SUPPORTING INFORMATION

ActS activates peptidoglycan amidases during outer membrane stress in Escherichia coli

Carlos K. Gurnani Serrano¹, Matthias Winkle², Alessandra M. Martorana¹, Jacob Biboy², Niccolo Morè^{1§}, Patrick Moynihan³, Manuel Banzhaf³, Waldemar Vollmer^{2#} and Alessandra Polissi^{1#}

¹ Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.

² The Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE3 2AX, United Kingdom.

³ Institute of Microbiology and Infection, School of Biological Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom.

[§] Present address: Nikon Instruments Europe B.V., Amsterdam, North Holland, Netherlands.

[#]Address correspondence to Alessandra Polissi, alessandra.polissi@unimi.it; Waldemar Vollmer, w.vollmer@ncl.ac.uk

INDEX

Figure S1	Deletion of <i>actS</i> does not rescue lysis phenotype of <i>araBplptC</i> $\Delta ldtD$ and
	$araBplptC \Delta ldtE$ mutants.
Figure S2	Deletion of <i>actS</i> does not affect growth and morphology of BW25113
	$(lptC^+)$ cells.
Figure S3	Deletion of <i>actS</i> along with that of <i>ldts</i> does not affect growth and
	morphology of BW25113 ($lptC^+$) cells.
Figure S4	Ectopic expression of <i>actS</i> in <i>araBplptC</i> does not induce lysis.
Figure S5	ActS activates AmiA and AmiB.
Figure S6	Deletion of amiA, amiB amiC or nlpD does not rescue the lysis phenotype of the
	$araBplptC \Delta ldtF$ mutant.
Table S1	Muropeptide composition of $araBplptC$, $araBplptC \Delta actS$ and $araBplptC$
	$\Delta ldtF \Delta actS$ mutants under permissive or nonpermissive conditions
	(separate file).
Table S2	Bacterial Strains used in this study.
Table S3	Plasmids used in this study.
Table S4	Oligonucleotides used in this study.

Figure S1. Deletion of *actS* does not rescue lysis phenotype of *araBplptC* $\Delta ldtD$ and *araBplptC* $\Delta ldtE$ mutants. The strains *araBplptC* $\Delta ldtD$ $\Delta actS$ (**A**) and *araBplptC* $\Delta ldtE$ $\Delta actS$ (**C**) were grown in the presence of 0.2% arabinose to an OD₆₀₀ of 0.2, harvested, washed three times, and resuspended in an arabinose-supplemented (+ Ara) or arabinose-free (no Ara) medium. Growth was monitored by OD₆₀₀ measurements (top panel) and by determining CFU (bottom panel). Growth curves are representative of at least three independent experiments. At t=150, 210, and 270 min (arrows), *araBplptC* $\Delta ldtD$ $\Delta actS$ (**B**) and *araBplptC* $\Delta ldtE$ $\Delta actS$ (**D**) cells were imaged. Phase-contrast images (top) and fluorescence images (bottom) are shown. Bars, 3 µm.

Figure S2. Deletion of *actS* does not affect growth and morphology of BW25113 (*lptC*⁺) cells. Growth of BW25113 (A) and BW25113 $\Delta actS$ (C) was monitored by OD₆₀₀ measurements. Growth curves are representative of at least three independent experiments. At t=120 and 270 min (arrows), BW25113 (B) and BW25113 $\Delta actS$ (D) cells were collected for imaging. Phase-contrast images (top) and fluorescence images (bottom) are shown. Bars, 3 µm.

Figure S3. Deletion of *actS* along with that of *ldts* does not affect growth and morphology of BW25113 (*lptC*⁺) cells. Growth of BW25113 $\Delta ldtD$ $\Delta actS$ (A), BW25113 $\Delta ldtE$ $\Delta actS$ (C) and BW25113 $\Delta ldtF$ $\Delta actS$ (E) cells was monitored by OD₆₀₀ measurements. Growth curves are representative of at least three independent experiments. At t=120 and 270 min (arrows), BW25113 $\Delta ldtE$ $\Delta actS$ (B), BW25113 $\Delta ldtE$ $\Delta actS$ (D) and BW25113 $\Delta ldtF$ $\Delta actS$ (F) cells were collected for imaging. Phase-contrast images (top) and fluorescence images (bottom) are shown. Bars, 3 µm.

