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SUPPLEMENTAL METHODS 

OVERVIEW 

We developed a deterministic dynamic compartmental model of the COVID-19 pandemic that simulates 

the health outcomes and resource use in a representative mid-sized city with a full-time population of 

500,000 plus an additional part-time academic year population of 20,000 university students. We use 

the model to project how COVD-19 risk and prevention behaviours of the general population, and the 

student community in particular, affect the incremental COVID-19 burden attributable to the arrival of 

20,000 university (post-secondary) students on September 1. Under different scenarios of community 

physical distancing effort and testing in students, we calculated the number of infected individuals, 

hospital resource demand, and health outcomes overall and over time. The model was implemented in 

Microsoft Excel in Microsoft Office 365. Institutional ethics review was not required for this modeling 

study. 

A schematic of the model is presented in Figure 1. In the model, susceptible individuals may become 

infected through interaction with infected individuals who may or may not be aware of their infection 

status. Infection has a pre-symptomatic phase in which an infected individual can transmit the infection 

to others [1-3]. Individuals may become aware of their infection status through symptom-based 

surveillance, contact tracing, or routine testing of asymptomatic and mildly symptomatic individuals. 

Individuals aware of their infection status with mild or moderate symptoms are assumed to isolate at 
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home to reduce disease transmission. Some patients develop severe symptoms requiring hospitalization 

or critical symptoms requiring mechanical ventilation (MV) in an intensive care unit or renal 

replacement therapy (RRT). Patients receive medically indicated care, unless resource demand exceeds 

capacity. When hospital capacity for a medically indicated resource has been reached, patients receive 

the next-best available care.  

Interventions such as physical distancing, which reduced the average number of contacts between 

susceptible and infected people, or mask wearing, which reduce the probability of disease transmission 

between contacts, each reduce the expected number of infections in the time periods when they are 

adopted. Further, we assumed that the general population and university students respond to COVID-19 

outcomes in the community. In practice, this response may be voluntarily adopted due to public concern 

over reported increases in COVID-19 cases, hospitalizations, and/or deaths or imposed through policies 

that re-establish the social and economic restrictions utilized in the earlier phases of the pandemic. We 

included two triggers that would cause both the general population and university students to increase 

their adoption of protective behaviors: a high level of COVID-19 patients in critical care and a high 

number of COVID-19 deaths. 

We estimated model parameters, including the duration of time spent in each health state, the 

infectiousness of COVID-19, the probability of needing general and specialized hospital resources, 

disease mortality, and the effectiveness of COVID-19 prevention strategies, using the peer-reviewed 

literature, pre-published reports, and expert opinion (Table 1).  

We calibrated the model to the observed hospitalization rates and mortality in Middlesex County, 

Ontario, Canada, which includes the city of London, from March 1 to August 15, 2020. London, Ontario is 

a medium-sized city that experienced relatively fewer cases of COVID-19 compared to the province of 

Ontario overall [4] likely due to province-wide response following the detection of community-
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transmission in the provincial capital (Toronto) occurring before widespread community transmission 

began in smaller urban centers. As a result, it is a representative case study of a medium-sized city with 

relatively few cases in the spring of 2020 facing a major shift in its COVID-19 risk profile in fall with the 

return of in-person instruction at two large destination post-secondary institutions [5, 6].  

In this Supplemental Methods, we provide additional detail on the structural features of the model as 

well as the identification and selection of input parameter values. 

 

POPULATION 

We model a mid-sized city of 500,000 year-round residents, of whom 3,500 (0.7%) live in long-term care. 

We assume that 20,000 undergraduate university students, between the ages of 18 and 24, also reside 

in the city during the academic year (between September and April). Faculty, staff, graduate students, 

and professional program students are considered part of the general population. 

 

DISEASE SEVERITY AND CLINICAL RESOURCE NEED 

We stratify the infected population into disease severity groups to capture differences in the likelihood 

of case identification through symptom-based detection and differences in the likelihood of being 

hospitalized and needing specialized health care resources. The severity distribution describes the 

distribution of actual infections, regardless of diagnosis.  

Asymptomatic infection: We estimated the proportion of asymptomatic cases to be 31% for both the 

general population and university students based on an ongoing meta-analysis of reports that include 

follow-up monitoring for the development of symptoms among asymptomatic cases [7]. University 

students may have a higher rate of asymptomatic presentation than the general population, but the 
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literature continues to be very mixed. A follow-up of a cohort of US Navy sailors revealed that only 18% 

continued to be asymptomatic throughout their full course of infection [8]. However, in a cohort 

primarily identified as having had COVID-19 via serology, retrospectively 79% of people < 40 years of age 

could not recall any symptoms [9]. We therefore explored this uncertainty in sensitivity analysis. The 

proportion of cases that are asymptomatic has also been shown to be correlated with older age; we 

assumed that 12% of infections in LTC residents are asymptomatic based on follow-up monitoring in a 

LTC cluster [10, 11]. 

Symptomatic and not hospitalized infections: For each population, COVID-19 infections that were not 

classified as asymptomatic, severe, or critical were categorized as mild or moderate. Infections with mild 

and moderate symptoms are not hospitalized but may present to medical care for assessment and may 

receive some outpatient care not specifically accounted for in our analysis. In total, 60.4% of the general 

population and 67.8% of university students were classified as having mild and moderate infections. 

LTC residents with severe symptoms, for which they would be considered for hospitalization, may 

choose to receive limited interventions in favour of supportive care at their LTC facility. Among LTC 

residents, 76.2% were classified as symptomatic but not hospitalized.  

Severe and critical infections: In our model, critical patients are those who require mechanical 

ventilation (MV) or renal replacement therapy (RRT) in a critical care unit. Severe patients receive 

hospitalization but do not require MV or RRT. 

We estimated the rate of critical care use in the general population and university students based on 

rates of critical care use among residents of Lombardy Italy, identified by contact tracing, who were 

either diagnosed with COVID-19 during their infection or identified retrospectively by serology testing 

[9]. For the general population, we estimated the rate of critical care using the observed rate in 2,666 
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patients < 80 years of age as 1.7% (95% CI: 1.2, 2.2). For university students, we estimated the rate of 

critical care using the observed rate in 835 patients < 40 years of age as 0.24% (95% CI: 0, 0.6) [9].  

Among critical care patients, we estimate the ratio of patients requiring RRT to MV based on the UK 

Intensive Care National Audit and Research Centre (ICNARC) report describing the care and outcomes of 

10,118 critical care COVID-19 patients in the UK. In this report, 7,277 patients required MV and 2,673 

required RRT, resulting in a ratio of 0.37 RRT patients per MV patient [12]. Although the report describes 

patients in need of both technologies, we did not include this possibility in the model.  

Among the 10,137 COVID-19 hospitalizations in Canada between February 23 and June 21, 20.3% 

involved a critical care admission [13], resulting in an estimated a ratio of 3.92 patients requiring 

hospitalization without critical care per critical care patient. This is similar to rates of critical care 

observed in the UK, in which approximately 22% of all hospitalized patients required critical care [14]. 

Overall, hospitalization rates are lower in younger people, but the fraction of hospitalized cases 

requiring intensive care appears similar and so we also assumed this ratio of hospitalization without 

critical care per critical care patient also applied to university students. For example, a US report on 

3,222 hospitalization for COVID-19 aged 18-34 years reported 21% requiring intensive care [15]. This led 

to an initial estimate of 1.0% of infections requiring hospitalization but not critical care in university 

students (0.24% × 3.92) and 6.7% of infections requiring hospitalization but not critical care in the 

general population (1.7% × 3.92). The estimated rate of hospitalization in the general population 

resulted in a higher number than observed in London, Ontario, during model calibration and so the 

probability of hospitalization without critical care was lowered to 3.75% in the general population in 

order to better fit the observed local data.  

Based on 699 documented COVID-19 cases in LTC residents across Canada between February 23 and 

June 21, we that assumed 0.3% (95% CI: 0, 0.7) of patients would require critical care and 11.4% (95% CI: 
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9, 14) would require hospitalization without critical care [13]. LTC residents have a lower rate of critical 

care use than the general population because LTC residents in medical need of critical care may have 

directives in place instructing different levels of care.  

 

CLINICAL OUTCOMES AND CLINICAL RESOURCE USE 

A schematic of the health states and transition times for infected individuals is presented in Appendix 

Figure 1.  

We assumed a mean incubation period, the time from exposure to symptom-onset, of 5.6 days 

(observed median of 5.1 days [95%CI 2.2, 11.5]) [16]. We divide the incubation period into two sub-

states: ‘Exposed, not Infectious’, a pre-infectiousness phase in which the person is exposed and will 

develop the infection, and ‘Exposed, Infectious’, in which infectious individuals are pre-symptomatic. 

This two-stage approach is important because an estimated 44% of transmissions occur prior to 

symptom onset [3]. He et al. estimated infectiousness starts 2.5 days prior to symptom onset, peaks at 

0.6 days prior to symptom onset, and declines within 7 days of symptom onset [3]. This is consistent 

with estimates based on cohorts from Tianjin and Singapore which indicate transmission beginning 2.5 

to 2.9 days prior to symptom onset [2]. In our base case analysis, the ‘Exposed, not Infectious’ state has 

an average duration of 3.1 days and the ‘Exposed, Infectious’ state has an average duration of 2.5 days. 

In total, we estimate the average duration of infectiousness in asymptomatic and mild or moderate 

cases to be 10 days [3, 17, 18]. Among individuals who ultimately develop severe or critical symptoms 

requiring hospitalization, we assumed an average 5.8 days from onset of initial symptoms to the 

presentation of severe symptoms [14], during which time these patients would be infectious but in 

home isolation if aware of their infection status.  
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We assumed that severe patients who do not need critical care (MV or RRT) have an average hospital 

length of stay of 8.3 days based on length of stay in UK hospitals [14]; critical patients who require 

invasive mechanical ventilation have a median length of stay of 13 days (IQR: 7, 23) in the critical care 

unit followed by a median of 7 (IQR: 4,13) days in the hospital [12]; and critical patients who require RRT 

have a median length of stay of 21 days (IQR: 9, 41) [12]. To ensure realistic distributions for the 

duration of infectiousness and the duration of hospital resource utilization (e.g., gamma distributions 

instead of exponential distributions), states were further subdivided into successive otherwise identical 

states [19, 20]. 

