

Supporting Information

Motorized Macrocycle: A Photo-responsive Host with Switchable and Stereoselective Guest Recognition

Yue Liu⁺, Qi Zhang⁺, Stefano Crespi, Shaoyu Chen, Xiu-Kang Zhang, Tian-Yi Xu, Chang-Shun Ma, Shang-Wu Zhou, Zhao-Tao Shi, He Tian, Ben L. Feringa,* and Da-Hui Qu*

anie_202104285_sm_miscellaneous_information.pdf

Table of Contents

1. General Methods	1
2. Synthesis Procedure	3
2.1 Synthesis of stable- <i>trans</i> -2 and stable- <i>cis</i> -2	4
2.2 Synthesis of stable- <i>trans</i> -3	4
2.3 Synthesis of stable- <i>cis</i> - 3	5
2.4 Synthesis of Reference Compound stable- <i>cis</i> - R ₁	6
2.5 Synthesis of Reference Compound stable-trans-R ₁	6
2.6 Synthesis of Reference Compound stable-cis-R ₂	7
2.7 Synthesis of Reference Compound stable-cis-R ₃	7
2.8 Synthesis of Reference Compound stable-trans-R ₃	8
2.9 Synthesis of Chiral guests G3 (<i>R</i> / <i>S</i>)	8
3. Photochemical Isomerization and THI Steps of Motorized Macrocycles	10
3.1 UV-vis, NMR and Kinetic Studies of Macrocycle 3	10
3.2 UV-vis and NMR Studies of the Reference Compounds	12
4. Single Crystal X-ray Analysis of <i>cis</i> - R ₂	
5. NMR Studies on Host-Guest Combinations	20
6. NMR and UV-vis Studies on Guest Release/Capture Procedures	
7. Chirality Separation for Enantiomers <i>cis</i> -3 and Enantiomers <i>trans</i> -3	
7.1 Chiral HPLC of racemic compound <i>cis-</i> 3	
7.2 Chiral HPLC of (<i>M</i> , <i>M</i>)-(<i>S</i> , <i>S</i>)- <i>cis</i> - 3	
7.3 Chiral HPLC of (<i>P</i> , <i>P</i>)-(<i>R</i> , <i>R</i>)- <i>cis</i> - 3	
7.4 CD Spectra of (<i>M</i> , <i>M</i>)-(<i>S</i> , <i>S</i>)- <i>cis</i> - 3 and (<i>P</i> , <i>P</i>)-(<i>R</i> , <i>R</i>)- <i>cis</i> - 3	
7.5 Chiral HPLC of racemic compound <i>trans</i> -3	
7.6 Chiral HPLC of (<i>M</i> , <i>M</i>)-(<i>S</i> , <i>S</i>)- <i>trans</i> - 3	
7.7 Chiral HPLC of (P, P)-(R, R)-trans- 3	
7.8 CD Spectra of (<i>M</i> , <i>M</i>)-(<i>S</i> , <i>S</i>)- <i>trans</i> - 3 and (<i>P</i> , <i>P</i>)-(<i>R</i> , <i>R</i>)- <i>trans</i> - 3	
8. Chiral Recognition, Binding Studies	
9. Characterization	
10. References	60

1. General Methods

Materials: Chemicals were received from Acros, Aldrich, Adams-beta, 3A chemicals, Energy Chemicals, Merck or TCI. All solvents were reagent grade, which were dried and distilled prior to use according to standard procedures. Flash column chromatography was performed using silica gel (Greagent, 200-300 mesh) to purified crude products. Compounds stable-*cis/trans*-1^[1], LY1^[2], LY2^[3], LY3^[4], LY4^[5], G1^[6] and G2^[6] were synthesized and purified according to the references 1-6, respectively.

Instruments: The molecular structures were confirmed via ¹H NMR, ¹³C NMR spectroscopy and high-resolution ESI mass spectrometry. ¹H NMR and ¹³C NMR spectra were measured on a Brüker AV-400 and AV-600 MHz Spectrometers. The electronic spray ionization (ESI) mass spectra were obtained on a LCT Premier XE mass spectrometer and the electron impact (EI) mass spectra were measured on a Waters mass spectrometer. The UV-vis absorption spectra were obtained on a Varian Cary 100 spectrometer (1 cm, quartz cells). CD spectra were measured in a 1 cm cuvette on Jasco V-630 spectrophotometer. The UV light source was a Shanghai Gu Cun Photoelectric ZF-7D Model with a wavelength of 310 nm.