Figure S4. Ectopic expression of *actS* in *araBplptC* does not induce lysis. Cells of *araBplptC* harboring pGS100-*actS* were grown in the presence of 0.2% arabinose to an OD₆₀₀ of 0.2, harvested, washed three times, and resuspended in an arabinose-supplemented (+ Ara) or arabinose-free (no Ara) medium. (A) Growth was monitored by OD₆₀₀ measurements (top panel) and by determining CFU (bottom panel). Growth curves are representative of at least three independent experiments. At t=150, 210, and 270 min (arrows), samples were imaged. (B) Phase-contrast images (top) and fluorescence images (bottom) are shown. Bars, 3 µm.

Figure S5. ActS activates AmiA and AmiB. HPLC chromatograms showing the activation of (**A**) AmiA and (**B**) AmiB by their cognate activator $EnvC_{LytM}$ and ActS. *E. coli* PG was incubated with proteins indicated on the right side. Reactions were terminated by boiling for 10 min. Samples were digested with cellosyl and the resulting muropeptides were reduced with sodium borohydride and separated by reversed-phase HPLC. Asterisks indicate products of amidase activity. The structures of Tetra and TetraTetra are shown in Figure 4.

Figure S6. Deletion of *amiA*, *amiB*, *amiC* or *nlpD* does not rescue the lysis phenotype of the *araBplptC* $\Delta ldtF$ mutant. Cells of *araBplptC* $\Delta ldtF$, *araBplptC* $\Delta ldtF$ $\Delta amiA$, *araBplptC* $\Delta ldtF$ $\Delta amiB$, *araBplptC* $\Delta ldtF$ $\Delta amiC$ (A) and *araBplptC* $\Delta nlpD$, *araBplptC* $\Delta ldtF$ $\Delta nlpD$ (B) were grown in the presence of 0.2% arabinose to an OD₆₀₀ of 0.2, harvested, washed three times, and resuspended in an arabinose-supplemented (+ Ara) or arabinose-free (no Ara) medium. Growth was monitored by OD₆₀₀ measurements. Growth curves are representative of at least three independent experiments.

Table S2. Bacterial strains.