In the model, all people who survive infection move to a recovered state. We assume that a non-

infectious period of home isolation continues for an average 10 days after people are no longer 

infectious, consistent with discharge instructions [21]. In the model, people with asymptomatic or mild 

and moderate infections who are not diagnosed during their infectious period transition into the 

recovered health states in which they continue to participate in physical distancing consistent with rates 

in the susceptible population as they will continue to adhere to behaviours consistent with individuals 

who believe themselves not to have been infected.  

 

MORTALITY 

We estimated mortality rates for critical care patients, stratified by age category, using the UK ICNARC 

report describing the care and outcomes of 10,118 critical care COVID-19 patients in the UK [12]. We 

estimated mortality rates for patients treated in hospital, but not in critical care, using a report of over 

20,000 hospitalized patients in the UK [14], using the < 55 years of age population to estimate mortality 

in university students (0.43%) and the < 70 year old population to estimate mortality in the general 

population (14.4%). For LTC residents who are and are not hospitalized, we estimated the infection 
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fatality rate based on the observed outcomes in 680 Canadian LTC patients to be 47.4% and 25.5%, 

respectively [13], For the general population and university students, we assumed that there was no 

mortality risk for individuals with asymptomatic infections and infections not requiring hospitalization. 

If, due to capacity constraints, patients receive a lower level of care than is medically indicated, we 

assumed higher mortality rates based on expert opinion. For patients with severe symptoms requiring 

hospitalization who are instead isolating at home, we assumed a 25% case fatality rate. For patients in 

hospital who need but are unable to access critical care (either MV or RRT), we assumed a 40% daily 

probability of death, resulting in a life expectancy of approximately 2 days. For patients in home 

isolation who need critical care (either mechanical ventilation or RRT) but are unable to access either 

critical care or hospitalization, we assumed a 60% daily probability of death, corresponding to a life 

expectancy of approximately 1 day.  

We did not include mortality from causes other than COVID-19 in the model.  

 

HEALTH CARE RESOURCE CAPACITY 

Consistent with the average of 14.2 per 100,000 population in Ontario [22], normal pre-COVID critical 

care capacity of our center is 69 beds [23]. In a crisis situation, reductions in other services, secondment 

of staff from other units, and accessing strategic stockpiles of equipment [24], can enable short-term 

expansions in capacity. In our centre, reductions in other services can facilitate operation of up to 184 

critical care beds [23]. In the base case, we estimated hospital acute care, MV, and RRT capacity of 500 

beds, 120 beds, and 30 RRT patients was the maximum amount that could be allocated to COVID-19 

patients. If these thresholds are exceeded, COVID-19 patients are directed to the next-best available 

care often facing higher mortality rates. In the model implementation, each day, we first calculated the 

new demand for hospital resources and then allocated patients to beds depending on whether the total 
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demand exceeded available capacity. For example, if there was more demand for ICU beds than was 

available, patients were allocated to a hospital ward bed if one was available. If there were no available 

hospital ward beds, patients were not admitted to the hospital. 

In discussion of results, we focus on a threshold of 30 critical care beds for COVID-19 patients as a local 

policy-relevant threshold necessitating the partial closure of non-COVID-19 health services. Based on 

expert opinion, substantial reductions in the provision of other types of health care (such as cancelling 

elective surgeries) will be required if 30 critical care beds are occupied with COVID-19 patients.  

 

DIAGNOSIS BY CLINICAL PRESENTATION AND CONTACT TRACING 

The time from symptom presentation to diagnosis in symptomatic cases decreased over the course of 

the pandemic with increased awareness of the disease and its varied range of symptoms [25]; in the 

base case analysis we assumed the minimum time from symptom onset to diagnosis to be 2.1 days 

consistent with the minimum time to self-assess, seek medical attention, and receive diagnostic results 

[26]. The observed median time to diagnosis through symptom-based surveillance alone of 4.6 days 

(95%CI: 4.2, 5.0) and symptom-based surveillance in combination with contact tracing efforts of 2.9 days 

(95%CI 2.4, 3.4) [27]. From this, we estimated that symptom-based surveillance and contact tracing 

results in a daily probability of diagnosis of 15.8% in individuals with symptoms and the daily probability 

of detection from contact tracing of 4.1% in asymptomatic infections. This combination of assumptions 

resulted in approximately 22% of infected individuals being identified, consistent with the overall rates 

of diagnosis implied by preliminary serology data in Ontario [28]. 

For LTC residents, we assume that twice daily symptom screening results in a 40% daily probability of 

detection in symptomatic patients and that contact tracing with access to all resident contacts increases 

that probability to 52%. Contact tracing results in a 8.2% daily probability of diagnosis in asymptomatic 
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cases which we assume is increased further by routine testing for COVID-19 every 14 days which is 

recommended for the staff of LTC facilities in Ontario [29]. Universal testing of all residents in a nursing 

home with a single new case is recommended by the US Centers for Disease Control and Prevention 

[30]. We assumed this routine testing would be performed using nasopharyngeal swab and PCR analysis 

with a test sensitivity of 72.1% [31, 32]. 

 

CONTACT MIXING PATTERNS 

General population: Based on an extrapolation of the 2008 POLYMOD study in Europe to reflect 

network structure of the Canadian population, the average number of contacts per person in Canada is 

12.6 per day [33]. Of these contacts, on average, 1.0 contacts are with those aged 20-24 [33]. Nationally, 

6.6% of the Canadian population is aged 20-24. We assumed that the age distribution of the year-round 

residents in our simulated city matches that of Canada nationally. However, during the academic year, 

we assumed that the 20,000 university students consist entirely of 20-24 year-olds. Thus, during the 

academic year, university students in our simulated city comprise 38% of all 20-24 year-olds in the 

overall community (20,000 / (500,000 × 6.6% + 20,000)). As a result, we estimated that of the 1.0 daily 

contacts that the general population has with the 20-24 year-old age group, 0.38 contacts per day would 

be with university students when the university is in session.  

The average number of daily contacts that a person in the general population has with someone in LTC 

was calculated in order to balance the total number of daily contacts between LTC residents and 

visitors/staff (who are considered to be from the general population). With 3,500 LTC residents each 

with 13.7 staff contacts and 0.48 visitor contacts per day, this implies a total of 49,630 contacts per day 

between LTC residents and the general population (3,500 × (13.7+0.48)). Dividing by the size of the 
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general population (500,000 – 3,500 = 496,500), this yields a total of 0.1 LTC resident contacts per 

person in the general population per day. 

University students: Compared to the average number of contacts for the overall population, Canadians 

aged 20-24 have higher number of close contacts per day (15.7 vs. 12.6) [33]. Further, using self-report 

diaries, several studies specifically of university students report still higher numbers of contacts per day 

than the average person in their age demographic. For example, a convenience sample from two British 

universities reported an average of 21.9 contacts per day on weekdays and 14.5 contacts per day on 

weekends for participants aged 20 to 29 [34]. A study at the University of Antwerp, in which 83% of 

study participants were students, reported an average of 23.7 contacts per day [35]. A study of 28 

students at the University of Warwick reported 26 contacts per day during the week and 19 contacts per 

day during the weekend [36]. A German study of 556 first year university students reported an average 

of 8.9 direct conversational contacts per weekday and 12 direct conversational contacts on weekend 

days; expanding to also report contacts in large groups (e.g., in a lecture hall) or random encounters 

within 2 meters (e.g., on public transit), the average number of contacts per day increased to 47 and 62 

contacts per day, respectively [37]. Compared to studies using self-report diary design, studies with 

electronic detection of interactions identify higher contact rates in school environments. A study of 

interactions at a US high school in which 94% of students, staff, and teachers were tagged with wireless 

sensors to record contacts indicated an average of 50 contacts within 3 meters of greater than 10 min in 

duration and an average of 30 contacts within 3 meters with greater than 20 minutes in duration within 

a school day [38]. Similarly, a study in which university students living across six residence falls were 

provided devices to monitor Bluetooth interactions with other devices in the study and other devices 

with “discoverable” Bluetooth (within 5 meters) indicated a total of 219 contacts per phone per day 

[39].  
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In our base case analysis, we assume that students have 23.7 contacts per day, based on a study at the 

University of Antwerp [35]. We assumed 60% of those contacts are with other university students based 

on the age distribution of student’s reported contacts [34, 35], with the remainder being with members 

of the ‘general population’ which includes staff and faculty of the university as well as other members of 

the community when students are in transit, shopping, and working in jobs in the community or non-

student members of their household. This number of contacts between university students and the 

general population (9.48 contacts per day) balanced with the estimated number of contacts the general 

population has with university students each day (20,000 × 9.48 / 496,500 =0.38). Several of the studies 

estimating contacts among university students were performed in winter, and so may underestimate 

the number of contacts students have during the early weeks of the new academic year. We explore this 

uncertainty in scenarios with higher contact rates for a short period of time upon arrival to campus on 

September 1.  

Long-term care residents: Based on a Canadian study in which a sample of long-term care residents and 

staff were equipped with RFID tags in order to estimate the number of contacts, we estimated the 

number of resident-resident and resident-staff contacts [40, 41]. Adjusting for the likelihood of 

observing a contact (which required both individuals to be participating in the study), we estimate that 

there are 19.9 resident-resident contacts per day (95% CI: 11.3 – 28.5) and 13.7 resident-staff contacts 

per day (95%CI: 11.4 – 15.9) using the summary participant data provided by the study’s authors 

(personal communication: S. Moghadas). This study did not capture resident-visitor contacts; we 

assumed 0.48 visitors per day based on the distribution of visit frequency in the 2012 Ohio Nursing 

Home Family Satisfaction Survey [42]. Thus, in total, LTC residents have 14.2 contacts with the general 

population each day. We assumed no contact directly with university students.  

 



13 
 

DISEASE TRANSMISSION 

Using exponential regression, we empirically estimated the basic reproduction number, R0, the average 

number of secondary cases produced by one infected individual during the infected individual’s entire 

infectious period assuming a fully susceptible population, is 3.0 based on Ontario’s reported cases 

between March 7 to March 22 [43]. Using an average duration of infectiousness of 10 days and an 

average number of close contacts per person of 12.6 [33], we calculate the probability of transmission 

between a susceptible and an infected person, in the absence of any interventions, to be 0.024. We also 

considered using an R0 of 3.5, estimated for Ontario using a date range of March 8 to 14 [44]. The initial 

cumulative infection curve in Ontario was dominated by cases in Toronto which has high population 

density in comparison to London and other mid-size communities with university student populations 

that are relatively large compared to the population of the community. Also, an R0 of 3.0 demonstrated 

greater fit to the initial trajectory of the infection in the calibration step. 