X-ray Single Crystal Analysis: Single crystals of the reference compound *cis*-**R**₂ were grown by solvent evaporation^[7]. *cis*-**R**₂ (6 mg) was dissolved in 3 mL acetonitrile solution in a small container. After about two weeks, white color single crystals were obtained. Suitable single crystals of *cis*-**R**₂ were selected and mounted on a Bruker D8 Venture diffractometer with a steady T = 170 K during data collection. The X-ray diffraction intensity data were collected at GaK α radiation (λ = 1.34139 Å). Structures were interfaced through the OLEX2^[8] software. The CIF file for the crystallographic data has been deposited in the Cambridge Crystallographic Data Centre, and the CCDC number is 2063381 (*cis*-**R**₂).

DFT Calculation: Computational analysis was employed to optimize the structures of the ground state minima of macrocycle-3 (i.e. stable-*cis*-3, unstable-*trans*-3, stable-*trans*-3, unstable-*cis*-3 in their respective (R, R) configurations), the guest G3, and the host-guest complexes ((P, P)-(R, R)-stable-*cis*-3 \supset G3(R) and ((P, P)-(R, R)-stable-*cis*-3 \supset G3(S)). Due to the dynamic nature of the molecules involved, all the structures were pre-screened using the CREST driver in the xTB software^[9], using the GFN force field. In this way, the most stable conformers for each structure were picked via the default series of metadynamics and dynamics runs implemented in the driver. All the geometries were consequently optimized at the GFN2-xTB level with xTB, to afford a better qualitative ordering of the conformers. After sorting, the most stable ten conformers of each species were optimized at the PW6B95D3/def2-

SVP level, including the implicit contribution of dichloromethane via the SMD implicit solvent method. All DFT optimizations were conducted with the Gaussian 16, Rev B.01 software package^[10]. All minima were confirmed to be such due to the absence of imaginary frequencies. In certain cases, some of the DFT calculations did not converge due to oscillations in the energy, a behavior found in ca. 50% of the conformers of the host guest-complexes (5/10 of (*P*, *P*)-(*R*, *R*)-stable-*cis*-**3** \supset **G3**(*R*) and 6/10 of ((*P*, *P*)-(*R*, *R*)-stable-*cis*-**3** \supset **G3**(*S*)). We could however optimize the most stable isomers found from the preliminary xTB sorting, furnishing a semi-quantitative analysis of the energies of the structures involved in the study. All the properties reported in Table S1 and S9 are Boltzmann averaged. The computational data showed a slight preference of 1.5 kcal·mol⁻¹ for the ((*P*, *P*)-(*R*, *R*)-stable-*cis*-**3** \supset **G3**(*S*) complex over ((*P*, *P*)-(*R*, *R*)-stable-*cis*-**3** \supset **G3**(*R*). All xyz coordinates for all the conformers considered are provided as separate additional file.

Binding Constants: The binding constants were calculated using the method reported on website http://app.supramolecular.org/bindfit/.

Heating of the NMR samples (60 °C): Pressure resistant Schlenk Vessels were used, and the samples were sealed and heated before transferring into a NMR tube. The heating processes were conducted in a closed system, so no solvent lost was observed.

2. Synthesis Procedure

2.1 Synthesis of stable-trans-2 and stable-cis-2

To a solution of a mixture stable-*trans*-1 and stable-*cis*-1 (774 mg, 1.34 mmol) (see ref. 1 for synthetic procedure) in 100 ml THF, was added 1.40 g TBAF. The mixture was stirred at room temperature for 30 min and subsequently poured into 200 mL water and extracted with ethyl acetate (EA, 3×50 mL). The organic layer was dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by silica gel column chromatography using PE/EA (5/1) as the eluent affording 178 mg (76% based on stable-*trans*-1) of stable-*trans*-2 as a creamy-white solid and 100 mg (43% based on stable-*cis*-1) of stable-*cis*-2 as yellow solid.

stable-*trans*-**2**: ¹H NMR (400 MHz, 298 K, DMSO-*d*₆) δ (ppm): 8.96 (s, 2H), 6.50 (s, 2H), 2.74 (m 2H), 2.42 (dd, J = 16.0, 4.0 Hz, 2H), 2.16 (s, 6H), 2.10 (d, J = 12.0 Hz, 2H), 2.05 (s, 6H), 1.01 (d, J = 4.0 Hz, 6H). ¹³C NMR (100 MHz, 298 K, DMSO-*d*₆) δ (ppm): 154.2, 141.6, 140.9, 131.6, 130.8, 117.4, 114.2, 41.5, 37.7, 19.3, 18.1, 16.1. HRMS (EI): m/z (100%) calcd for C₂₄H₂₈O₂^{+•} [M]^{+•}, 348.2089; found: 348.2091.

