dam; CE= germ-cell EDC exposed pup raised by control dam. Bars represent mean \pm s.e.m. (*P < 0.05, **P < 0.01 vs. CC, +P < 0.05 vs. CE, one-way ANOVA). Summary data are reported in Table S6

Table S1. Primer Sequence

Gene		Primer	Accession number	Amplicon size	Use
Kiss1	F R	TGGTGAACCCTGAACCCACAGGC CGGCGGGCATGGCGATGTT	NM <u>1</u> 81692.1	136	qPCR
Esr1	F R	CGCTCTGCCTTGATCACACA GCCGAGGTACAGATTGGCTT	NM <u>0</u> 12689.1	188	qPCR
Oxt	F R	GCTGCCAGGAGGAGAACTAC ATCATCACAAAGCGGGCTCA	NM <u>0</u> 12996.3	175	qPCR
Ротс	F R	CTTTCCGCGACAGAGCCT CCAGCTCCACACGTCTATGG	NM <u>1</u> 39326.2	113	qPCR
Th	F R	CCTTCCAGTACAAGCACGGT TGGGTAGCATAGAGGCCCTT	NM <u>0</u> 12740.3	109	qPCR
Cart	F R	GCGCTGTGTTGCAGATTGAA CGTCACACATGGGGACTTGG	NM <u>0</u> 17110.1	105	qPCR
Nr3c1	F	GGTGATTGAACCCGAGGTGT TTTCTGAAGCCTGGTATCGCC	NM <u>0</u> 12576.2	147	qPCRR
Crh	F R	CAAGGGAGGAGAAGAGAGCG AAGAAATTCAACGGCTGCGG	NM <u>0</u> 31019.1	160	qPCR
Grin2d	F R	AGCTCTGCGACCTGCTGT CCAAGCTGCAGGAAGGTGGA	NM <u>0</u> 22797.1	190	qPCR
Dnm1	F R	TCTACAAGGATTACCGGCAGC GCTTTCTCCTTGTCCCCAACA	NM <u>0</u> 80689.4	121	qPCR
Drd1	F R	CCACTCTCCTGGGCAATACC AAAAGGACCCAAAGGGCCAA	XM 0 <u>0</u> 6253600.3	180	qPCR
Darpp32	F R	CCCAAGGACCGCAAGAAGAT CTCCTGAGGTTCTCTGGTGC	NM <u>1</u> 38521,1	172	qPCR
Grid2	F R	GTCCCATCGAAAGAGGATGACA ACTGTTTATGGGGGGCTGTCG	NM <u>0</u> 24379.1	97	qPCR
Avp	F R	AGCGATGAGAGCTGCGTG CTGTACCAGCCTAAGCAGCA	NM <u>0</u> 16992.2	129	qPCR
Kiss1	F R	TCGGGCAGCCAGATAGAGGAAGC TTGAGGGCCGAGGGAGAAGAG	NM <u>1</u> 81692.1	91	ChIP
Esr1	F R	GTCCCTCAGCAGCCAGCCAGTCT CTCTCGGGAAGCAGCCAGTAGG	NM 012689.1	127	ChIP
Oxt	F R	TGTAGCTTAGGCCTCCCCTT CATGACTGGTCACAGCAGGT	NM <u>0</u> 12996.3	159	ChIP
Ротс	F R	GCTAAGCCTCTGTCCAGTCC GTTAGCACAGACCCGCTGAA	NM <u>1</u> 39326.2	103	ChIP
Th	F R	CCGACTGGGGCAGTGAATAG TAACCAAACCAGGGCACACA	NM <u>0</u> 12740.3	198	ChIP
Cart	F R	TTCCATTTCATGGGCCCTCC GGCTGGAGCACAGAGAACAA	NM <u>0</u> 17110.1	139	ChIP
Nr3c1	F R	AAGGGTTAGAAGGAATTTGGGGA TGACGTGCCAGAGCCAATTA	NM <u>0</u> 12576.2	180	ChIP
Crh	F R	ACGCAATCGAGCTGTCAAGA CAGAGCCCGGAGTGAGATTT	NM <u>0</u> 31019.1	96	ChIP
Grin2d	F R	TCTGGTTCTGTTCCTGGGTTTTTG TGGGGTCAGGGAAGATACAGAGGT	NM <u>0</u> 22797.1	121	ChIP
Th — BS	F R	TCGTCGGCAGCGTCAGATGTGTATA AGAGACAGGTTTTTTTTAGGTATAGTAGG GTCTCGTGGGCTCGGAGATGTGTATAA GAGACAGTATTTATTTATAGGTACAAAAG	NM <u>0</u> 12740.3	302	BS-seq

Table S2. List of primary antibodies

Target	Host	Source	Catalog #	Use
Th	Mouse	ImmunoStar	22941	IHC
H3K27me3	Rabbit	Active Motif	39155	ChIP
H3K9ac	Rabbit	Active Motif	39917	ChIP
H3K4me3	Rabbit	Active Motif	39159	ChIP
H3K9me3	Mouse	Active Motif	61013	ChIP
B -Galatocidase	Rabbit	Cortex Biochem	CR7001RP2	ChIP
B-Galatocidase	Mouse	ICN Biomedical	55976	ChIP

Table S3. Report of descriptive and statistical data.