In the model, we assume a 90% reduction in contacts for people who are aware of their infection status 

and in home isolation, which is at the high end of observed adherence to quarantine instructions in past 

epidemics [45, 46]. We assume isolation of hospitalized patients is 100% effective at preventing 

transmission to others. 

Each day, we calculated the number of new infections from contacts between susceptible people in 

Group 𝑖, 𝑆𝑖, where 

 𝑖 = {𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑙𝑜𝑤𝑃𝐷;  𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, ℎ𝑖𝑔ℎ𝑃𝐷;  𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠, 𝑙𝑜𝑤𝑃𝐷;  

𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠, ℎ𝑖𝑔ℎ𝑃𝐷;  𝐿𝑇𝐶 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠, 𝑙𝑜𝑤𝑃𝐷;  𝐿𝑇𝐶 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠, ℎ𝑖𝑔ℎ𝑃𝐷} 

with people in Group 𝑗, where 𝑗 = {𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠, 𝐿𝑇𝐶 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠} to be  



14 
 

𝐼𝑖,𝑗
̇ =  𝑆𝑖 (1 −  𝛽 ∑

𝐼𝑗,𝑘[1 − 𝜅𝑗,𝑘]𝜀𝑖𝑗𝑘

∑ 𝑁𝑗,𝑘[1 − 𝜅𝑗,𝑘]𝑘𝑘

)

𝐶𝑖𝑗[1−𝜅𝑖]

 

where 𝑘 represents subpopulations within Group 𝑗 with different prevalence, contact behaviours, and 

mask wearing behaviours (i.e., 𝑘 = 𝑈𝑛𝑎𝑤𝑎𝑟𝑒 𝑙𝑜𝑤𝑃𝐷, 𝑈𝑛𝑎𝑤𝑎𝑟𝑒 ℎ𝑖𝑔ℎ𝑃𝐷, 𝐴𝑤𝑎𝑟𝑒 𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐,  

𝐴𝑤𝑎𝑟𝑒 𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐, 𝐴𝑤𝑎𝑟𝑒 𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝐻𝑜𝑚𝑒, 𝐴𝑤𝑎𝑟𝑒𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝐿𝑇𝐶}); 𝐼𝑗,𝑘  represents the number of 

infected people in Group 𝑗 subgroup 𝑘; 𝜅𝑗,𝑘 represents the reduction in contacts for people in Group 𝑗 

subgroup 𝑘; 𝜀𝑖𝑗𝑘  represents the relative reduction in transmission due to mask wearing behaviours; 𝑁𝑗,𝑘 

represents the number of individuals in Group 𝑗 subgroup 𝑘; 𝐶𝑖𝑗 represents the number of contacts 

between people in Group 𝑖 and people in Group 𝑗; 𝜅𝑖 represents the reduction in contacts for people in 

Group 𝑖; and 𝛽 represents the probability of transmission conditional on contact between a susceptible 

and an infected individual. The relative reduction in transmission due to mask wearing is calculated as  

𝜀𝑖𝑗𝑘 = (1 − 𝑀𝑖)(1 − 𝑀𝑗,𝑘) + 𝑀𝑖(1 − 𝑀𝑗,𝑘)(1 − 𝜃𝑆) + (1 − 𝑀𝑖)𝑀𝑗,𝑘(1 − 𝜃𝐼) + 𝑀𝑖𝑀𝑗,𝑘(1 − 𝜃𝑆)(1 − 𝜃𝐼) 

 

where 𝑀𝑖 represents the proportion of Group 𝑖 wearing a mask with their remaining contacts; 𝑀𝑗,𝑘 

represents the proportion of Group 𝑗 subgroup 𝑘 wearing a mask with their remaining contacts; 𝜃𝑆 

represents the effectiveness of a mask when worn by the susceptible individual; and, 𝜃𝐼 represents the 

effectiveness of a mask when worn by the infected individual. For hospitalized health states, we assume 

a 100% contact reduction, so hospitalized patients do not contribute to transmission. 

 

INITIAL COMMUNITY BEHAVIOUR 

General population: An Angus Reid poll of Canadians, taken in the first week of August, classified 

COVID-19 prevention behaviours of Canadians into three groups: “Infection Fighters”, “Inconsistent”, 
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and “Cynical Spreaders” [47]. In part based on this stratification, we divided the general population into 

two risk groups based on their intensity of prevention behaviours. One of those risk groups (‘high-

intensity physical distancers’) engage in high levels of risk mitigation behaviours (similar to “Infection 

Fighters”), while the other has low uptake of prevention behaviours (similar to the “Cynical Spreaders”). 

In calculating the prevention behaviours (level of contact reduction and mask wearing) from the Angus 

Reid poll for the risk groups in our model, we split the “Inconsistent” group evenly between the 

“Infection Fighters” and the “Cynical Spreaders”.  

In the base case, we assumed that 40% of the general population are initially ‘high intensity physical 

distancers’ consistent with 47% of Canadians reporting “Infection Fighter” behaviour in the Angus Reid 

poll [47]. We assume that ‘high-intensity physical distancers’ reduce their average number of contacts 

by 75% (from 12.6 to 3.2 contacts per day) consistent with 70% of “Infection Fighters” reporting fewer 

than 5 contacts outside of their household, and that they wear a cloth mask with 86% of their remaining 

contacts [47]. Due to reduced density in public spaces and reduced availability of their usual contacts, 

the remainder of the population also experiences an overall contact reduction calculated at each time to 

be equal to the reduction in overall contacts imposed by the ‘high intensity physical distancers’ 

[Proportion of the population that are ‘high intensity physical distancers’ × 75% reduction in contacts]. 

Further, we assume that these ‘low intensity physical distancers’ are using a cloth mask with 38% of 

their contacts [47]. We assume the effectiveness of cloth masks in reducing disease transmission is 40% 

based on a German study using synthetic control to evaluate the effectiveness of real-world mask use 

[48].  

University students: During the COVID-19 pandemic, many university-aged persons report taking 

COVID-19 infection precautions, but to a lesser extent than other age groups [47]. The responses of 18-

34 year-olds to the recent Angus Reid COVID-19 behaviour survey indicated that 60% have more than 2 
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COVID risk behaviours (compared to 30% in the population overall); in addition, 16% report having 10-

19 contacts and 14% more than 20 contacts outside their household [47].  

In the base case, we assumed that, on average, university students reduce their contacts by 40% (from 

23.7 to 14.1 contacts). This was to approximate the net behaviour of 18-24 year-olds in the Angus Reid 

survey, of which 32% reported “Infection Fighter” behaviour, which we equate with a 75% reduction in 

contacts in the general population and the remainder experiencing a reduction in contacts due to 

reduced access to their usual contacts. Thus, overall the net contact reduction was calculated as 32% × 

75% + (1 – 32%) × (32% × 75%) = 40.3%. In this same survey, 57% of 18-24 year-olds report wearing a 

mask indoors with people outside their household [47], so we assumed this level of mask wearing 

among all university students.  

Long term care: The ability to reduce contacts in LTC facilities is limited by multiple occupancy rooms 

and the requirements of staff to provide medical care and support with activities of daily living. 

However, reductions in contacts can also be used as a proxy for contacts protected by highly effective 

medical personal protective equipment donned and doffed by trained personnel. We assume that LTC 

residents have a 50% reduction in their average contacts (from 34.1 contacts to 17.05 contacts). We 

further assume that of their remaining contacts, 86% are protected by cloth masks providing a 40% 

reduction in disease transmission [48]. 

 

COMMUNITY BEHAVIOUR CHANGES IN RESPONSE TO COVID-19 OUTCOMES 

We assumed that the population responds to COVID-19 outcomes in the community, specifically 

reduced access to non-COVID health services and COVID-19 mortality, by increasing their protective 

behaviours, as observed in a US-based study [49]. These changes in behaviour are intended to capture 

both individual decision-making and policy changes that may be instituted by the city.  
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We relied on locally relevant thresholds to inform triggers for community behaviour change. Based on 

expert opinion, substantial reductions in access to other health care services would need to occur if 30 

critical care beds (about 40% of normal critical care capacity in a city of 500,000 [22]) were occupied by 

COVID-19 patients. Therefore, we set one of the responsive behaviour triggers to activate when there 

are 15 COVID-19 patients in critical care, representing 50% of the capacity available to COVID-19 

patients without modifying access to other health care services. 

General population: We assumed that proportion of people who are ‘high intensity physical distancers’ 

increases by 0.5% each day if the number of COVID-19 patients in critical care exceeds 15 and by an 

additional 1.0% each day if the number of COVID-19 deaths in the past 10 days exceeds 10. In the base 

case, we assume that a maximum of 80% of the general population can become ‘high intensity physical 

distancers,’ reflecting the fact that not all individuals are able or willing to engage in physical distancing 

and high levels of mask wearing. To incorporate the re-opening and relaxation of behaviour that occurs 

when the prevalence of COVID-19 is low, we also assumed that proportion of people who are ‘high 

intensity physical distancers’ decreases by 0.5% each day if the number of COVID-19 patients in critical 

care is fewer than 10 and by an additional 1.0% each day if the number of COVID-19 deaths in the past 

10 days is fewer than 5. 

University students: We assumed that university students respond to the same triggers as the general 

population and increase and decrease their physical distancing behavior at the same rate, up to a 

maximum of a 75% reduction in contacts per day (23.7 contacts reduced to 5.9 contacts per day). 

Long term care: Social interaction for residents such as communal meals and recreational activities, and 

visits with family are important for resident wellbeing. However, we assumed that more intensive 

restrictions on these activities would be re-instituted if adverse COVID-19 outcomes begin to appear in 

the community. While LTC facilities may receive their direction from provincial decision makers, we 



18 
 

assumed that their COVID-19 precautions would also change with local outcomes consistent with the 

responsive behaviour of the general population. We assumed that the reduction in contacts increases by 

0.5% each day if the number of COVID-19 patients in critical care exceeds 15 and by an additional 1.0% 

each day if the number of COVID-19 deaths in the past 10 days exceeds 10. We assume the maximum 

reduction in contacts is 80% (from 34.1 contacts to 6.8 contacts per day) and that 86% of remaining 

contacts are protected by a cloth mask.  