stable-*cis*-**2**: ¹H NMR (400 MHz, 298 K, CD₂Cl₂) δ (ppm): 6.52 (s, 2H), 3.32 (m, 2H), 3.02 (dd, J = 16.0, 4.0 Hz, 4H), 2.38 (d, J = 16.0 Hz, 2H), 2.20 (s, 6H), 1.39 (s, 6H), 1.06 (d, J = 8.0 Hz, 6H). ¹³C NMR (100 MHz, 298 K, CD₂Cl₂) δ (ppm): 152.9, 142.6, 141.3, 136.6, 131.8, 119.3, 115.0, 42.3, 38.4, 20.0, 18.6, 14.0. HRMS (EI): m/z (100%) calcd for C₂₄H₂₈O₂^{+•} [M]^{+•}: 348.2089; found: 348.2090

2.2 Synthesis of stable-trans-3

A mixuture of stable-*trans*-**3** (350 mg, 1.0 mmol), **LY1** (682.7 mg, 1.0 mmol), Cs₂CO₃ (2.0 g, 6.0 mmol) in 400 mL acetonitrile was heated at 80°C under argon atmosphere for 14 h. After cooling to room temperature, the solvent was removed under vacuum. The residue was poured into 50 mL water followed by extraction with ethyl acetate (EA, 3×30 mL). The combined organic phase was dried and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using DCM/MeOH (400/1) as eluent affording 82 mg (12%) stable-*trans*-**3** as a white solid. ¹H NMR (400 MHz, 298 K, (CD₃)₂CO) δ (ppm): 6.66 (s, 2H), 4.22-4.16 (m, 4H), 3.83-3.78 (m, 4H), 3.71-3.64 (m, 4H), 3.59-3.48 (m, 20H), 2.88 (m, 2H), 2.57 (dd, *J* = 14.0, 5.6 Hz, 2H), 2.35 (s, 6H), 2.23 (d, *J* = 14.0 Hz, 2H), 2.17 (s, 6H), 1.11 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, 298 K, CD₂Cl₂) δ (ppm): 156.6, 142.7, 142.0, 134.9, 131.8, 121.9, 112.6, 71.3, 70.9, 70.9, 70.8, 70.8, 70.7, 70.1, 69.4, 43.2, 38.9, 19.3, 18.8, 16.7. HRMS (ESI): *m/z* calcd for C₄₀H₅₈O₉Na⁺ [M+Na]⁺: 705.3973; found: 705.3969.

2.3 Synthesis of stable-cis-3

A mixture of stable-*cis*-**2** (227 mg, 0.65 mmol), **LY1** (443 mg, 0.65 mmol), Cs₂CO₃ (1.3 g, 4.0 mmol) in 300 mL acetonitrile was heated at 80°C under argon atmosphere for 14 h. After cooling to room temperature, the solvent was removed under vacuum. The residue was poured into 100 mL water and extracted with ethyl acetate (EA, 2 × 30 mL). The combined organic phase was dried and the solvent removed under vacuum. The residue was purified by silica gel column chromatography using DCM/MeOH (30/1) as eluent affording 242 mg (54%) stable-*cis*-**3** as a clear oil. ¹H NMR (400 MHz, 298 K, CDCl₃) δ (ppm): 6.47 (s, 2H), 4.10 (m, 2H), 3.98-3.90 (m, 2H), 3.77 (t, *J* = 4.8 Hz, 4H), 3.69-3.64 (m, 4H), 3.58 (m, 20H), 3.25 (m, 2H), 2.96 (dd, *J* = 14.4, 6.0 Hz, 2H), 2.30 (d, *J* = 14.4 Hz, 2H), 2.17 (s, 6H), 1.30 (4, 6H), 0.99 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, 298 K, CDCl₃) δ (ppm): 155.6, 142.2, 140.9, 136.4, 130.5, 122.5, 112.0, 70.98, 71.0, 70.7, 70.0, 68.5, 68.4, 41.8, 38.0, 20.5, 18.9, 14.4. HRMS (ESI): *m/z* calcd for C₄₀H₅₈O₉Na⁺ [M+Na]⁺: 705.3973; found: 705.3978.