Measure (unit)	F	N	Aver	age	S	D	p-value	Effect	Figure
			CTL	EDC	CTL	EDC		Size	
Vaginal Opening (days)	F1	51/56	33.92	33.98	1.71	2.94	0.989	0.02	2a
	F2	50/52	34.73	37.93	1.33	1.58	0.000	2.19	2b
	F3	15/24	34.29	38.20	1.92	1.32	0.000	2.37	2c
	F4	47/64	31.36	34.50	1.36	1.40	0.000	2.27	2d
GnRH IP (min)	F1	4	44.38	43.75	1.25	1.44	0.537	0.47	2a
	F3		42.03	44.06	0.94	1.08	0.030	2.01	2c
Regular cycle (%)	F1	20	88.75	89.38	27.77	26.06	0.921	0.02	3a left
Proestrus (%)			23.93	23.31	4.06	5.18	0.679	0.13	
Estrus (%)			26.58	28.78	6.16	12.48	0.483	0.22	
Diestrus (%)			49.49	47.91	5.70	8.47	0.674	0.22	
Regular cycle (%)	F2	15	89.17	60.83	24.49	42.75	0.034	0.81	3b left
Proestrus (%)			23.75	22.50	3.30	4.13	0.744	0.33	
Estrus (%)			26.04	40.42	4.96	17.34	0.001	1.13	
Diestrus (%)			50.21	37.08	5.60	15.12	0.002	1.15	
Regular cycle (%)	F3	15/14	90.83	49.11	22.89	45.85	0.004	1.15	3c left
Proestrus (%)			24.08	17.73	5.24	8.87	0.048	0.87	
Estrus (%)			26.29	37.79	1.70	12.59	0.000	1.28	
Diestrus (%)			49.65	44.49	4.57	6.81	0.048	0.89	
Folliculogenesis (number/mm ³)									3a middle
Primordial	 F1	10/9	17.83	12.40	11.52	8.13	0.629	0.55	
Primary		20/0	6.28	6.68	4.41	5.95	0.999	0.08	
Secondary			3 55	2 71	1.84	1 57	0.999	0.00	
Antral			1 23	1.00	0.98	0.89	0.999	0.15	
Atretic			8.42	16.25	3.87	11.70	0.061	0.90	
Corpora lutea			0.02	0.05	0.03	0.05	0.999	0.73	
Cysts			1.11	0.66	0.80	0.36	0.185	0.73	
Folliculogenesis (number/mm ³)									3b middle
Primordial	F2	10/9	21.70	9.09	16.52	7.62	0.038	0.98	
Primary			9.25	9.08	6.73	5.61	0.99	0.03	
Secondary			8.54	7.16	6.50	4.14	0.99	0.25	
Antral			2.55	0.74	1.16	0.88	0.045	1.76	
Atretic			18.08	33.62	6.79	25.12	0.014	0.84	
Corpora lutea			0.01	0.12	0.03	0.16	0.99	0.97	
Cysts			0.63	1.13	1.06	1.36	0.470	0.41	
Folliculogenesis (number/mm ³)									3c middle
Primordial	F3	10/9	25.31	9.96	12.37	5.59	0.033	1.60	
Primary			7.00	8.25	5.37	8.31	0.999	0.18	
Secondary			2.49	3.52	1.98	2.21	0.988	0.49	
Antral			1.20	0.29	0.85	0.37	0.048	1.38	
Atretic			10.64	13.70	10.06	8.08	0.002	0.34	
Corpora lutea			0.04	0.07	0.08	0.12	0.998	0.29	
Cysts			1.13	1.02	0.60	1.31	0.128	0.10	
Normalized ovarian Weight (ratio)	F1	14	47.69	40.33	7.34	9.94	0.035	0.84	3a right
	F2	16	41.44	35.54	8.85	6.61	0.041	0.76	3b right
	F3	10/9	65.24	44.67	10.90	7.96	0.000	2.16	3c right

Notes: Effect size was calculated using Cohen's *d*. AU= arbitrary units. F= generation. N=sample size. SD: standard deviation.IP: interpulse interval.