 

MODEL CALIBRATION 

We estimated some model parameters using calibration to the observed critical care and ward 

hospitalizations at London Health Sciences Centre, LTC resident mortality, and overall mortality in 

London-Middlesex Ontario from March 1 to August 15, 2020 (Appendix Figure 2). All non-essential 

workplaces were ordered closed on March 23 at which time, in the model, individuals began reducing 

their contacts [50]. We used trends in cell phone mobility data [51, 52] to inform estimates of the 

proportion of the population participating in high-intensity physical distancing over time (Appendix 

Figure 3, Appendix Figure 4). Further, beginning May 16 [53], we assumed that people engaged in high-

intensity physical distancing wore a mask for 86% of their remaining contacts and that people not 

engaged in high-intensity physical distancing wore a mask for 38% of their contacts, consistent with the 

levels used in our policy analysis.  

To fit to the calibration targets we tuned the R0 parameter, selecting 3.0 rather than 3.5 because of the 

better fit to the London Ontario data, which we also believe would be representative of mid-sized, 

relatively lower-density cities.  

We also tuned the proportion of the general population who would be in need of hospitalization. Based 

on the ratio of critical care to non-critical care hospitalizations estimated from the literature, described 
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above, we had initially estimated the value to be 6.8%, but this number resulted in an overestimate of 

ward hospitalizations when compared to the London, Ontario observational data. We found that 3.75% 

represented a closer fit to the data.  

Finally, we did not find an estimate for the length of time until recovery or death for a COVID-19 patient 

receiving care in a LTC facility. We estimated this parameter to be 18 days (median 12.5 days) fitting the 

shape of the mortality curve for LTC residents.  

After June 7, 2020, there were fewer than 5 patients in critical care and nearly always fewer than 5 

patients in ward hospital beds in London hospitals which is the minimum number for reporting. There 

were also few new infections reported by the Health Unit. Over the month of July, the number of active 

cases decreased from 62 on July 1 to 32 on July 31; there were 28 active cases on August 15 [54]. At the 

end of the calibration window, we selected different levels of physical distancing behaviour to create 

different starting conditions for analysis. For the base case, we selected the proportion of the 

population engaged in high-intensity physical distancing beginning in July to be 40% consistent with the 

which resulted in 40 active infections (some of which would be undiagnosed) on August 15. By selecting 

different values for the proportion of the population engaged in high-intensity physical distancing in 

July, we created alternative scenarios in which there were 25, 50, and 75 people with active infections 

on August 15 to evaluate as alternative scenarios in sensitivity analysis.  

 

MODEL INITIALIZATATION 

In the base case, at the start of the simulation, there were 40 infected individuals, some undiagnosed, in 

the general population. We assumed that there are no COVID-19 infections among LTC residents. The 

actual number of diagnosed active cases on August 15 in London-Middlesex was 28 (based on data 

retrieved daily from the London Middlesex Health Unit webpage [54]). 
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The 40 cases of COVID-19 were distributed across the COVID-19 health states based on state distribution 

of the population at the end of the run-in period of the model, March 1 to August 15. On August 15, the 

population is distributed as follows: 493,751 Susceptible, 12.5 Exposed but not yet infectious, 38.3 

infected individuals (10.0 exposed and infectious, 7.9 asymptomatic individuals, 17.3 mildly 

symptomatic individuals, 1.2 symptomatic individuals who will progress, but have not yet progressed, to 

needing hospitalization, and 1.9 patients in hospital), 2,663 Recovered individuals, and 35 individuals in 

the general population who died from COVID-19 between March 1 and August 15. The cumulative 

number of diagnosed cases in London-Middlesex on August 15th was 707 [54], which implies an overall 

detection rate that is consistent but somewhat higher than the estimate of 22% case detection rate the 

end of June in Ontario based on blood sample serology [28].  

Based on the state distribution of LTC residents on August 15 as estimated through the model run-in 

period, there were 83 residents in the recovered health states at the start of the simulation. Over the 

course of the run-in period, 27.7 deaths occurred in LTC facilities (consistent with the reported number 

of 24 deaths in LTC residents by July 31 in London-Middlesex [54]); we assume that new residents 

moved in resulting in a state distribution of LTC residents on August 1 of 3417 Susceptible and 83 

Recovered LTC residents. 

 

ANALYSIS OF UNCERTAINTY AND POLICY ALTERNATIVES 

We used the model to explore how COVD-19 risk and prevention behaviours of the general population 

and the student community, in particular, affect the incremental COVID-19 burden attributable to the 

arrival of 20,000 university (post-secondary) students on September 1st. 
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Under different scenarios of community physical distancing effort, student behaviour, and routine 

testing in students, we calculated the number of infected individuals, demand hospital resources, time 

to responsive behaviour thresholds being activated, and health outcomes overall and over time. 

 

Evaluating the incremental impact of university student behaviour on community covid-19 outcomes 

We considered several city scenarios varying the following city features 

• Different levels of general population participation in high-intensity physical distancing, 

• Different initial numbers of infected cases in the population, 

• Different thresholds for engaging greater participation in physical distancing, 

• Different intensity of response after crossing the trigger thresholds. 

 

Evaluating the uncertainty in short-term student behaviour 

We considered several levels of student COVID-19 prevention behaviours 

• Different levels of immediate contact reduction, 

• Delay in the initiation of contact reduction for a short-term period at the beginning of the school 

year, 

• Short-term increase in the number of contacts before initiating a reduction contacts. 

 

We also performed extensive sensitivity analysis on other parameters 

• The number of students with COVID-19 infection when they arrive on campus, 

• Intensity of student response to behaviour thresholds, 

• Increases and decreases to student mask wearing. 
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Comparing frequencies of routine diagnostic testing targeted at the student population 

Finally, we calculated the number of infections averted through routine and one-time screening of 

university students. We considered routine screening of students on short periodic intervals (every 28 

days, 14 days, 10 days, 7 days, 5 days, and 3 days). We also considered a one-time screening of all 

university students on September 22 (three weeks after the arrival of students). We assumed routine 

testing would be performed using nasopharyngeal swab and PCR analysis with a test sensitivity of 72.1% 

[31, 32]. 

 

Economic analysis 

High-frequency testing requires substantial resources with financial implications. In order to compare 

the cost of testing against its value, we estimated the costs of averted COVID-19 hospitalizations and we 

converted averted COVID-19 deaths into monetary benefits using a health economic framework. We 

also estimated the productivity costs associated with infections. As a simplification, we did not include 

other benefits of averting COVID-19 infections, such as potential long-term complications and their 

associated reductions in quality of life, and the community economic benefits of delaying social and 

economic restrictions. Future work is needed to quantify the full cost and quality of life impacts of 

COVID-19.  

When evaluating the economic value of life years lost due to premature death, we considered a 

willingness-to-pay of $50,000 and $100,000 per life-year gained, which is a commonly used threshold in 

in Canada [55, 56] and the US, respectively [57, 58]. We calculate the number of life-years gained by 

estimating the average remaining life-expectancy of patients succumbing to COVID-19. We estimate the 

age distribution of those dying from COVID-19 based on the distribution reported by the US Centers for 

Disease Control and Prevention [59]. We estimate mortality in the absence of a COVID-19 infection using 
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the Canadian lifetables for 2016 to 2018 [60] and discount life-expectancy by 1.5% per year, consistent 

with Canadian health economic evaluation guidelines [55]. We calculate the average discounted life-

years lost to be 12.2 years and so a total value of $610,075 per death averted at a willingness-to-pay of 

$50,000 per life-year gained. At the higher willingness-to-pay threshold of $100,000 per life-year gained, 

the average value is $1,220,150 per death averted. These values are lower than other estimates of the 

economic value of a COVID-19 death averted [61] because we have selected a health economic 

framework consistent with how health technologies are evaluated and compared in Canada.  

The average daily cost of ICU and general ward hospitalization in Canada is estimated at $3,592 and 

$1,135 (in 2013 Canadian dollars) [22]. Using the Canadian GDP deflator to adjust for inflation [62, 63], 

the estimated daily cost of ICU and general ward hospitalization is $3,970 and $1254 in 2020 Canadian 

dollars [22]. Multiplying by the average length of stay for a COVID-19 patient admitted to the ICU (15.5 

ICU days and 10.1 ward days) results in an average cost of $74,157 per ICU admission. Similarly, 

multiplying by the average length of stay for a COVID-19 patient admitted to the hospital, but never 

requiring ICU care (8.3 days), results in an average cost of $10,411 per admission. 

To estimate the average cost of lost productivity from incremental infections, we used the average 

weekly income in Canada of $1,045 in 2020 Canadian dollars (reported by Statistics Canada to be 

$1028.50 in 2019 dollars [64]). We estimate the productivity loss by assuming that infected individuals 

lose two-weeks of productivity. This approach may over or underestimate the direct productivity loss of 

an infected individual. Not all infected individuals will be diagnosed with COVID-19 and required to 

isolate, but at least some undiagnosed symptomatic individuals may still stay home from work. 

Conversely, among diagnosed individuals, multiple individuals in their household may be required to 

isolate even though they may not become infected. At a population level, this approach may also 

underestimate total productivity costs per infection because it fails to capture the indirect costs of each 

infection’s contribution to increasing social and economic restrictions.   
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SUPPLEMENTAL RESULTS 

City epidemic outcomes without the introduction of the university student population 

Without the introduction of the student population, the base case assumptions for the general 

population and LTC residents leads to a total of 3,515 infections over 4.5 months (August 15 to 

December 31). In this scenario, infections, hospitalizations, and daily deaths do not peak until the new 

year (Appendix Table 1). Demand for critical care (mechanical ventilation or renal replacement therapy) 

peaks at 25 beds early in the new year, and a total of 37 COVID-19 deaths occur between August 15 and 

December 31 (78 deaths by January 31, 2021). The timing and magnitude of the city’s COVID-19 

outbreak, excluding any impacts from students, is determined by the initial number of COVID-19 

infections in the community, the level of participation in physical distancing, the responsiveness of the 

community to increasing critical care cases and COVID-19 deaths, and the proportion of contacts that 

are protected with mask wearing (Appendix Figures 5-7). 