2.4 Synthesis of Reference Compound stable-cis-R1

A mixture of stable-*cis*-**2** (50 mg, 0.14 mmol), **LY4** (33 mg, 0.14 mmol), K₂CO₃ (48.3 mg, 0.35 mmol) in 60 mL acetonitrile was heated at 80°C under argon atmosphere for 24 h. After cooling to room temperature, the solvent was removed under vacuum. The residue was poured into 25 mL water and extracted with ethyl acetate (EA, 3×20 mL). The combined organic phase was dried with Na₂SO₄ and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using PE/EA (10/1) as eluent affording 45 mg (68%) stable-*cis*-**R**₁ as a white solid. ¹H NMR (400 MHz, 298 K, CDCl₃) δ (ppm): 6.54 (s, 2H), 4.17-4.10 (m, 2H), 4.01 (m, 2H), 3.72 (t, J = 5.2 Hz, 4H), 3.43 (s, 6H), 3.32 (m, 2H), 3.03 (dd, J = 14.4, 6.4 Hz, 2H), 2.37 (d, J = 14.4 Hz, 2H), 2.24 (s, 6H), 1.40 (s, 6H), 1.06 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, 298 K, CDCl₃) δ (ppm): 154.6, 141.2, 139.9, 135.5, 129.4, 121.7, 111.3, 70.4, 67.5, 58.2, 40.9, 37.1, 19.4, 17.8, 13.2. HRMS (ESI): *m/z* calcd for C₃₀H₄₀O₄Na⁺ [M+Na]⁺: 487.2819; found: 487.2808.

2.5 Synthesis of Reference Compound stable-trans-R1

A mixture of stable-*cis*-**2** (50 mg, 0.14 mmol), **LY4** (33 mg, 0.14 mmol), K₂CO₃ (48.3 mg, 0.35 mmol) in 60 mL acetonitrile was heated at 80°C under argon atmosphere for 24 h. After cooling to room temperature, the solvent was removed under vacuum. The residue was poured into 25 mL water and extracted with ethyl acetate (EA, 3×20 mL). The combined organic phase was dried with Na₂SO₄ and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using PE/EA (10/1) as eluent affording 47 mg (70%) stable-*trans*-**R**₁ as a white solid. ¹H NMR (400 MHz, 298 K, CDCl₃) δ (ppm): 6.55 (s, 2H), 4.20-4.15 (m, 2H), 4.10 (m, 2H), 3.81 (t, J = 5.2 Hz, 4H), 3.50 (s, 6H), 2.88 (m, 2H), 2.59 (dd, J = 14.0, 5.6 Hz, 2H), 2.32 (s, 6H), 2.18 (s, 6H), 2.15 (d, J = 14.0 Hz, 2H), 1.08 (d, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, 298 K, CDCl₃) δ (ppm): 155.1, 141.5, 140.6, 133.4, 130.2, 119.7, 110.3, 70.5, 67.1, 58.3, 41.1, 37.3, 18.3, 17.7, 15.2. HRMS (ESI): *m/z* calcd for C₃₀H₄₀O₄Na⁺ [M+Na]⁺: 487.2819; found: 487.2803.

2.6 Synthesis of Reference Compound stable-cis-R2

A mixture of stable-*cis*-**2** (80 mg, 0.23 mmol), **LY3** (105 mg, 0.23 mmol), Cs₂CO₃ (225 mg, 0.69 mmol) in 100 mL acetonitrile was heated at 80°C under argon atmosphere for 24 h. After cooling to room temperature, the solvent was removed under vacuum. The residue was poured into 25 mL water and extracted with ethyl acetate (EA, 3×25 mL). The combined organic phase was dried with Na₂SO₄ and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using PE/EA (3/1) as eluent affording 30 mg (28%) stable-*cis*-**R**₂ as a white solid. ¹H NMR (400 MHz, 298 K, CDCl₃) δ (ppm): 6.52 (s, 2H), 4.23-4.11 (m, 4H), 3.83-3.75 (m, 4H), 3.73-3.67 (m, 4H), 3.33 (m, 2H), 3.05 (dd, J = 14.8, 6.4 Hz, 2H), 2.39 (d, J = 14.8 Hz, 2H), 2.24 (s, 6H), 1.39 (s, 6H), 1.10 (d, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, 298 K, CDCl₃) δ (ppm): 156.0, 142.0, 140.7, 136.2, 130.4, 123.0, 112.8, 112.8, 70.5, 69.6, 69.2, 41.3, 38.1, 20.5, 18.7, 18.7, 14.7. HRMS (ESI): *m/z* calcd for C₃₀H₃₈O₄Na⁺ [M+Na]⁺: 485.2668; found: 485.2667.