Table S3. Report of descriptive and statistical data (continuation)

Measure (unit)	F	N	Ave	rage	S	D	p-value	Effect	Figure
			CTL	EDC	CTL	EDC		Size	
Kiss1 P6 (AU)	F3	6	1	0.39	0.13	0.23	0.002	3.27	4a
Kiss1 P21 (AU)			1	0.51	0.34	0.29	0.034	1.56	
<i>Kiss1</i> P70 (AU)			1	0.38	0.07	0.34	0.026	2.52	
Esr1 P6 (AU)			1	0.85	0.15	0.24	0.792	0.76	
Esr1 P21 (AU)			1	0.32	0.50	0.32	0.019	1.61	
<i>Esr1</i> P70 (AU)			1	0.21	0.07	0.16	0.013	6.40	
Oxt P6 (AU)			1	0.22	0.75	0.16	0.012	1.44	
<i>Oxt</i> P21 (AU)			1	0.23	1.26	0.19	0.018	0.86	
<i>Oxt</i> P70 (AU)			1	0.36	0.09	0.33	0.043	2.64	
Cart P6 (AU)			1	0.77	0.10	0.78	0.543	0.41	
Cart P21 (AU)			1	3.24	0.32	1.66	0.013	1.88	
Cart P70 (AU)			1	0.87	0.16	0.43	0.811	0.41	
Pomc P6 (AU)			1	0.22	0.15	0.15	0.017	5.20	
Pomc P21 (AU)			1	2.60	0.15	1.38	0.023	1.63	
Pomc P70 (AU)			1	1.00	0.17	0.75	0.999	0.01	
Kiss1p H3K27me3 (AU)			1	10.15	0.34	6.78	0.008	1.91	4b
Kiss1 p H3K4me3 (AU)			1	0.22	0.46	0.09	0.002	2.38	
Esr1 p H3K9ac (AU)			1	0.32	0.69	0.20	0.044	1.33	
Oxtp H3K4me3 (AU)			1	0.32	0.69	0.20	0.044	1.33	
Pomcp H3K4me3 (AU)			1	0.38	0.51	0.21	0.021	1.58	
Licking (min)	FO	15	6.52	5.14	2.64	3.07	0.218	0.49	5a
	F1	10/11	9.18	5.84	3.27	3.59	0.038	0.97	5b
	F2	11	11.93	6.38	3.72	3.49	0.008	1.54	5c
	F3	11	13.79	9.71	2.40	2.79	0.004	1.57	5d
Resting alone (min)	FO	15	0.57	0.24	1.09	0.35	0.369	0.41	5a
	F1	10/11	0.68	1.93	0.93	1.07	0.011	1.24	5b
	F2	11	0.44	1.62	0.43	1.19	0.021	1.30	5c
	F3	11	2.85	3.18	3.20	3.14	0.825	0.10	5d
Th P6 (AU)	F1	6	1	0.65	0.19	0.27	0.547	1.51	6a
<i>Th</i> P21 (AU)			1	0.18	0.64	0.10	0.031	1.79	
Th P60 (AU)			1	0.11	0.22	0.13	0.013	4.93	
Dnm1 P6 (AU)			1	0.30	0.24	0.14	0.565	3.58	
Dnm1 P21 (AU)			1	0.33	0.10	0.26	0.039	3.40	
Dnm1 P60 (AU)			1	1.15	0.29	0.66	0.495	0.29	
<i>Drd1</i> P6 (AU)			1	1.22	0.22	0.33	0.999	0.79	
Drd1 P21 (AU)			1	3.41	0.24	1.70	0.016	1.99	
Drd1 P60 (AU)			1	0.95	0.14	0.76	0.999	0.09	
Darpp32 P6 (AU)			1	0.75	0.17	0.29	0.775	1.05	
Darpp32 P21 (AU)			1	0.26	0.73	0.19	0.095	1.39	
Darpp32 P60 (AU)			1	0.19	0.30	0.09	0.002	3.64	
Thp methylation CpG site 1	F1	6	0,89	0,88	0,01	0,02	0,097	1,19	6b
CpG site 2			0,84	0,84	0,01	0,01	0,981	0,02	
CpG site 3			0,74	0,72	0,02	0,01	0,143	1,09	
CpG site 4			0,73	0,72	0,02	0,03	0,727	0,24	
CpG site 5			0,77	0,76	0,01	0,02	0,289	0,73	
CpG site 6			0,84	0,83	0,01	0,01	0,154	1,02	
CpG site /			0,79	0,79	0,01	0,02	0,971	0,02	
CpG site 8			0,63	0,62	0,01	0,03	0,457	0,50	
CpG site 9			U,66	0,66	0,02	0,02	0,936	0,06	
			0,70	0,09	0,03	0,02	0,091	0,28	
CpG site 11			0,55	0,53	0,03	0,01	0,1//	1,01	
CpG site 12			0,83 0,82	0,84	0,01	0,01	0,048 0 310	0,32	

Notes: Effect size was calculated using Cohen's d. AU= arbitrary units. F= generation. N=sample size. SD: standard deviation. qPCR and ChIP data were normalized to the control group.