 

Impact of students arriving with infections 

If some students arrive exposed or asymptomatically infected, the total number of infections occurring 

over the course of the semester increases. For example, if 10 students arrive infected, the number of 

infections increases by 5,419 over the base case. The impact of students arriving already exposed or 

infected in the community is most substantial on the timing of peak infections, peak hospitalizations, 

peak critical care utilization, and the timing of responsive behaviour triggers. Compared to the scenario 

without the introduction of the student population, responsive behaviours are triggered 5.6 weeks 

earlier if 10 students are infected when they arrive (Appendix Table 3). 
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Sensitivity analysis 

We performed extensive sensitivity analysis exploring the impact of general population and student 

population COVID-19 prevention behaviours on the incremental impact of introducing students into the 

community. 

The negative impacts of introducing the student population can be partially mitigated through high 

uptake of COVID-19 preventive behaviours in the student population including high rates of contact 

reduction or if the rate of mask wearing significantly exceeds the level reported by 18 to 24 year-olds 

(Appendix Figure 10, Appendix Table 6). For example, if students immediately reduce their contacts by, 

on average, 50% (from 23.7 to 11.9 contacts per day) and wear masks to protect 65% of their remaining 

contacts, the incremental number of infections attributable to the arrival of the student population can 

be reduced to 1,807 infections (from 3,515 to 5,322), representing only a 51% increase over the number 

of infections the community would expect without the students, and delays the activation of responsive 

behaviour triggers by 1 week.  

The magnitude of the impact of the introducing the student population is also determined by the 

COVID-19 prevention behaviours of the general population. Counter-intuitively, the relative impact of 

introducing the student population is greatest when the prevention efforts by the general population 

are high (Appendix Figure 11). For example, when 50% of the general population are participating in 

high-intensity physical distancing, without students the number of new infections per day is nearly 

constant over time, resulting in a very low level of cumulative infections over the semester (total of 649 

infections). Introduction of the students results in 1,274 additional infections, doubling the total number 

of infections expected in the city without the addition of the student population (Appendix Table 2). In 

such a scenario, because the student population is an important determinant of city outcomes, the 

impact of routine COVID-19 screening in the student population is greater (Figure 3C).  
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Conversely, when only 30% of the of the general population are participating in high-intensity physical 

distancing, the number of new infections per day is increasing over time even without the students, 

resulting in 9,277 cumulative infections over the semester. Introduction of the students results in 3,786 

additional infections, a 41% increase in the total number of infections expected in the city without the 

addition of the student population (Appendix Table 2). In this scenario, relatively low rates of self-

protective behaviour in the general population are the primary driver of community COVID-19 

outcomes. Consistent across all scenarios varying the physical distancing behaviour of the general 

population, is the finding that the number of general population infections that are attributable to the 

return of the student population is about twice the number that occurs in the student population itself. 

 

Economic analysis 

Our evaluation of testing frequency identified the expected number of COVID-19 deaths averted under 

various testing frequencies and different assumptions of student initial behaviour (Table 2). For 

example, testing every 5 days under the base case assumption that students engage in physical 

distancing behaviour immediately leads to an expected 1,685 infections, 19.3 critical care admissions, 

and 15.0 COVID-19 deaths averted. This translates to an economic value of $14.6 million to $23.7 million 

using a willingness-to-pay of $50,000 and $100,000 per life-year gained, respectively (Appendix Table 

7). Testing every 5 days would require 4,000 tests per day for approximately 100 days. Thus, each test 

provides an economic value of at least $36 to $59; a testing strategy that is able to deliver tests for less 

than this amount would provide more value than its cost. However, even if test delivery is more 

expensive than $59 per test, it may still provide a net benefit, as our calculation only accounts for direct 

costs of COVID-19 health care, mortality, and productivity losses directly associated with infections; in 
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reality, there are many other benefits of reducing COVID-19 community burden, including the 

community economic benefits of delaying social and economic restrictions. 

If students engage in 2 weeks of double the number of student contacts, a 5-day testing schedule 

averted an expected 2,873 infections, 31.3 critical care admissions, and 24.3 COVID-19 deaths (Table 2), 

leading to an economic value of $23.9 million to $38.7 million or $60 to $97 per test (Appendix Table 7). 

If students are more likely to be asymptomatic than the general population, the number of deaths 

averted from a screening program increase further, as does the estimated value per test.  

Routine testing to identify and isolate asymptomatic infections for the purposes of reducing community 

transmission risk requires a large number of tests each day and may strain community testing resources. 

We also evaluated the benefits of a one-time universal screening event occurring three weeks after the 

students arrive. Compared to routine testing every 5 days, which would require more than 400,000 tests 

to be performed over the semester, this strategy would only require 20,000 tests. In the case that 

students double their contacts with other students for a period of two-weeks, this strategy prevents 290 

infections, 3.2 critical care admissions, and 2.5 COVID-19 deaths (Table 2). This leads to an expected 

economic value of $2.5 million to $4.0 million using a willingness-to-pay of $50,000 and $100,000 per 

life-year gained, respectively. Testing once would require 20,000 tests in total, resulting in an economic 

value of $123 to $199 per test (Appendix Table 7). Testing once has a consistently high value per test 

across scenarios in which students engage in a short-term increase in student contacts but has a 

relatively low value per test if student behaviour is consistent over the term, even if it is a consistently 

relatively low level of contact reduction.  

 

 

 



28 
 

Appendix Figure 2 presents a comparison of the modelled outcomes to the observed data, including 

hospitalization data and COVID-19 mortality, from the City of London and Middlesex County, Ontario, 

Canada from March 1 to August 15. 

 

Appendix Figure 3 presents assumptions around engagement in physical distancing and mask wearing 

behaviour between March 1 and August 15 used in the calibration of the model.  

 

Appendix Figure 4 presents the Google mobility data for Middlesex County (including the City of 

London) from March 1 to August 31 which was used as one source informing the physical distancing 

assumptions in the calibration of the model.  

 

Appendix Figures 5 though 7 present the number of new COVID-19 infections per day, critical care 

demand, and COVID-19 mortality between August 15 and December 31 without the arrival of the 

student population varying the number of COVID-19 infections in the city on August 15 and the level of 

participation in high-intensity physical distancing going forward.  

 

Appendix Figure 8 presents the cumulative COVID-19 mortality between August 15 and December 31 

varying the initial level of student engagement in reducing physical contacts.  

 

Appendix Figure 9 presents the number of new COVID-19 infections per day in the general population 

(panel A) and in the student population (panel B) between August 15 and December 31 varying the 

initial level of student engagement in reducing physical contacts and the testing strategy. This figure 

illustrates that the increase in cases occurs first in the relatively high contact university student 

population followed by an increase in daily infections in the general population. This figure also 
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illustrates the effect of routine screening of university students every 5 days and a one-time universal 

screening event targeted at the university student population on the number of infections per day in the 

university student population and the general population. 

 

Appendix Figure 10 presents the cumulative number of COVID-19 infections and deaths between 

August 15 and December 31 with and without the student population. The scenarios along the X-axis 

present sensitivity analysis on the behaviour of the student population in terms of level of contacts 

reduction and mask wearing behaviours.  

 

Appendix Figure 11 presents the cumulative number of COVID-19 infections and deaths between 

August 15 and December 31 with and without the student population. The scenarios along the X-axis 

present sensitivity analysis on the behaviour of the general population, varying the number of cases in 

the city on August 15 and the level of general population participation in high-intensity physical 

distancing.  

 

Appendix Table 1 presents detailed epidemic outcomes without the introduction of 20,000 university 

students. Scenarios consider different initial community conditions and physical distancing (PD) 

behaviours in the general population (corresponding to results presented in Appendix Figures 5, 6, and 

7). 

 

Appendix Table 2 presents detailed epidemic outcomes with the introduction of 20,000 university 

students on September 1. Scenarios consider different initial community conditions and physical 

distancing (PD) behaviours in the general population. 
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Appendix Table 3 presents detailed epidemic outcomes for sensitivity analysis on the number of COVID-

19 infections in the initial student population on September 1. 

 

Appendix Table 4 presents detailed epidemic outcomes for scenarios that vary on initial student 

participation in physical distancing immediately upon arriving to the community (corresponding to 

results presented in Figure 2). 

 

Appendix Table 5 presents detailed epidemic outcomes for various frequencies of routine testing in 

university students under different scenarios of initial contact reduction behaviour in students and 

participation in high-intensity physical distancing behaviour in the general population (corresponding to 

results presented in Figure 3).  

 

Appendix Table 6 presents detailed epidemic outcomes for sensitivity analysis on student population 

characteristics including initial contact reductions and mask wearing behaviours. 

 

Appendix Table 7 presents detailed breakdown of the economic value associated with infections, 

hospitalizations, and deaths averted through screening strategies targeted at the university student 

population.  
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APPENDIX FIGURE 1. Schematic of the model states for Asymptomatic, Mild and Moderate, and Severe and Critical patients 

accounting for incubation period, pre-symptomatic infectiousness, delay in diagnosis from symptom onset, and the utilization 

of hospital resources. To ensure realistic distributions for the duration of infectiousness and the duration of hospital resource 

utilization (e.g., gamma distributions instead of exponential distributions), states indicated with an asterisk (*) were further 

subdivided into two successive states splitting equally the average duration of the state.  
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APPENDIX FIGURE 2. Calibration to observed data from London-Middlesex, Ontario, Canada from 
March 1, 2020 to August 15, 2020. (A) Modelled hospital and critical care occupancy compared to 
reported COVID-19 hospital occupancy. (B) Modelled total community COVID-19 mortality compared to 
reported COVID-19 mortality. (C) Modelled COVID-19 mortality compared to reported COVID-19 
mortality for residents of long-term care (LTC) facilities. 

(A)  
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(B) 

 

(C) 
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APPENDIX FIGURE 3. Participation in high-intensity physical distancing efforts in the calibration phase 
of the model-based analysis. All non-essential workplaces were ordered closed on March 23 [50].  (A) 
Proportion of the general population participating in high-intensity physical distancing, defined as having 
reduced their average number of daily contacts by 80% (from 12.6 to 2.5 contacts per day). Further, 
illustrated in panel (B), beginning May 16 [53], we assume that people engaged in high-intensity physical 
distancing wore a mask for 86% of their contacts and that people engaged in low-intensity physical 
distancing wore a mask for 38% of their contacts.  (C) Proportion of long-term care residents engaged in 
high-intensity physical distancing. (D) Effective reduction in contacts from LTC resident engagement in 
physical distancing and the use of personal protective equipment. 