2.7 Synthesis of Reference Compound stable-cis-R₃

A mixture of stable-*cis*-**2** (50 mg, 0.14 mmol), **LY2** (85 mg, 0.14 mmol), Cs₂CO₃ (140 mg, 0.43 mmol) in 60 mL acetonitrile was heated at 80°C under argon atmosphere for 24 h. After cooling to room temperature, the solvent was removed under vacuum. The residue was poured into 25 mL water and extracted with ethyl acetate (EA, 3×25 mL). The combined organic phase was dried with Na₂SO₄ and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using CH₂Cl₂/CH₃OH (50/1) as eluent affording 45 mg (54%) stable-*cis*-**R**₃ as a clear oil. ¹H NMR(400 MHz, 298 K, CDCl₃) δ (ppm): 6.55 (s, 2H), 4.18 (m, 2H), 4.04-3.96 (m, 2H), 3.91-3.82 (m, 4H), 3.79-3.65 (m, 16H), 3.32 (m, 2H), 3.03 (dd, *J* = 14.8, 6.4 Hz, 2H), 2.37 (d, *J* = 14.4 Hz, 2H), 2.24 (s, 6H), 1.39 (s, 6H), 1.06 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃, 298 K) δ (ppm):154.6, 141.2, 139.9, 135.5,

129.5, 121.5, 111.2, 70.1, 70.0, 69.9, 69.7, 69.1, 68.0, 40.8, 37.0, 19.5, 17.8, 13.4. HRMS (ESI): *m/z* calcd for C₃₆H₅₀O₇Na⁺ [M+Na]⁺: 617.3439; found: 617.3436.

2.8 Synthesis of Reference Compound stable-trans-R₃

A mixture of stable-*trans*-**2** (191 mg, 0.55 mmol), **LY2** (324 mg, 0.55 mmol), Cs₂CO₃ (536 mg, 1.65 mmol) in 260 mL acetonitrile was heated at 80°C under argon atmosphere for 36 h. After cooling to room temperature, the solvent was removed under vacuum. The residue was poured into 25 mL water and extracted with ethyl acetate (EA, 3×25 mL). The combined organic phase was dried with Na₂SO₄ and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using CH₂Cl₂/CH₃OH (40/1) as eluent affording 49 mg (15%) stable-*trans*-**R**₃ as a clear oil. ¹H NMR (400 MHz, 298 K, CDCl₃) δ (ppm): 6.53 (s, 2H), 4.18-4.08 (m, 4H), 3.92-3.87 (m, 4H), 3.80-3.76 (m, 4H), 3.68 (m, 12H), 2.87 (m, 2H), 2.57 (dd, *J* = 14.4, 6.0 Hz, 2H), 2.29 (s, 6H), 2.18 (s, 1H), 2.15 (s, 6H), 2.11 (s, 1H), 1.06 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, 298 K, CDCl₃) δ (ppm): 156.1, 142.4, 141.6, 134.3, 131.2, 120.6, 111.2, 71.0, 70.8, 70.7, 70.1, 68.4, 42.2, 38.4, 19.2, 18.7, 16.3. HRMS (ESI): *m/z* calcd for C₃₆H₅₀O₇Na⁺ [M+Na]⁺: 617.3439; found: 617.3443.

2.9 Synthesis of Chiral guests G3(R/S)

General Method: (R)-(+)-N-benzyl-1-phenylethylamine/(S)-(-)-N-benzyl-1-phenylethylamine (1 g, 4.7 mmol) was added to a 25 mL flask, and subsequently hexafluorophosphoric acid (0.83 g, 0.5 mL, 5.7 mmol) was added dropwise at 0-5°C. After 5 min, 5 mL of deionized water was added to the mixture whereupon a white solid gradually precipitated. The solid was filtered and washed with a small amount of deionized water and the obtained white solid was dried under vacuum overnight.

G3(*R*) white solid: 1.94 g, 97%. ¹H NMR (400 MHz, 298 K, CDCl₃) δ (ppm): 8.52 (s, 2H), 7.42 (s, 5H), 7.32 (s, 5H), 4.13 (s, 1H), 3.98 (d, *J* = 12.4 Hz, 1H), 3.81-3.72 (m, 1H), 1.63 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, 298 K, CDCl₃) δ (ppm): 135.5, 130.0, 129.9, 129.6, 129.5, 129.1, 127.6, 57.9, 49.4,
20.2. HRMS (ESI): *m/z* calcd for C₁₅H₁₈N⁻ [M-PF₆⁻]⁺: 212.1434; found: 212.1437.

G3(*S*) white solid: 1.94 g, 97% ¹H NMR (400 MHz, 298 K, CDCl₃) δ (ppm): 8.53 (s, 2H), 7.42 (s, 5H), 7.32 (s, 5H), 4.13 (s, 1H), 3.98 (d, *J* = 12.4 Hz, 1H), 3.76 (d, *J* = 12.0 Hz, 1H), 1.63 (d, *J* = 5.6 Hz, 3H). ¹³C NMR (100 MHz, 298 K, CDCl₃) δ (ppm): 135.5, 130.0, 129.9, 129.6, 129.5, 129.1, 127.6, 57.9, 49.4, 20.2. HRMS (ESI): *m/z* calcd for C₁₅H₁₈N⁻ [M-PF₆⁻]⁺: 212.1434; found: 212.1430.