Table S3	Report of	descriptive	and statistical	data	(continuation)
		accoupting	and beactoriour		(00110110001)

Measure (unit)	F	N	Ave	erage	s	D	p-value	Effect	Figure
			CTL	EDC	CTL	EDC		Size	
Thp H3K27me3 (AU)	F1	6	1	3.12	0.52	2.10	0.019	1.39	6c
<i>Th</i> p H3K9me3 (AU)			1	1.32	1.12	1.27	0.657	0.26	
<i>Th</i> p H3K4me3 (AU)			1	1.19	0.27	0.77	0.581	0.33	
<i>Th</i> p H3K9ac (AU)			1	1.21	0.64	0.67	0.591	0.32	
Th-ir SN (number)			92.7	87.64	21.05	21.15	0.687	0.24	6e
<i>Th</i> -ir VTA (number)			125.3	116.20	26.47	24.22	0.549	0.36	
<i>Th</i> -ir mPoA (number)			3.98	2.53	0.61	0.36	0.001	2.90	
Th P6 (AU)	F3		1	0.40	0.89	0.37	0.248	0.88	6f
<i>Th</i> P21 (AU)			1	0.36	0.16	0.17	0.040	3.8	
Th P60 (AU)			1	0.46	0.91	0.44	0.395	0.77	
Drd1 P6 (AU)			1	0.36	0.58	0.23	0.486	1.45	
<i>Drd1</i> P21 (AU)			1	0.47	0.11	0.15	0.042	4.03	
<i>Drd1</i> P60 (AU)			1	0.15	0.17	0.25	0.001	3.98	
Thp methylation CpG site 1	F3		0,92	0,92	0,02	0,02	0,782	0,18	6g
CpG site 2			0,88	0,89	0,02	0,02	0,749	0,21	
CpG site 3			0,76	0,77	0,04	0,04	0,475	0,47	
CpG site 4			0,77	0,81	0,02	0,03	0,018	1,78	
CpG site 5			0,83	0,85	0,04	0,01	0,286	0,71	
CpG site 6			0,86	0,89	0,02	0,01	0,023	1,69	
CpG site 7			0,83	0,80	0,03	0,03	0,170	0,94	
CpG site 8			0,66	0,66	0,04	0,05	0,883	0,10	
CpG site 9			0,74	0,68	0,04	0,05	0,062	1,33	
CpG site 10			0,76	0,80	0,03	0,06	0,110	1,11	
CpG site 11			0,55	0,62	0,02	0,04	0,004	2,37	
CpG site 12			0,86	0,86	0,03	0,04	0,940	0,05	
CpG site 13			0,90	0,89	0,04	0,04	0,650	0,30	
<i>Th</i> p H3K27me3 (AU)			1	2.16	0.47	1.62	0.124	0.97	6h
Thp H3K9me3 (AU)			1	2.17	0.38	1.13	0.037	1.38	
Thp H3K4me3 (AU)			1	0.90	0.36	0.43	0.657	0.26	
<i>Th</i> p H3K9ac (AU)			1	1.04	0.33	0.51	0.888	0.08	

Notes: Effect size was calculated using Cohen's d. AU= arbitrary units. F= generation. N=sample size. SD: standard deviation. qPCR and ChIP data were normalized to the control group.

Table S4.	Report of	descriptive	data a	and	statistical	analysis o	of crossfostering dat	a.
-----------	-----------	-------------	--------	-----	-------------	------------	-----------------------	----