(A) 

 

(B) 
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(C) 

 

 

(D) 
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APPENDIX FIGURE 4. Google mobility report48 for Middlesex County (which includes the City of 
London), Ontario Canada from March 1 to August 31 2020. All non-essential workplaces were ordered 
closed on March 23 [50]. The baseline day is the day-of-week matched median value from the 5‑week 
period Jan 3 – Feb 6, 2020. 
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APPENDIX FIGURE 5. Number of new COVID-19 infections per day comparing different initial community conditions 

and physical distancing behaviours without the introduction of the university student population. (A) Varying the 

number of active cases in the community on August 15; and (B) Varying the proportion of the general population 

engaged in high-intensity physical distancing on August 15.  High-intensity physical distancing is defined as reducing 

contacts by 75% (from 12.6 contacts per day to 3.15 contacts per day) and wearing a mask for 86% of remaining 

contacts.  

 

(A) 

 
(B) 
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APPENDIX FIGURE 6. Number of COVID-19 patients medically indicated for critical care (mechanical ventilation or 

rental replacement therapy) each day comparing different initial community conditions and physical distancing 

behaviours without the introduction of the university student population. (A) Varying the number of active cases in the 

community on August 15; and (B) Varying the proportion of the general population engaged in high intensity physical 

distancing on August 15. 

 

(A) 

 
(B) 
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APPENDIX FIGURE 7. Cumulative number of COVID-19 deaths between August 15 and December 31 comparing 

different initial community conditions and physical distancing behaviours without the introduction of the university 

student population. (A) Varying the number of active cases in the community on August 15; and (B) Varying the 

proportion of the general population engaged in high intensity physical distancing on August 15.  

 

(A) 

 
(B) 
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APPENDIX FIGURE 8. Cumulative COVID-19 deaths between August 15 and December 31 with and without the 

introduction of 20,000 university students on September 1.  Only deaths occurring prior to December 31 are included 

in these figures. Scenarios presented along the X-axis of panel B correspond to scenarios presented in Appendix Table 4. 

The general population has the same features and COVID-19 prevention behaviours across all scenarios.  

 

(A) 

 
(B) 
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APPENDIX FIGURE 9. Number of new COVID-19 infections per day in the (A) general population and (B) university 

student population between August 15 and December 31 with and without the introduction of 20,000 university 

students on September 1.  In the scenarios presented, students have twice the number of contacts with other students 

for two weeks (a total of 37.9 contacts per day) and then reduce to 14.1 contacts per day. Scenarios vary in the testing 

strategy employed by the university. The general population has the same features and COVID-19 prevention behaviours 

across all scenarios.  

 

(A) 

 
(B) 
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APPENDIX FIGURE 10. Cumulative number of COVID-19 infections (A) and deaths (B) between August 15 and 

December 31 with and without the introduction of 20,000 university students on September 1.  Sensitivity analysis on 

university student behaviours in terms of contact reductions and mask wearing. Across all of these scenarios, the 

general population has base case behaviours. Numerical results are presented in Appendix Table 6.  

 

(A) 

 
(B) 
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APPENDIX FIGURE 11. Cumulative number of COVID-19 infections (A) and deaths (B) between August 15 and 

December 31 with and without the introduction of 20,000 university students on September 1. Sensitivity analysis on 

general population behaviours and initial conditions. Across all of these scenarios, students have base case behaviours. 

Numerical results are presented in Appendix Table 2.  

 

(A) 

 
(B) 
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APPENDIX TABLE 1. Epidemic outcomes in a city of 500,000 in which 0.7% of the population live in long-term care (3500) comparing different 

initial community conditions and physical distancing (PD) behaviours without the university population over 4.5 months.  Dates are presented 

in weeks from September 1 and four months is 17 weeks.    

 Base case 
↓ initial 
infection 

population 

↑ initial 
infection 

population 

↑↑ initial 
participation 

in PD 

↑ initial 
participation 

in PD 

↓ initial 
participation 

in PD 

↓↓ initial 
participation 

in PD 

↓ threshold to 
increase PD 

effort 

Scenario features         
COVID-19 infections on August 15 40 25 50 40 40 40 40 40 
Proportion of general population 
participating in high-intensity physical 
distancing on August 15 

40% 40% 40% 50% 45% 35% 30% 40% 

Trigger to increase general population 
participation in physical distancing 

 
> 15 critical care occupancy → Increase physical distancing participation by 0.5% per day 
> 10 deaths in past 10 days → Increase physical distancing participation by 1.0% per day 

↓ threshold to 
10 critical care 

occupancy 

Cumulative infections          
General population 3,395  2,050  4,203  602  1,357  6,651  9,086  3,303  
Long-term care 120  73  148  47  71  169  190  120  
Total 3,515  2,122  4,351  649  1,428  6,820  9,277  3,423  

Daily infections         
Peak number of infections 94  94  95  34  59  132  179  69  
Date of peak infections (in weeks) 18.3  21.1  17.0  >22 weeks  >22 weeks  14.3  12.0  17.7  

Cumulative deaths          
General population 24  14  30  7  12  50  87  24  
Long-term care 13  8  16  6  9  20  28  13  
Total 37  22  46  13  21  70  114  37  

Hospital occupancy         
Peak number 37  37  37  16  25  51  68  29  
Date of peak (in weeks) 21.3  >22 weeks  20.0  >22 weeks  >22 weeks  17.4  15.3  20.4  

Critical care (MV + RRT)         
Peak number 25  24  25  9  16  35  47  19  
Date of peak (in weeks) 21.7  >22 weeks  20.4  >22 weeks  >22 weeks  17.9  15.7  20.7  

Time to responsive behaviour triggers 
(in weeks) 

        

> 10 COVID-19 deaths in past 10 days 18.6  21.4  17.3  
Does not 

occur 
Does not 

occur 
14.6  12.0  18.6  

> 15 COVID-19 patients in critical care 18.0  21.1  16.7  
Does not 

occur 
Does not 

occur 
13.1  10.4  15.6  
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APPENDIX TABLE 2. Epidemic outcomes in a city of 500,000 in which 0.7% of the population live in long-term care (3500) with the introduction 

of 20,000 university students on September 1.  Scenarios consider different initial community conditions and physical distancing (PD) 

behaviours in the general population. In all scenarios, the population of university students arriving on September 1 has the same features: 

university students arrive in the city with no COVID-19 infections, have 40% fewer contacts than the average number of normal contacts for a 

university student (average of 23.7 contacts reduced to 14.1 contacts), 58% of contacts are protected through mask wearing behaviour, and 

when COVID-19 begins to result in adverse outcomes in the community through critical care hospitalizations, university students increase their 

physical distancing efforts using the same triggers and at the same rate as the general population to a maximum reduction in contacts of 75% 

(average of 5.9 contacts). Dates are presented in weeks from September 1 and four months (to the end of the semester) is 17 weeks. 

 Base case 
↓ initial 
infection 

population 

↑ initial 
infection 

population 

↑↑ initial 
participation 

in PD 

↑ initial 
participation 

in PD 

↓ initial 
participation 

in PD 

↓↓ initial 
participation 

in PD 

↓ threshold to 
increase PD 

effort 

Scenario features         
COVID-19 infections on August 15 40 25 50 40 40 40 40 40 
Proportion of general population 
participating in physical distancing on 
August 15 

40% 40% 40% 50% 45% 35% 30% 40% 

Trigger to increase general population 
participation in physical distancing 

 
> 15 critical care occupancy → Increase physical distancing participation by 0.5% per day 
> 10 deaths in past 10 days → Increase physical distancing participation by 1.0% per day 

↓ threshold to 
10 critical care 

occupancy  

Cumulative infections         
General population 6,231 4,408 6,765 1,399 3,101 8,847 11,608 5,366 
Long-term care 153 106 169 62 100 182 209 149 
University students 1,166 840 1,241 462 777 1,221 1,245 998 
Total 7,551 5,354 8,175 1,923 3,978 10,251 13,063 6,513 

Daily infections         
Peak number of infections 171 173 169 129 143 208 265 129 
Date of peak infections (in weeks) 15.4 17.4 14.4 >22 weeks 18.7 13.1 11.6 15.4 

Cumulative deaths          
General population 39 24 48 11 20 73 113 38 
Long-term care 16 10 20 7 10 24 31 16 
University students 0.3 0.2 0.4 0.1 0.2 0.4 0.5 0.3 
Total 56 34 68 18 30 97 145 54 

Hospital occupancy         
Peak number 57 58 56 41 49 71 92 47 
Date of peak (in weeks) 18.6 20.7 17.7 >22 weeks 21.9 16.3 14.9 18.0 

Critical care (MV + RRT)         
Peak number 38 39 38 26 31 48 63 30 
Date of peak (in weeks) 19.1 21.1 18.1 >22 weeks >22 weeks 16.9 15.3 18.4 
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Time to responsive behaviour triggers 
(in weeks)         

> 10 COVID-19 deaths in past 10 days 15.7 17.7 14.7 >22 weeks 19.0 13.1 11.3 15.7 
> 15 COVID-19 patients in critical care 14.3 16.4 13.4 >22 weeks 18.0 11.6 9.7 12.6 

         

  Incremental compared to without the university students 
Cumulative infections          

General population 2,836 2,358 2,562 797 1,744 2,195 2,522 2,063 
Long-term care 33 33 21 15 28 14 19 29 
University students 1,166 840 1,241 462 777 1,221 1,245 998 
Total 4,036 3,232 3,824 1,274 2,550 3,430 3,786 3,090 

Daily infections         
Peak number of infections 76 79 74 95 85 76 86 60 
Date of peak infections (change in 
weeks) -2.9 -3.7 -2.6 -9.7 -6.0 -1.1 -0.4 -2.3 

Cumulative deaths          
General population 15 9 18 4 8 23 27 14 
Long-term care 3.2 2.0 3.8 1.0 1.8 3.6 3.3 3.2 
University students 0.3 0.2 0.4 0.1 0.2 0.4 0.5 0.3 
Total 19 11 22 5 10 27 31 17 

Hospital occupancy         
Peak number 20 21 19 24 24 21 24 17 
Date of peak (change in weeks) -2.7 -3.6 -2.3 -9.9 -6.3 -1.1 -0.4 -2.4 

Critical care (MV + RRT)         
Peak number 13 14 13 17 15 14 16 10 
Date of peak (change in weeks) -2.6 -3.6 -2.3 -9.9 -6.3 -1.0 -0.4 -2.3 

Time to responsive behaviour triggers 
(change in weeks) 

        

> 10 COVID-19 deaths in past 10 days 
-2.9 -3.7 -2.6 

Cannot be 
calculated 

Cannot be 
calculated -1.4 -0.7 -2.9 

> 15 COVID-19 patients in critical care 
-3.7 -4.7 -3.3 

Cannot be 
calculated 

Cannot be 
calculated -1.6 -0.7 -3.0 
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APPENDIX TABLE 3. Epidemic outcomes between August 15 and December 31 in a city of 500,000 in which 0.7% of the population live in long-

term care (3500) with the introduction of 20,000 university students on September 1. Scenarios vary on the number of COVID-19 infections in 

the student population when they arrive on September 1.  Dates are presented in weeks from September 1 and four months (to the end of the 

semester) is 17 weeks. 