3. Photochemical Isomerization and THI Steps of Motorized Macrocycles.

3.1 UV-vis, NMR and Kinetic Studies of Macrocycle 3

Figure S1. UV-vis absorption spectral changes in THF during the photoisomerization and THI processes, starting from: (a) stable-*cis*-**3** to unstable-*trans*-**3** (310 nm, THF, -60 °C). (b) unstable-*trans*-**3** to stable-*trans*-**3** (THF, 0 °C). (c) stable-*trans*-**3** to unstable-*cis*-**3**(310 nm, THF, -15 °C). (d) unstable-*cis*-**3** to stable-*cis*-**3** (THF, 60 °C).

Figure S2. Partial ¹H NMR spectra (600 MHz, 203 K, CD_2Cl_2 , 5 mM) of compounds (a) stable-*cis*-**3**. (b) unstable-*trans*-**3** upon irradiation of (a) (310 nm at -60 °C). (c) stable-*trans*-**3** upon heating the solution of (b) (0 °C). (d) The comparative spectrum of synthetic pure stable-*trans*-**3**.

Figure S3. Partial ¹H NMR spectra (600 MHz, 203 K, CD₂Cl₂, 5 mM) of compounds (a) stable-*trans*-**3**. (b) unstable*cis*-**3** upon irradiation of (a) (310 nm, -15 °C). (c) stable-*cis*-**3** upon heating the solution of (b) (60 °C). (d) The comparative spectrum of synthetic pure stable-*cis*-**3**.

Figure S4. Kinetic studies of the thermal helix inversion steps of (a) unstable-*trans*-**3** to stable-*trans*-**3** and (b) unstable*cis*-**3** to stable-*cis*-**3**. These isomerization steps were followed by UV absorption changes at 360 nm four different temperature conditions in THF(unstable-*trans* to stable-*trans*: -20 °C, -15 °C, -10 °C and -5 °C; unstable-*cis* to stable*cis*: 40 °C, 45 °C, 50 °C and 55 °C).

Table S1. Boltzmann averaged energies, dihedral angles (θ) and distances between the methyl groups of the *fjord* region of macrocycle **3**.

	stable-cis-3	unstable-trans-3	stable- <i>trans</i> -3	unstable-cis-3
G (Ha)	-2236.4323	-2236.4234	-2236.4269	-2236.4258
θ (°)	7.75	161.29	159.35	-23.83
Me-Me (Å)	3.48	5.00	5.91	3.62

3.2 UV-vis and NMR Studies of the Reference Compounds

Scheme S2. Photochemical and thermal isomerization steps of the reference compound R1.

Figure S5. Partial ¹H NMR spectra (600 MHz, 203 K, CD₂Cl₂, 5 mM) of compounds (a) stable-*cis*- \mathbf{R}_1 . (b) unstable*trans*- \mathbf{R}_1 upon irradiation of (a) (310 nm at -60 °C). (c) stable-*trans*- \mathbf{R}_1 upon heating the solution of (b) (0 °C). (d) The comparative spectrum of synthetic pure stable-*trans*- \mathbf{R}_1 .

Figure S6. Partial ¹H NMR spectra (600 MHz, 203 K, CD₂Cl₂, 5 mM) of compounds (a) stable-*trans*- \mathbf{R}_1 . (b) unstable*cis*- \mathbf{R}_1 upon irradiation of (a) (310 nm at -15 °C). (c) stable-*cis*- \mathbf{R}_1 upon heating the solution of (b) (60 °C). (d) The comparative spectrum of synthetic pure stable-*cis*- \mathbf{R}_1 .

Scheme S3. Photochemical and thermal isomerization steps of the reference compound R3.

Figure S7. UV-vis absorption spectral changes in THF during the photoisomerization and THI processes, starting from: (a) stable-*cis*-**R**₃ to unstable-*trans*-**R**₃ (65 μ M, 310 nm, THF, -60 °C). (b) unstable-*trans*-**R**₃ to stable-*trans*-**R**₃ (THF, 0 °C). (c) stable-*trans*-**R**₃ to unstable-*cis*-**R**₃ (65 μ M, 310 nm, THF, -15 °C). (d) unstable-*cis*-**R**₃ to stable-*cis*-**R**₃ (THF, 60 °C).

Figure S8. Partial ¹H NMR spectra (600 MHz, 203 K, CD₂Cl₂, 5 mM) of compounds (a) stable-*cis*-**R**₃. (b) unstable*trans*-**R**₃ upon irradiation of (a) (310 nm at -60 °C). (c) stable-*trans*-**R**₃ upon heating the solution of (b) (0 °C). (d) The comparative spectrum of synthetic pure stable-*trans*-**R**₃. PSS yield is 73% (unstable-*trans*:stable-*cis*), lower than stable*cis*-**3** (86%). The photochemical system with lower PSS yield resulted in the multiple overlapped proton signals of crown ether moiety, thus also leading to the slight shift of e₃ peak compared with the pure stable-*trans*-**R**₃.