Measure (unit)	F	Ν	Group	Average	SD	Comparison	p-value	Effect Size	Figure
Vaginal opening (days)	F2-C	16/19	СС	34.67	1.56	CC vs. CE	0.003	1.29	7a
			CE	37.05	2.09	CC vs. EE	0.003	1.46	
			EE	37.13	1.81	CE vs. EC	0.001	1.30	
			EC	34.72	1.45	EE vs. EC	0.001	1.47	
Regular cycle (%)		10	CC	85.00	18.34	CC vs. CE	0.485	0.23	7b
			EE	75.00	27.50	CE VS. EE	0.775	0.42	
			EC	88.33	17.66	EE vs. EC	0.715	0.51	
Proestrus (%)			CC	21.25	3.65	CC vs. CE	0.999	0.04	
			CE	19.58	6.53	CC vs. EE	0.999	0.03	
			EE	22.08	4.83	CE vs. EC	0.999	0.07	
			EC	22.92	2.95	EE vs. EC	0.988	0.03	
Estrus (%)			CC	23.33	3.51	CC vs. CE	0.997	0.12	
			CE FF	25.83	0.15 10.90	CC VS. EE	0.008	1.13	
			EC	26.25	4.41	EE vs. EC	0.916	0.62	
Diestrus (%)			СС	55.42	6.23	CC vs. CE	0.999	0.04	
			CE	54.58	8.21	CC vs. EE	0.002	1.30	
			EE	45.42	8.88	CE vs. EE	0.008	1.07	
			EC	50.83	4.30	EE vs. EC	0.299	0.42	
Kiss1 (AU)		6	CC	1.00	0.19	CC vs. CE	0.001	2.94	7c
			CE	0.46	0.18	CC vs. EE	0.012	2.03	
			EE FC	1.05	0.20	E VS. EC	0.000	2.96	
Fsr1 (ALI)			 	1.00	0.22		0.001	2.13	7d
23/1 (/(0))			CE	0.36	0.12	CC vs. EE	0.038	1.84	<i>,</i> u
			EE	0.44	0.13	CE vs. EC	0.006	2.03	
			EC	1.07	0.48	EE vs. EC	0.017	1.79	
Oxt (AU)			CC	1.00	0.22	CC vs. CE	0.003	2.68	7e
			CE	0.42	0.22	CC vs. EE	0.005	2.87	
			EE EC	0.44	0.17	CE VS. EC	0.001	2.17	
Th (ALL)			 	1.00	0.50		0.002	2.22	
111 (AU)			CE	1.00	0.10	CC vs. FF	0.001	5.02	71
			EE	0.37	0.15	CE vs. EE	0.000	3.68	
			EC	0.52	0.17	CE vs. EC	0.000	2.83	_
Kiss1 (AU)	F3-C		CC	1.00	0.35	CC vs. CE	0.027	1.42	7c
			CE	0.56	0.26	CC vs. EE	0.043	1.47	
			EE	0.59	0.18	CE vs. EC	0.007	2.53	
				1.09	0.14		0.011	2.00	74
ESTI (AU)			CE	0.29	0.20	CC vs. FF	0.001	3.15	70
			EE	0.32	0.23	CE vs. EC	0.002	2.15	
			EC	0.97	0.36	EE vs. EC	0.003	2.12	
Oxt (AU)			СС	1.00	0.20	CC vs. EC	0.275	0.42	7e
			CE	0.57	0.11	CC vs. EE	0.057	0.42	
			EE	0.56	0.16	CE vs. EC	0.003	1.49	
Th (ALI)				1.27	0.52		0.003	2.03	
			CF	1.00	0.25	CC VS. EC	0.000	2.89 3.22	71
			EE	0.37	0.12	CE vs. EE	0.000	3.50	
			EC	0.32	0.22	CE vs. EC	0.000	3.05	
Kiss1p H3K27me3 (AU)			СС	1.00	0.18	CC vs. CE	0.011	2.05	7c
			CE	2.18	0.79	CC vs. EE	0.004	0.74	
			EE	2.33	0.67	EE vs. EC	0.005	2.17	
Earl p LI2KOos (ALL)				1.04	0.50		0.020	1.72	74
<i>сыт</i> h цзкаас (AO)			CF	0.41	0.41 0.17	CC VS. CE	0.039	1.80 1.81	/u
			EE	0.43	0.17	CE vs. EC	0.744	0.24	
			EC	0.94	0.51	EE vs. EC	0.999	0.12	
Oxt p H3K4me3 (AU)			СС	1.00	0.48	CC vs. CE	0.428	0.01	7e
			EC	1.24	0.35	CC vs. EE	0.044	1.54	
			EE	0.44	0.20	CE vs. EC	0.012	2.19	
The U2/27ma2 (ALL)				1.00	0.27		0.003	0.17	
/// p nskz/mes (AU)			CE	0.96	0.24	CC vs. CE CC vs. FF	0.000	4.46	/1
			EE	2.11	0.26	EE vs. EC	0.000	0.12	
			EC	2.07	0.48	CE vs. EC	0.000	2.91	

Notes: Effect size was calculated using Cohen's *d*. AU= arbitrary units. F= generation. N=sample size. SD: standard deviation. IP: interpulse interval.

Table S5. Report of descriptive and statistical data from supplementary material.