   20,000 students arrive on September 1 

 
Without 
students 

Base case  5 infected 10 infected 15 infected 20 infected 25 infected 30 infected 

Scenario features         
Number of infections in student 
population upon arrival on September 1 

 0 5 10 15 20 25 30 

Immediate level of contact reduction 
among students 

 
40% 

(from 23.7 → 
14.1 contacts) 

40% 40% 40% 40% 40% 40% 

Contacts protected by mask wearing  57% 57% 57% 57% 57% 57% 57% 
         

Cumulative infections          
General population 3,395 6,231 6,974 7,273 7,511 7,737 7,917 7,968 
Long-term care 120 153 165 170 174 179 182 183 
University students 0 1,166 1,376 1,491 1,589 1,681 1,759 1,809 
Total 3,515 7,551 8,515 8,934 9,275 9,597 9,858 9,960 

Daily infections         
Peak number of infections 94 171 177 178 180 184 188 189 
Date of peak infections (in weeks) 18.3 15.4 14.4 13.6 13.0 12.6 12.1 11.7 

Cumulative deaths          
General population 24 39 49 57 64 70 75 79 
Long-term care 12.9 16.1 18.9 21.3 23.2 24.8 26.2 27.2 
University students 0 0.3 0.4 0.5 0.6 0.7 0.8 0.8 
Total 37 56 68 79 88 96 102 107 

Hospital occupancy         
Peak number 37 57 59 59 59 61 62 62 
Date of peak (in weeks) 21.3 18.6 17.6 16.9 16.1 15.7 15.3 14.9 

Critical care (MV + RRT)         
Peak number 25 38 39 39 40 41 41 42 
Date of peak (in weeks) 21.7 19.1 18.1 17.3 16.6 16.1 15.7 15.3 

Time to responsive behaviour triggers 
(in weeks) 

        

> 10 COVID-19 deaths in past 10 days 18.6 15.7 14.7 13.9 13.3 12.9 12.4 12.0 
> 15 COVID-19 patients in critical care 18.0 14.3 13.3 12.4 11.7 11.1 10.7 10.3 
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APPENDIX TABLE 4. Epidemic outcomes between August 15 and December 31 in a city of 500,000 in which 0.7% of the population live in long-

term care (3500) with and without the introduction of 20,000 university students on September 1. Scenarios vary student participation in 

physical distancing immediately upon arrival to the community. In all scenarios, the general population begins with 40 COVID-19 infections on 

August 15, 40% of the general population are participating in high intensity physical distancing (75% reduction in daily contacts, from an average 

of 12.6 contacts to 3.8 contacts per day), 86% of contacts among high-intensity physical distancers and 38% of contacts among low -intensity 

physical distancers are protected through mask wearing behaviour, and when COVID-19 begins to result in adverse outcomes in the community 

through critical care hospitalizations, the fraction of the general population participating in high-intensity physical distancing and mask wearing 

behaviours increases to a maximum participation of 80%.  Dates are presented in weeks from September 1 and four months (to the end of the 

semester) is 17 weeks. 

  20,000 students arrive on September 1   

 
Without 
students 

Immediate 
physical 

distancing  
(base case) 

Students 
increase (2.0x) 
interactions for 

1 week 

Students delay 
physical 

distancing by 2 
weeks 

Students 
increase (1.5x) 
interactions for 

2 weeks 

Students 
increase (2.0x) 
interactions for 

2 weeks 

Students delay 
physical 

distancing by 3 
weeks 

Students 
increase (1.5x) 
interactions for 

3 weeks 

Scenario features         
Number of infections in student 
population upon arrival on September 1 

 0 0 0 0 0 0 0 

Reduction in overall student physical 
contacts of 24% (18.0 contacts) begins 

 Immediately After 1 week After 2 weeks After 2 weeks After 2 weeks After 3 weeks After 3 weeks 

Burst of student-student contacts upon 
arrival 

 None 
2.0x for  
1 week 

None 
1.5x for  
2 weeks 

2.0x for  
2 weeks 

None 
1.5x for  
2 weeks 

         

Cumulative infections          
General population 3,395 6,231 6,949 7,317 7,998 8,760 8,342 10,381 
Long-term care 120 153 163 167 177 187 179 202 
University students 0 1,166 1,386 1,545 1,843 2,221 2,050 3,138 
Total 3,515 7,551 8,497 9,029 10,018 11,169 10,571 13,721 

Daily infections         
Peak number of infections 94 171 176 180 194 216 206 275 
Date of peak infections (in weeks) 18.3 15.4 14.4 13.6 12.4 11.1 11.9 9.6 

Cumulative deaths          
General population 24 39 49 58 73 90 80 117 
Long-term care 13 16 19 21 25 28 26 33 
University students 0 0.3 0.4 0.5 0.8 1.1 0.9 1.8 
Total 37 56 68 79 98 120 107 152 

Hospital occupancy         
Peak number 37 57 58 59 63 70 67 86 
Date of peak (in weeks) 21.3 18.6 17.6 16.7 15.6 14.3 15.0 12.7 
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Critical care (MV + RRT)         
Peak number 25 38 39 40 43 47 45 58 
Date of peak (in weeks) 21.7 19.1 18.0 17.1 16.0 14.7 15.4 13.3 

Time to responsive behaviour triggers 
(in weeks)         

> 10 COVID-19 deaths in past 10 days 18.6 15.7 14.7 13.9 12.7 11.4 12.1 9.9 
> 15 COVID-19 patients in critical care 18.0 14.3 13.1 12.3 11.0 9.7 10.4 8.1 
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APPENDIX TABLE 5. Epidemic outcomes between August 15 and December 31 in a city of 500,000 in which 0.7% of the population live in long-

term care (3500) with and without the introduction of 20,000 university students on September 1. Scenarios differ in the frequency with 

which students undergo routine testing for COVID-19.  In the top third of the table, we assume students have an average 40% reduction in 

contacts compared to normal student physical interaction behaviour (average of 23.7 contacts reduced to 14.1 contacts per day) immediately 

upon arrival with no short-term increase in physical contacts upon arrival to the community. In the middle of the table, we assume that 

students double their contacts with other students for two weeks, and then implement a 40% reduction in their contacts. In the bottom 

section of the table, we assume that students double their contacts with other students for two weeks, and then implement a 40% reduction 

in their contacts and the general population is maintaining 50% participation in high-intensity physical distancing (compared to 40% in the 

base case). Dates are presented in weeks from September 1 and four months (to the end of the semester) is 17 weeks. 

   20,000 students arrive on September 1  

 
Without 
students 

Symptomatic 
surveillance & 
contact tracing 

Test once 3-
weeks after 

students 
arrive 

Test every 28 
days 

Test every 14 
days  

Test every 7 
days 

Test every 5 
days 

Test every 3 
days 

 Students immediately implement a 40% reduction in contacts compared to normal university student contact behaviour 

Cumulative infections          
General population 3,395 6,231 6,154 5,913 5,635 5,297 5,094 4,790 
Long-term care 120 153 152 151 148 146 144 141 
University students 0 1,166 1,143 1,006 879 716 628 505 
Total 3,515 7,551 7,449 7,069 6,663 6,159 5,866 5,436 

Daily infections         
Peak number of infections 94 171 169 159 149 139 133 125 
Date of peak infections (in weeks) 18.3 15.4 15.4 15.6 15.7 16.0 16.3 16.6 

Cumulative deaths          
General population 24 39 38 37 36 34 33 31 
Long-term care 13 16 16 16 16 15 15 15 
University students - 0.3 0.3 0.2 0.2 0.2 0.2 0.1 
Total 37 56 55 53 52 49 48 46 

Hospital occupancy         
Peak number 37 57 57 54 52 49 49 46 
Date of peak (in weeks) 21.3 18.6 18.7 18.7 19.0 19.3 19.4 19.6 

Critical care (MV + RRT)         
Peak number 25 38 38 36 34 32 31 30 
Date of peak (in weeks) 21.7 19.1 19.1 19.3 19.3 19.6 19.7 20.0 

Time to responsive behaviour triggers 
(in weeks) 

        

> 10 COVID-19 deaths in past 10 days 18.6 15.7 15.7 15.9 16.0 16.3 16.6 16.9 
> 15 COVID-19 patients in critical care 18.0 14.3 14.4 14.6 14.7 15.1 15.3 15.7 
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Students double their contacts with other students for two weeks, then implement a 40% reduction in contacts  

compared to normal university student contact behaviour 

Cumulative infections          
General population 3,395 8,760 8,570 8,253 7,745 7,156 6,918 6,428 
Long-term care 120 187 185 183 178 174 174 170 
University students 0 2,221 2,123 1,938 1,695 1,371 1,204 943 
Total 3,515 11,169 10,878 10,375 9,618 8,700 8,296 7,541 

Daily infections         
Peak number of infections 94 216 210 197 179 158 148 136 
Date of peak infections (in weeks) 18.3 11.1 11.4 11.4 11.7 12.1 12.6 37.7 