Strain	Relevant genotype or features	Source or reference
AMM24	BW25113 Δ <i>ldtF</i> ::frt	Morè et al., 2019
AMM30	BB-3 $\Delta ldtF$::frt	Morè et al., 2019
AMM39	BW25113 ΔactS::frt	This work
AMM43	BW25113 ΔactS::frt ΔldtD::frt	This work
AMM44	BW25113 ΔactS::frt ΔldtE::frt	This work
AMM45	BW25113 ΔactS::frt ΔldtF::frt	This work
AMM46	BB-3 ∆ <i>actS</i> ::frt	This work
AMM47	BB-3 Δ <i>ldtD</i> ::frt Δ <i>actS</i> ::frt	This work
AMM48	BB-3 Δ <i>ldtE</i> ::frt Δ <i>actS</i> ::frt	This work
AMM49	BB-3 Δ <i>ldtF</i> ::frt Δ <i>actS</i> ::frt	This work
AMM88	BW25113 <i>AldtF::frt AnlpD::frt</i>	This work
AMM89	BB-3 <i>AldtF::frt AnlpD::frt</i>	This work
AMM90	BB-3 <i>AnlpD::frt</i>	This work
BB-3	BW25113 $\Phi(kan \ araC \ araBplptC)$ 1	Sperandeo et al., 2006
BL21(DE3)	F-ompT hsdSB(rB-mB-) gal dcm (DE3)	Novagen
BW25113	$lacI^{q}$ $rrnB_{T14} \Delta lacZ_{W116}$ hsdR514 $\Delta araBAD_{AH33}$	Datsenko and Wanner, 2000
	$\Delta rhaBAD_{1D78}$,
BW25113∆6LDT	ДусbB ЛerfK ЛусfS ЛybiS ЛynhG ЛyafK	Kuru et al. 2017
CKG02	BW25113 Δ <i>nlpD</i> ::frt	This work
CKG04	BW25113 ΔenvC::frt	This work
CKG06	BW25113 ∆amiA::frt	This work
CKG08	BW25113 ∆amiB::frt	This work
CKG10	BW25113 ∆amiC::frt	This work
CKG12	BW25113 $\Delta nlpD$::frt $\Delta envC$::frt	This work
CKG14	BW25113 ΔamiA::frt ΔamiC::frt	This work
CKG16	BW25113 ∆amiA::frt ∆amiB::frt ∆amiC::frt	This work
CKG18	BW25113 ΔenvC::frt ΔamiC::frt	This work
CKG20	BW25113 Δ <i>nlpD</i> ::frt Δ <i>amiB</i> ::frt	This work
CKG21	BW25113 Δ <i>nlpD</i> ::frt Δ <i>amiA</i> ::kan Δ <i>amiB</i> ::frt	This work
CKG22	BB-3 Δ <i>ldtF</i> ::frt Δ <i>amiA</i> ::frt	This work
CKG23	BB-3 Δ <i>ldtF</i> ::frt Δ <i>amiB</i> ::frt	This work
CKG24	BB-3 Δ <i>ldtF</i> ::frt Δ <i>amiC</i> ::frt	This work
DH5a	$\Delta(argF-lac169) \phi 80 \ dlacZ58(M15) \ glnV44(AS) \lambda^{-} rfbD1$	Hanahan, 1983
	gyrA96 recA1 endA1 spoT1 thi-1 hsdR17	
JW2428	BW25113 ∆amiA764::kan	Baba <i>et al.</i> , 2006
JW2712	BW25113 Δ <i>nlpD</i> 747:: <i>kan</i>	Baba <i>et al.</i> , 2006
JW2833	BW25113 ΔygeR787::kan	Baba <i>et al.</i> , 2006
JW4127	BW25113 ∆ <i>amiB</i> 790:: <i>kan</i>	Baba <i>et al.</i> , 2006
JW5449	BW25113 ∆ <i>amiC</i> 742:: <i>kan</i>	Baba <i>et al.</i> , 2006
JW5646	BW25113 ∆envC725::kan	Baba <i>et al.</i> , 2006
LOBSTR-	F-ompT hsdSB(rB-mB-) gal dcm (DE3), carries	Kerafast
BL21(DE3)	genomically modified copies of <i>arnA</i> and <i>slyD</i>	
MC1061	araD139 Δ (araA-leu)7697 Δ (lac)X74 galK16	Casadaban and Cohen, 1980
	galE15(GalS) lambda- e14- mcrA0 relA1 rpsL150(strR)	
	spoT1 mcrB1 hsdR2	

Table S	53. P	lasmids.
----------------	-------	----------

Plasmids	Relevant characteristics	Source or reference
pCP20	FLP expression, temperature sensitive replication; Cam ^R and	Datsenko and Wanner, 2000
	Amp ^R .	
pET28a His- <i>actS</i>	pET28a derivative; expresses actS from the T7 promoter	This work
	starting from amino acid 27 and fused at N-terminal with	
	6xHis tag.	
pGS100	pGZ119EH derivative, contains TIR sequence downstream	Sperandeo et al., 2006
	of p <i>tac</i> , Cam^{R} .	
pGS100-actS	pGZ119H derivative; expresses full length <i>actS</i> ⁽¹⁻²⁵¹⁾ under	This work
	the <i>tac</i> promoter; Cam^R .	
pGS100-actS _{LysM}	pGZ119H derivative; expresses a actS construct containing	This work
	the signal sequence and the LysM domain (1-106 residues)	
	under the <i>tac</i> promoter; Cam ^R .	
pGS100-actS _{LytM}	pGZ119H derivative; expresses a chimeric version of actS	This work
	containing the signal sequence (1-39 residues) fused to the	
	LytM domain (84-251 residues) under the tac promoter;	
	Cam ^R .	
pKD46	λ -Red expression under the <i>araB</i> p promoter, temperature	Datsenko and Wanner, 2000
	sensitive replication; Amp ^R .	
pET28a-His-EnvC	pET28a derivative; expresses <i>envC</i> from the T7 and fused at	This work
	N-terminal with 6xHis tag.	
pTU104	bla lacIq PT7::h-sumo-lytenvC	Uehara et al., 2010
pTU119	bla lacIq PT7::h-sumo-nlpD(27-379)	Uehara et al., 2010
pTB327	bla lacIq PT7::h-sumo-amiA(34-289)	Uehara <i>et al.</i> , 2010
-	- · · ·	
pTB324	bla lacIq PT7::h-sumo-amiB(23-445)	Uehara et al., 2010
pTU203	bla lacIq PT7::h-sumo-amiC(32-418)	Uehara <i>et al.</i> , 2010

Table S4. Oligonucleotides.