Measure (unit)	F	N	Avera	age	SE)	p-value	Effect	Figure
			CTL	EDC	CTL	EDC		Size	
Body weight (g)	F1	14	256.79	254.50	25.21	19.92	0.80	0.10	S1
Ovarian weight (mg)		14	47.69	40.33	7.34	9.94	0.03	0.84	
Body weight (g)	F2	16	256.80	260.40	24.47	23.97	0.67	0.15	
Ovarian weight (mg)		16	41.44	35.54	8.85	6.61	0.04	0.76	
Body weight (g)	F3	10/9	257.70	265.40	20.91	26.02	0.48	0.33	
Ovarian weight (mg)			65.24	44.67	10.90	7.96	0.00	0.33	
Nr3c1 P6 (AU)		6	1.00	0.79	0.46	0.10	0.95	0.62	S3
Nr3c1 P21 (AU)			1.00	0.38	0.31	0.16	0.16	2.54	
Nr3c1 P60 (AU)			1.00	0.26	0.74	0.14	0.04	1.58	
Crh P6 (AU)			1.00	0.17	0.38	0.11	0.03	3.01	
Crh P21 (AU)			1.00	2.66	0.47	1.28	0.02	1.72	
Crh P60 (AU)			1.00	2.11	0.63	1.10	0.04	1.24	
Grin2d P6 (AU)			1.00	0.37	0.99	0.13	0.09	2.17	
Grin2d P21 (AU)			1.00	0.21	0.39	0.10	0.04	2.74	
Grin2d P60 (AU)			1.00	0.22	0.42	0.22	0.05	2.33	
Grid2 P6 (AU)			1.00	0.39	0.36	0.20	0.25	2.09	
Grid2 P21 (AU)			1.00	0.24	0.36	0.13	0.04	2.80	
Grid2 P60 (AU)			1.00	0.43	0.26	0.35	0.08	1.39	
Ανα P6 (AU)			1.00	1.33	0.71	2.34	0.77	0.19	
			1.00	0.40	0.21	0.22	0.05	0.00	
Avp P60 (AU)			1.00	0.40	0.21	0.64	0.86	0.55	
Kiss1n H3K27me3 (ALI)			1 00	1 39	0.63	0.56	0.29	0.65	54
Kiss1p H3K9me3 (AU)			1.00	10.15	0.34	6.78	0.01	1 90	54
Kiss1p H3K4me3 (AU)			1.00	0.22	0.46	0.09	0.00	2 38	
Kiss1p H3K9ac (AU)			1.00	0.69	0.52	0.81	0.45	0.45	
Esr1p H3K27me3 (AU)			1.00	0.85	0.61	0.17	0.56	0.34	
<i>Esr1p</i> H3K9me3 (AU)			1.00	0.86	0.46	0.27	0.56	0.36	
Fsr1n H3K4me3 (AU)			1 00	1 17	0.32	0.32	0.39	0.52	
Esr1p H3K9ac (AU)			1.00	0.45	0.22	0.37	0.02	1.80	
Oxtp H3K27me3 (AU)			1.00	1.51	0.90	0.73	0.31	0.62	
Oxtp H3K9me3 (AU)			1.00	0.96	0.58	0.61	0.92	0.06	
Oxtp H3K4me3 (AU)			1.00	0.32	0.69	0.20	0.04	1.33	
Oxtp H3K9ac (AU)			1.00	1.13	0.44	0.53	0.66	0.26	
Pomcp H3K27me3 (AU)			1.00	0.87	0.92	0.63	0.79	0.16	
Pomcp H3K9me3 (AU)			1.00	1.06	0.37	0.21	0.72	0.21	
Pomcp H3K4me3 (AU)			1.00	0.38	0.51	0.21	0.02	1.58	
Pomcp H3K9ac (AU)			1.00	2.22	0.89	2.44	0.27	0.67	
Cartp H3K27me3 (AU)			1.00	1.35	0.78	1.41	0.61	0.30	
Cartp H3K9me3 (AU)			1.00	1.03	1.03	1.02	0.96	0.03	
<i>Cartp</i> H3K4me3 (AU)			1.00	1.09	0.60	0.60	0.79	0.16	
Cartp H3K9ac (AU)			1.00	1.22	1.16	0.61	0.69	0.24	
<i>Nr3c1p</i> H3K27me3 (AU)			1.00	3.27	0.34	1.97	0.02	1.61	
<i>Nr3c1p</i> H3K9me3 (AU)			1.00	2.76	0.46	1.27	0.05	1.84	
<i>Nr3c1p</i> H3K4me3 (AU)			1.00	0.45	0.22	0.37	0.01	1.80	
Nr3c1p H3K9ac (AU)			1.00	0.51	0.50	0.28	0.09	1.20	
Crhp H3K27me3 (AU)			1.00	0.16	0.77	0.11	0.02	1.54	
Crhp H3K9me3 (AU)			1.00	1.56	0.69	0.74	0.21	0.78	
Crhp H3K4me3 (AU)			1.00	1.49	0.28	0.86	0.21	0.77	
Crhp H3K9ac (AU)			1.00	2.44	0.80	1.25	0.04	1.37	
Grin2dp H3K27me3 (AU)			1.00	2.29	0.44	1.63	0.09	1.08	
Grin2dp H3K9me3 (AU)			1.00	1.27	0.52	0.73	0.55	0.43	
Grin2dp H3K4me3 (AU)			1.00	1.36	0.46	0.48	0.24	0.76	
Grin2dp H3K9ac (AU)			1.00	2.22	0.89	2.44	0.27	0.67	

Notes: Effect size was calculated using Cohen's *d*. AU= arbitrary units. F= generation. N=sample size. SD: standard deviation.