Figure S9. Partial ¹H NMR spectra (600 MHz, 203 K, CD₂Cl₂, 5 mM) of compounds (a) stable-*trans*- \mathbf{R}_3 . (b) unstable*cis*- \mathbf{R}_3 upon irradiation of (a) (310 nm at -15 °C). (c) stable-*cis*- \mathbf{R}_3 upon heating the solution of (b) (60 °C). (d) The comparative spectrum of synthetic pure stable-*cis*- \mathbf{R}_3 . PSS yield is 27% (unstable-*cis*:stable-*trans*), lower than stable*trans*-**3** (47%). The photochemical system with lower PSS yield resulted in the multiple overlapped proton signals of crown ether moiety, thus also leading to the slight shift of e_3 peak compared with the pure stable-*cis*- \mathbf{R}_3 .

Figure S10. Kinetic studies of the thermal helix inversion steps of (a) unstable-*trans*- \mathbf{R}_3 to stable-*trans*- \mathbf{R}_3 and (b) unstable-*cis*- \mathbf{R}_3 to stable-*cis*- \mathbf{R}_3 . These isomerization steps were followed by UV absorption changes at 360 nm four different temperature conditions in THF (unstable-*trans* to stable-*trans*: -20 °C, -15 °C, -10 °C and -5 °C; unstable-*cis* to stable-*cis*: 35 °C, 40 °C, 45 °C and 50 °C).

Scheme S4. Photochemical and thermal isomerization steps of the stable-cis-R2.

Figure S11. UV-vis absorption spectra of stable-*cis*- \mathbf{R}_2 (35 μ M in THF) before, after irradiated (310 nm, -60 °C, 60 min), and after heat at 20 °C for 40 min.

Figure S12. Partial ¹H NMR spectra (600 MHz, 203 K, CD₂Cl₂, 5 mM) of compounds (a) stable-*cis*- \mathbf{R}_2 . (b) Solution obtained after the irradiation of (a) (310 nm at -60 °C). (c) Upon heating the solution of (b) (20 °C).

4. Single Crystal X-ray Analysis of cis-R2

Figure S13. Single crystal structure of (M, M)-(S, S)-cis- \mathbf{R}_2 crystallized from CH₃CN.

Identification code	<i>cis</i> - R₂ •CH₃CN		
Empirical formula C32 H41 N O4			
Formula weight	503.66		
Temperature	169.98 K		
Wavelength	1.34139 Å		
Crystal system	Monoclinic		
Space group	P 1 21/c 1		
	$a = 6.1125(8) \text{ Å}$ $a = 90^{\circ}.$		
Unit cell dimensions	$b = 23.433(3) \text{ Å}$ $b = 98.104(6)^{\circ}$		
	$c = 19.546(2) \text{ Å} \qquad g = 90^{\circ}.$		
Volume	2771.7(6) Å ³		
Z	4		
Density (calculated)	1.207 Mg/m ³		
Absorption coefficient	0.398 mm ⁻¹		
F(000)	1088		
Crystal size 0.12 x 0.08 x 0.08 mm			
Theta range for data collection	3.837 to 54.878°.		
Index ranges	-5<=h<=7, -28<=k<=27, -23<=l<=19		
Reflections collected	26449		
Independent reflections	5255 [R(int) = 0.0656]		
Completeness to theta = 53.594°	99.7 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7508 and 0.4537		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5255 / 2 / 377		
Goodness-of-fit on F ²	1.070		
Final R indices [I>2sigma(I)]	R1 = 0.0802, wR2 = 0.2228		
R indices (all data)	R1 = 0.0981, wR2 = 0.2385		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.266 and -0.468 e.Å ⁻³		

Table S2. Crystal data and structure refinement for *cis*-R₂•CH₃CN.

5. NMR Studies on Host-Guest Combinations

Figure S14. Partial ¹H NMR spectra (400 MHz, 293 K, acetone- d_6) of (a) macrocycle stable-*cis*-3. (b) [stable-*cis*-3 \supset G1]. (c) stable-*trans*-3. (d) stable-*trans*-3 mixing with guest (1:1) and (e) guest G1.

Figure S15. (a) Partial 2D NOESY spectra (400 MHz, 293 K, CD₂Cl₂) of [stable-*cis*-3 \supset G1]. (b) ESI spectra of [stable-*cis*-3 \supset G1]. (c) Partial ¹H NMR spectra of stable-*cis*-3 (5 mM, 400 MHz, 293 K, acetone-*d*₆) upon the stepwise addition of G1.

