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1 Computation of R(t)
We explain here how to compute the reproduction rate (R) for our model, which is considered as one of the
main measures to quantify the spread of an epidemic and the efficiency of our lockdown strategies proposed
in the Results and Discussion Section in the main body of the paper, and measures the average number of
secondary infections an infected individual is capable of generating in a fully susceptible population. Our
computation strategy follows [3]; first, we define the next generation matrix, which relates the numbers of
newly infected individuals in the various categories in consecutive moments, before and after a contact (in
our case, a time step) in the case where one single person interacts with a fully susceptible population. To
do this, fix Si = Ni and consider the Jacobian matrix of the infection subsystem of our model (Eqs. (1)-(8)

in the main body) – which is composed by states
{
Ei, I

SC1
i , ISC2

i , IC1
i , IC2

i

}
, i = 1, . . . , 5 (we note that the

states Ri and Di were removed, as they are “final” states: once an individual is in one of these states, they
remain there). Using the same notation as in [3], this Jacobian has the following form:

J0 =


−κI β SCN β SCN 0 0
ρκI −γCI 0 0 0

(1− ρ)κI 0 −γRI 0 0

0 ρ
′
γCI 0 −νI 0

0 (1− ρ′
)γCI 0 0 −γR,CI

 ,
where we note that I is the 5× 5 identity matrix, and each zero corresponds to a 5× 5 zero matrix. We also
slightly abused the notation in the other entries. For example, the matrices SC

N , ρκI, etc., are 5×5 matrices
whose entries are given by: (

SC

N

)
ij

=
SiCij
Nj

, (ρκI)ij = κρiδij ,

where δij is the Kronecker delta, and similarly for the other matrices.
The matrix J0 is decomposed into the transmission matrix, T , and the transition matrix, Σ, defined as

follows:

T =


0 β SCN β SCN 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , Σ =


−κI 0 0 0 0
ρκI −γCI 0 0 0

(1− ρ)κI 0 −γRI 0 0

0 ρ
′
γCI 0 −νI 0

0 (1− ρ′
)γC 0 0 −γR,CI

 = J0 − T.
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The next generation matrix is then defined as KL = −TΣ−1. The reproduction number R is the spectral
radius of this matrix, namely the absolute value of its largest eigenvalue, which represents the secondary
number of infections a single infected individual is capable of generating in a fully susceptible population.
As T depends on the contact matrix C, the reproduction number will be a function of the Google mobility
for different locations (mschool(t), mwork(t) and mother(t)). Hence, we will focus on studying the evolution
of R(t) over time.

2 Details on Approximate Bayesian Computation

Approximate Bayesian computation (ABC) gives an approximation of the posterior distribution of the param-
eters, starting from a prior π(θ) and a (possible stochastic) simulator model M(θ), for which the likelihood
p(x|θ) cannot be computed. Specifically, the true posterior is obtained via Bayes’ theorem as

π(θ|xobs) =
π(θ)p(xobs|θ)

p(xobs)
.

In ABC, we approximate this expression by looking for the values of the parameters which best approximate
the observations. The fundamental ABC rejection sampling scheme iterates the following steps:

• Draw θ from the prior π(θ).

• Simulate a synthetic dataset xsim from the simulator-based model M(θ).

• Accept the parameter value θ if d(xsim,xobs) < γ. Otherwise, reject θ.

Here, the metric on the dataspace d(xsim,xobs) measures the closeness between xsim and xobs. The
accepted values of θ are thus sampled from a distribution πABC(θ|xobs) ∝ π(θ)pd,γ(xobs|θ), where pd,γ(xobs|θ)
is an approximation to the intractable likelihood function p(xobs|θ):

pd,γ(xobs|θ) =

∫
p(xsim|θ)Kγ(d(xsim,xobs))dxsim.

Here, Kγ(d(xsim,xobs)) is a probability density function proportional to 1{d(xsim,xobs) ≤ γ}, 1{·} being
an indicator function which equals 1 when the condition in the brackets is true and 0 otherwise.

This guarantees that, in principle, the above approximate likelihood converges to the true one when γ → 0.
In this paper, we used the PMCABC algorithm [1] as implemented in the Python library ABCpy [2] allowing
efficient parallelization using MPI, to perform parameter inference. This is an iterative algorithm considering
a set of points {θi} which are given a certain weight representing how much the sample xi generated by
each of them is close to the observation. The algorithm proceeds by iteratively perturbing the parameters
and performing simulations from the model, and reducing the threshold γ so that the approximation to the
posterior distribution improves. At the end of the algorithm, a weighted set of parameter points which are
samples from the approximate posterior πABC(θ|xobs) is returned.

For the sake of calibrating the model, we want to match the number of people in IC (summed over
all age groups) and the daily deaths, by date of reporting, for each of the 5 considered age groups; the
model is structured so that it returns those values as outputs. Therefore, we consider the set of variables
x = ((∆D1(t),∆D2(t),∆D3(t),∆D4(t),∆D5(t))Tt=1, (I

C
tot(t))

T
t=18) where we denote by t the day since the

start of the dynamics, by ∆Di(t) = Di(t) −Di(t − 1) the deaths occurring on day t in age group i, and we

consider ICtot(t) =
∑5
i=1 I

C
i . The corresponding observation is denoted as:

xobs = ((∆Dobs
1 (t),∆Dobs

2 (t),∆Dobs
3 (t),∆Dobs

4 (t),∆Dobs
5 (t))Tt=1, (I

C,obs
tot (t))Tt=18).

As discussed in the Model Calibration Section in the main body of the paper, data on IC is available only
from the 18th of March, and therefore we discarded the first 17 days for the corresponding observations.

We now define a distance for ABC that enables us to make use of the above data, by relying on a weighted
sum of the pointwise Euclidean distances between the different elements of the trajectories. Specifically, let
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us denote the pointwise Euclidean distances between the different elements of simulated and observed data
by:

dD,i =

T∑
t=1

(∆Di(t)−∆Dobs
i (t))2, dI =

T∑
t=18

(ICtot(t)− I
C,obs
tot (t))2.

Using this, the final distance we consider is:

d(x,xobs) =

5∑
i=1

dD,iwD,i + wIdI ,

where wD,i and wI are weights which we can fix according to considerations on the speed of convergence. It
is clear that the above, being a combination of Euclidean distances, is a valid distance for x for each choice of
the weight; the latter however are important for the ABC algorithm in practice, as they force the algorithm
to constrain more or less on some of the distances. The weights we have found to work best for the problem
at hand (as they gave faster convergence) are: wD = (1, 1, 1, 2, 2) and wI = 0.1.
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