Table S5. Report of descriptive and statistical data from supplementary material (continuation).

Measure (unit)	F	N	Aver	Average		SD		Effect	Figure
			CTL	EDC	CTL	EDC		Size	
Nest-building (minutes)	FO	12/15	2.18	2.19	1.83	1.96	0.99	0.01	S5
Arched-back nursing (minutes)			22.69	22.76	8.78	12.18	0.99	0.01	
Blancket nursing (minutes)			0.46	0.17	1.20	0.31	0.44	0.33	
Passive nursing (minutes)			0.63	0.52	0.73	0.58	0.69	0.17	
Total maternal behavior (minutes)			28.03	26.03	9.33	12.42	0.65	0.18	
Eating/drinking (minutes)			8.24	6.38	4.06	4.19	0.27	0.45	
Self-grooming (minutes)			5.29	5.04	1.38	3.48	0.80	0.10	
Active (minutes)			9.76	7.90	3.65	4.11	0.24	0.48	
Total off-nest behavior (minutes)			22.36	18.31	6.66	5.65	0.12	0.66	
Nest-building (minutes)	F1	10/11	3.51	2.21	1.32	1.42	0.05	0.94	S6
Arched-back nursing (minutes)			26.64	27.16	7.26	3.42	0.84	0.09	
Blancket nursing (minutes)			1.81	0.44	2.79	0.48	0.15	0.68	
Passive nursing (minutes)			0.23	0.19	0.34	0.24	0.77	0.14	
Total maternal behavior (minutes)			40.85	38.73	10.97	9.71	0.66	0.20	
Fating/drinking (minutes)			5 11	4 95	1 28	1 88	0.82	0 10	
Self-grooming (minutes)			6 44	7 02	1.20	2 70	0.59	0.10	
Active (minutes)			16.34	15.40	7.51	8.18	0.80	0.12	
Total off-nest behavior (minutes)			28.76	24 61	8 35	11 28	0.38	0.42	
Nest-building (minutes)		8	5 36	8 89	1 54	7 13	0.20	0.68	S7
Arched-back nursing (minutes)		U	16.26	14.72	5.83	4.54	0.87	0.29	
Blancket nursing (minutes)			1 24	1 02	1.05	0.85	0.90	0.23	
Passive nursing (minutes)			0.04	0.09	0.06	0.15	0.23	0.48	
Total maternal behavior (minutes)			38.43	31.88	7.81	7.13	0.24	0.88	
Eating/drinking (minutes)			7.93	8.67	1.68	3.11	0.55	0.30	
Self-grooming (minutes)			3.85	6.43	1.22	1.91	0.02	1.61	
Active (minutes)			8 84	11.05	2 51	1 1 4	0.06	1 13	
Total off-nest behavior (minutes)			21.06	27.76	3.43	5.70	0.12	1.43	
Nest-huilding (minutes)	F3	8/11	10.01	10.73	2 62	2 37	0.56	0.29	58
Arched-back nursing (minutes)	15	0/11	15.66	14 99	6.23	2.37 4 89	0.50	0.25	50
Blancket nursing (minutes)			0.64	0.29	0.69	0.46	0.22	0.12	
Passive nursing (minutes)			0.11	0.15	0.06	0.08	0.29	0.55	
Total maternal behavior (minutes)			40.64	36 30	9 14	6.06	0.26	0.56	
Eating/drinking (minutes)			8.05	8.19	1.61	1.48	0.86	0.09	
Self-grooming (minutes)			6.63	7.40	3.76	2.66	0.63	0.24	
Active (minutes)			6.53	4.97	3.74	3.13	0.36	0.45	
Total off-nest behavior (minutes)			24.07	23.74	6.70	4.88	0.91	0.06	
Nr3c1 (AU)	F1	6	1.00	0.89	0.29	0.14	0.41	0.49	S10 top
Crh (AU)			1.00	1.06	0.56	0.24	0.82	0.14	
Darpp32p H3K9me3 (AU)			1.00	0.80	0.65	0.86	0.65	0.27	S10 middle
Darpp32p H3K27me3 (AU)			1.00	1.24	1.08	0.99	0.70	0.23	
Darpp32p H3K4me3 (AU)			1.00	0.72	1.05	0.87	0.62	0.29	
Darpp32p H3K9ac (AU)			1.00	0.49	0.96	0.55	0.29	0.65	
Drd1p H3K9me3 (AU)			1.00	0.56	1.02	0.60	0.38	0.53	S10 bottom
Drd1p H3K27me3 (AU)			1.00	1.24	1.08	0.99	0.70	0.23	
Drd1p H3K4me3 (AU)			1.00	0.72	1.05	0.87	0.62	0.29	
Drd1pp H3K9ac (AU)			1.00	0.49	0.96	0.55	0.29	0.65	

Notes: Effect size was calculated using Cohen's *d*. AU= arbitrary units. F= generation. N=sample size. SD: standard deviation.