Cumulative deaths          
General population 24 90 86 84 78 70 65 57 
Long-term care 13 28 28 28 26 25 24 23 
University students 0 1.1 1.0 1.0 0.8 0.7 0.6 0.4 
Total 37 120 115 112 105 96 91 81 

Hospital occupancy         
Peak number 37 70 68 65 60 56 54 52 
Date of peak (in weeks) 21.3 14.3 14.6 14.6 14.7 15.1 15.4 16.1 

Critical care (MV + RRT)         
Peak number 25 47 46 44 40 37 35 33 
Date of peak (in weeks) 21.7 14.7 15.0 15.0 15.1 15.6 15.9 16.4 

Time to responsive behaviour triggers 
(in weeks) 

        

> 10 COVID-19 deaths in past 10 days 18.6 11.4 11.7 11.7 12.0 12.4 12.9 13.6 
> 15 COVID-19 patients in critical care 18.0 9.7 10.0 10.0 10.1 10.7 11.1 11.9 

         

 
Students double their contacts with other students for two weeks, then implement a 40% reduction in contacts compared to normal university student 

contact behaviour; the general population has a high level of participation in high-intensity physical distancing (50%) 

Cumulative infections          
General population 602 5,464 5,243 4,885 4,362 3,345 2,782 2,061 
Long-term care 47 148 145 143 138 120 108 92 
University students 0 2,406 2,287 2,001 1,658 1,124 862 547 
Total 649 8,018 7,675 7,029 6,157 4,589 3,751 2,700 

Daily infections         
Peak number of infections 34 150 149 136 113 94 85 66 

Date of peak infections (in weeks) 
>22 

weeks 
14.9 15.4 15.7 

16.6 18.3 19.6 21.9 

Cumulative deaths          
General population 7 41 38 36 31 25 22 17 
Long-term care 6 17 16 15 14 13 12 10 
University students 0 0.9 0.8 0.7 0.6 0.4 0.3 0.2 
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Total 13 59 54 52 46 38 34 28 
Hospital occupancy         

Peak number 16 56 56 51 42 33 30 25 

Date of peak (in weeks) 
>22 

weeks 
17.4 18.0 18.3 

19.1 
20.9 

>22 weeks >22 weeks 

Critical care (MV + RRT)         
Peak number 9 36 36 33 26 21 19 16 

Date of peak (in weeks) 
>22 

weeks 
17.7 18.3 18.4 19.3 

21.3 22.7 25.3 

Time to responsive behaviour triggers 
(in weeks) 

        

> 10 COVID-19 deaths in past 10 days 
Does not 

occur 
15.1 15.7 16.0 16.9 18.6 19.9 22.1 

> 15 COVID-19 patients in critical care 
Does not 

occur 
13.6 14.1 14.4 15.6 17.9 20.0 

Does not 
occur 
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APPENDIX TABLE 6. Epidemic outcomes between August 15 and December 31 in a city of 500,000 in which 0.7% of the population live in long-

term care (3500) with the introduction of 20,000 university students on September 1. Scenarios vary on student initial participation in 

physical distancing (PD) and the proportion of student contacts protected by mask wearing. Dates are presented in weeks from September 1 

and four months (to the end of the semester) is 17 weeks. 

   20,000 students arrive on September 1  

 
Without 
students 

Base case 
student 

behaviours 

↓↓ initial 
participation 

in PD 

↓ initial 
participation 

in PD 

↑ initial 
participation 

in PD 

↑↑ initial 
participation 

in PD 

↓ mask 
wearing 

↑ mask 
wearing 

↑ initial 
participation 

in PD & ↑ 
mask wearing 

Scenario features          
Number of infections in student 
population upon arrival on September 1 

 0 0 0 0 0 0 0 0 

Immediate level of contact reduction 
among students 

 
40% 

(from 23.7 → 
14.1 contacts) 

30% 
(23.7 → 16.6) 

35% 
(23.7 → 15.4) 

45% 
(23.7 → 13.0) 

50% 
(23.7 → 11.9) 

40% 40% 
50% 

(23.7 → 11.9) 

Contacts protected by mask wearing  57% 57% 57% 57% 57% 45% 65% 65% 
          

Cumulative infections           
General population 3,395 6,231 8,198 7,141 5,630 5,130 7,641 5,583 4,773 
Long-term care 120 153 164 158 149 144 161 148 140 
University students 0 1,166 2,694 1,811 797 537 2,036 816 408 
Total 3,515 7,551 11,057 9,110 6,576 5,811 9,838 6,547 5,322 

Daily infections          
Peak number of infections 94 171 250 206 150 134 223 148 123 
Date of peak infections (in weeks) 18.3 15.4 14.7 15.0 15.9 16.3 14.7 15.9 16.6 

Cumulative deaths           
General population 24 39 53 45 35 33 48 35 31 
Long-term care 12.9 16.1 18.2 17.1 15.5 14.9 17.6 15.4 14.5 
University students 0 0.3 0.7 0.4 0.2 0.1 0.5 0.2 0.1 
Total 37 56 71 63 51 48 67 51 45 

Hospital occupancy          
Peak number 37 57 76 66 52 48 70 53 45 
Date of peak (in weeks) 21.3 18.6 17.9 18.3 19.0 19.4 18.0 19.0 19.6 

Critical care (MV + RRT)          
Peak number 25 38 51 44 35 32 47 34 30 
Date of peak 21.7 19.1 18.3 18.7 19.4 19.9 18.6 19.4 20.0 

Time to responsive behaviour triggers 
(in weeks)          

> 10 COVID-19 deaths in past 10 days 18.6 15.7 14.6 15.1 16.1 16.6 14.9 16.1 16.9 
> 15 COVID-19 patients in critical care 18.0 14.3 13.1 13.7 14.9 15.4 13.4 14.9 15.7 
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TABLE 7.  Economic value of COVID-19 infections averted through screening strategies of 5-day testing and one-time testing of students 

compared to a policy o f no routine asymptomatic testing (symptom-based surveillance and contact tracing only). Testing strategy is cost-

effective if tests can be provided for less than the economic value per test. Scenarios vary the proportion of infections in the student 

population that are asymptomatic and timing and level of students contact reductions. We calculate the number of hospitalizations averted, 

critical care admissions averted, and COVID-19 deaths averted to be 3.75%, 1.7%, and 1.32% of general population infections averted, 

respectively, which includes hospitalizations and deaths which may occur after December 31 to all individuals infected prior to December 31. We 

calculated the economic costs of COVID-19 infections using an average direct cost of $10,411 per ward hospitalization, $74,157 per ICU 

hospitalization, and a cost of lost productivity of $2,090 per infection. We calculated the economic value of deaths averted using the observed 

age distribution of COVID-19 deaths at a value of $50,000 and $100,000 per life-year.  

 

Scenario 

Economic value (in $) 
Economic value (in $) of 

COVID-19 deaths averted 
Total economic value ($) Economic value ($) per test 

Infections 
averted 

Hospital 
adm’n 

averted  

Critical care 
adm’n 

averted 

($50,000/   
LY-gained) 

($100,000/ 
LY-gained) 

($50,000/  
LY-gained) 

($100,000/ 
LY-gained) 

($50,000/  
LY-gained) 

($100,000/ 
LY-gained) 

 5-day testing compared to no routine testing 

31% asymptomatic in students          

Base case physical distancing (40% 
reduction in contacts immediately) 

3,521,800 444,000 1,433,900 9,159,500 18,319,000 14,559,200 23,718,700 36 59 

Two weeks of 2.0x activity among students, 
followed by 40% reduction in contacts 

6,006,100 719,100 2,322,100 14,833,400 29,666,800 23,880,700 38,714,100 60 97 

Low level of physical distancing (24% 
reduction in contacts immediately) 

11,394,700 1,206,000 3,894,400 24,877,000 49,754,000 41,372,100 66,249,100 103 166 

Two weeks of 2.0x activity among students, 
followed by 40% reduction in contacts; 50% 
of general population engaged in high-
intensity physical distancing 

8,918,800 1,047,200 3,381,700 21,602,200 43,204,300 34,949,900 56,552,000 87 141 

50% asymptomatic in students          

Base case physical distancing (40% 
reduction in contacts immediately) 

3,695,900 463,800 1,497,700 9,567,100 19,134,300 15,224,500 24,791,700 38 62 

Two weeks of 2.0x activity among students, 
followed by 40% reduction in contacts 

5,829,400 679,400 2,193,800 14,013,900 28,027,900 22,716,500 36,730,500 57 92 

80% asymptomatic in students          

Base case physical distancing (40% 
reduction in contacts immediately) 

4,042,800 505,400 1,632,100 10,425,500 20,851,000 16,605,800 27,031,300 42 68 

Two weeks of 2.0x activity among students, 
followed by 40% reduction in contacts 

6,769,500 803,400 2,594,200 16,571,200 33,142,400 26,738,300 43,309,500 67 108 
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 One-time testing three weeks after student arrival compared to no routine testing  

31% asymptomatic in students          

Base case physical distancing (40% 
reduction in contacts immediately) 

212,700 30,200 97,400 622,300 1,244,600 962,600 1,584,900 48 79 

Two weeks of 2.0x activity among students, 
followed by 40% reduction in contacts 

606,900 74,400 240,100 1,533,700 3,067,400 2,455,100 3,988,800 123 199 

Low level of physical distancing (24% 
reduction in contacts immediately) 

387,800 45,400 146,600 936,600 1,873,100 1,516,400 2,452,900 76 123 

Two weeks of 2.0x activity among students, 
followed by 40% reduction in contacts; 50% 
of general population engaged in high-
intensity physical distancing 

716,200 86,300 278,700 1,780,400 3,560,700 2,861,600 4,641,900 143 232 

50% asymptomatic in students          

Base case physical distancing (40% 
reduction in contacts immediately) 

106,100 13,700 44,100 281,900 563,900 445,800 727,800 22 36 

Two weeks of 2.0x activity among students, 
followed by 40% reduction in contacts 

688,300 85,400 275,700 1,761,200 3,522,300 2,810,600 4,571,700 141 229 

80% asymptomatic in students          

Base case physical distancing (40% 
reduction in contacts immediately) 

145,200 19,200 62,100 396,600 793,200 623,100 1,019,700 31 51 

Two weeks of 2.0x activity among students, 
followed by 40% reduction in contacts 

876,700 111,900 361,300 2,308,100 4,616,200 3,658,000 5,966,100 183 298 
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