Name	Sequence (5'-3')	Description	Used to make
AP618/30 actS-f	CAGGAATTCAACTTGAGTGCGGGACGCCTG	[CAG]-[EcoRI]-[AAC]-[start	pGS100-actS
		<i>actS</i> ; fwd]	pGS100-actS _{LysM}
			pGS100-actS _{LytM}
AP619/29 actS-r	TATCAAGCTTTCAGCATTTTGGCTTGCTG	[TATC]-[HindIII]-[stop actS; rev]	pGS100-actS
			pGS100-actS _{LysM}
			pGS100-actS _{LytM}
AP621/33 actS-r	CCGCTCGAGTCAGCATTTTGGCTTGCTGCCCTG	[CCG]-[XhoI]-[stop actS; rev]	pET28a-His-ActS
AP677 28 actS26-f	AGCCATATGTCGGGTAGCAAATCATCCG	[AGC]-[NdeI]-[starting at 78 bp	pET28a-His-ActS
		downstream of TTG of actS; fwd]	
AP703/33 actSint-r	TATCAAGCTTTCATGCGGTTTTGGTCGTTGATT	[TATC]-[HindIII]-[TC]-[316 bp	pGS100-actSLysM
		downstream of TTG of actS; rev]	
AP704/40 actSssLytM-r	CTGCTACTTTTCGCCCCACCGCCGGAATACGTTCCTGTAT	[117 bp downstream of TTG of	pGS100-actS _{LytM}
		actS]-[252 bp downstream of	
		TTG of <i>actS</i> ; rev]	
AP705/20 actSLytM-f	GGTGGGGCGAAAAGTAGCAG	[252 bp downstream of TTG of	pGS100-actS _{LytM}
		actS; rev]	
envC-f	GGAATTCCATATGGATGAGCGTGACCAACTC	[GGAATTC]-[NdeI]-[starting at	pET28a-His-EnvC
		113bp downstream of ATG of	
		<i>envC</i> ; fwd]	
envC-r	CCCAAGCTTTTATCTTCCCAACCACGGC	[CCC]-[HindIII]-[stop envC; rev]	pET28a-His-EnvC

Supplemental References

Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., *et al.* (2006) Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol Syst Biol* **2**: 2006.0008.

Casadaban, M.J., and Cohen, S.N. (1980) Analysis of gene control signals by DNA fusion and cloning in *Escherichia coli*. *J Mol Biol* **138**: 179–207.

Datsenko, K.A., and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *PNAS* **97**: 6640–6645.

Hanahan, D. (1983) Studies on transformation of *Escherichia coli* with plasmids. *J Mol Biol* **166**: 557–580.

Kuru, E., Lambert, C., Rittichier, J., Till, R., Ducret, A., Derouaux, A., et al. (2017) Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for *Bdellovibrio bacteriovorus* predation. *Nat Microbiol* **2**: 1648–1657.

Morè, N., Martorana, A.M., Biboy, J., Otten, C., Winkle, M., Serrano, C.K.G., *et al.* (2019) Peptidoglycan remodeling enables *Escherichia coli* to survive severe outer membrane assembly defect. *mBio* **10**: e02729-18.

Sperandeo, P., Pozzi, C., Dehò, G., and Polissi, A. (2006) Non-essential KDO biosynthesis and new essential cell envelope biogenesis genes in the *Escherichia coli yrbG-yhbG* locus. *Res Microbiol* **157**: 547–558.

Uehara, T., Parzych, K.R., Dinh, T., and Bernhardt, T.G. (2010) Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. *EMBO J* **29**: 1412–1422.