Table S6. Report of descriptive data and statistical analysis of crossfostering data from the supplementary material.

Measure (unit)	F	N	Group	Average	SD	Comparison	p-value	Effect Size	Figure
Kiss1p H3K4me3 (AU)	F2-C	6	СС	1.00	0.24	CC vs. CE	0.00	2.77	S11a
			CE	0.43	0.16	CC vs. EE	0.00	3.27	
			EE	0.37	0.13	CE vs. EC	0.01	2.72	
			EC	0.80	0.10	EE vs. EC	0.00	3.70	
Esr1p H3K4me3 (AU)			CC	1.00	0.30	CC vs. CE	0.99	0.11	
			CE	1.07	0.84	CC vs. EE	0.98	0.34	
			EE	0.89	0.34	CE vs. EC	1.00	0.03	
			EC	1.09	0.26	EE vs. EC	0.89	0.66	
Oxtp H3K4me3 (AU)			CC	1.00	0.48	CC vs. CE	0.13	1.17	
			CE	0.55	0.27	CC vs. EE	0.04	1.54	
			EE	0.44	0.20	CE vs. EC	0.01	2.19	
			EC	1.24	0.35	EE vs. EC	0.00	2.77	
Thp H3K4me3 (AU)			CC	1.00	0.43	CC vs. CE	1.00	0.08	
			CE	0.96	0.52	CC vs. EE	1.00	0.13	
			EE	0.95	0.32	CE vs. EC	1.00	0.05	
			EC	0.99	0.36	EE vs. EC	1.00	0.11	
Kiss1p H3K9ac (AU)			CC	1.00	0.33	CC vs. CE	0.94	0.26	S11b
			CE	1.17	0.84	CC vs. EE	0.99	0.26	
			EE	0.91	0.33	CE vs. EC	0.82	0.40	
			EC	0.91	0.39	EE vs. EC	1.00	0.02	
Esr1p H3K9ac (AU)			CC	1.00	0.41	CC vs. CE	0.04	1.86	
			CE	0.41	0.17	CC vs. EE	0.05	1.81	
			EE	0.43	0.17	CE vs. EC	0.07	1.40	
			EC	0.94	0.51	EE vs. EC	0.08	1.35	
Oxtp H3K9ac (AU)			CC	1.00	0.45	CC vs. CE	0.43	0.80	
			CE	0.71	0.23	CC vs. EE	0.95	0.27	
			EE	0.90	0.27	CE vs. EC	0.64	0.84	
			EC	0.93	0.29	EE vs. EC	1.00	0.11	
Thp H3K9ac (AU)			CC	1.01	0.59	CC vs. CE	0.95	0.26	
			CE	1.21	0.89	CC vs. EE	1.00	0.13	
			EE	1.08	0.50	CE vs. EC	0.87	0.40	
			EC	0.93	0.40	EE vs. EC	0.98	0.33	
<i>Kiss1p</i> H3K27me3 (AU)			CC	1.00	0.18	CC vs. CE	0.01	2.05	S11c
			CE	2.18	0.79	CC vs. EE	0.00	2.69	
			EE	2.33	0.67	CE vs. EC	0.01	1.72	
	<u>.</u>		EC	1.04	0.50	EE vs. EC	0.01	2.17	
<i>Esr1p</i> H3K27me3 (AU)			CC	1.00	0.27	CC vs. CE	0.98	0.23	
			CE	0.92	0.40	CC vs. EE	1.00	0.02	
			EE	0.99	0.32	CE vs. EC	0.44	0.75	
			EC	1.25	0.48	EE vs. EC	0.64	0.63	
Oxtp H3K27me3 (AU)			CC	1.00	0.27	CC vs. CE	0.97	0.28	
			CE	0.94	0.14	CC vs. EE	0.97	0.26	
			EE	0.95	0.13	CE vs. EC	0.76	0.54	
			EC	1.07	0.31	EE vs. EC	0.79	0.52	
<i>Thp</i> H3K27me3 (AU)			CC	1.00	0.24	CC vs. CE	1.00	0.17	
			CE	0.96	0.24	CC vs. EE	0.00	4.46	
			EE	2.11	0.26	CE vs. EC	0.00	2.91	
			EC	2.07	0.48	EE vs. EC	0.99	0.12	

Notes: Effect size was calculated using Cohen's *d*. AU= arbitrary units. F= generation. N=sample size. SD: standard deviation