Figure S16. (a) Partial ¹H NMR spectra of stable-*trans*-3 (5 mM, 400 MHz, 293 K, acetone- d_6) upon the stepwise addition of G1 and (b) ESI spectra of [stable-*trans*-3 mixing with G1].

Figure S17. (a) Partial ¹H NMR spectra of stable-*cis*-**R**₃ (5 mM, 400 MHz, 293 K, acetone-*d*₆) upon the stepwise addition of **G1**. (b) Job's plot based on the proton shift of H_{d3} in acetone-*d*₆ [stable-*cis*-**R**₃ \supset **G1**]. (c) ESI-mass spectrum of [stable-*cis*-**R**₃ \supset **G1**] (792.4838).

Figure S18. Partial ¹H NMR spectra of stable-*trans*- \mathbf{R}_3 (5 mM, 400 MHz, 293 K, acetone- d_6) upon the stepwise addition of G1.

Figure S19. (a) Partial ¹H NMR spectra of stable-*cis*- \mathbf{R}_2 (5 mM, 400 MHz, 293 K, acetone- d_6) upon the stepwise addition of G1. (b) Partial ¹H NMR spectra of stable-*cis*- \mathbf{R}_2 (5 mM, 400 MHz, 293 K, acetone- d_6) upon the stepwise addition of G2.

SUPPORTING INFORMATION

Figure S20. (a) Partial ¹H NMR spectra of stable-*cis*-3 (5 mM, 400 MHz, 293 K, acetone- d_6) upon the stepwise addition of G2. (b) Job's plot based on the proton shift of H_f.

Figure S21. Partial ¹H NMR spectra of stable-*trans*-3 (5 mM, 400 MHz, 293 K, acetone- d_6) upon the stepwise addition of G2.

SUPPORTING INFORMATION

Figure S22. (a) Partial ¹H NMR spectra of stable-*cis*- \mathbf{R}_3 (5 mM, 400 MHz, 293 K, acetone- d_6) upon the stepwise addition of **G2**. (b) Job's plot based on the proton shift of H_{f3}.

SUPPORTING INFORMATION 3 2 H_{crown ether} Titration with G2(eq.) 3.2 c3+c3' e d_3 a₃ f₃ r b₃, Ŵ M 2.2 М M M 1.8 М 1.4 .Mu ٨.) MI М M 1.0 N MM 0.8 М V Mu 0.6 M ٨ MI 0.4 ٨ 0.2 0.0 3.0 f1 (ppm) 6.6 3.8 3.4 2.6 2.2 1.8

Figure S23. Partial ¹H NMR spectra of stable-*trans*- \mathbf{R}_3 (5 mM, 400 MHz, 293 K, acetone- d_6) upon the stepwise addition of G2.

6. NMR and UV-vis Studies on Guest Release/Capture Procedures

Figure S24. UV-vis absorption spectral changes in THF during the photoisomerization and THI processes, starting from: (a) [stable-*cis*-3 \supset G1] to [unstable-*trans*-3 mixing with G1] (80 µM, 310 nm, -60 °C). (b) [unstable-*trans*-3 mixing with G1] to [stable-*trans*-3 mixing with G1] (0 °C). (c) [stable-*trans*-3 mixing with G1] to [unstable-*cis*-3 \supset G1] (45 µM, 310 nm, -15 °C). (d) [unstable-*cis*-3 \supset G1] to [stable-*cis*-3 \supset G1] to [stable-*cis*-3 \supset G1] to [stable-*cis*-3 \supset G1] (60 °C).

Figure S25. Partial ¹H NMR spectra (600 MHz, 203 K, acetone- d_6 , 5 mM) of compounds (a) pure stable-*cis*-3. (b) [stable-*cis*-3 \supset G1]. (c) Irradiated the solution of (b) at 310 nm at -60 °C. (d) Heating the solution of (c) at 0 °C for 12 h and (e) control group of stable-*trans*-3 upon mixing with G1.

Figure S26. Partial ¹H NMR spectra (600 MHz, 203 K, acetone- d_6 , 5 mM) of compounds (a) pure stable-*trans*-3. (b) stable-*trans*-3 upon mixing with G1 (1:1). (c) Irradiated solution of (b) at 310 nm at -15 °C. (d) Heated solution of (c) at 60 °C for 12 h and (e) control [stable-*cis*-3 \supset G1].

Figure S27. Kinetic studies of the thermal helix inversion steps of (a) unstable-*trans*-3 mixing with G1 to stable-*trans*-3 mixing with G1 and (b) unstable-*cis*-3 \supset G1 to stable-*cis*-3 \supset G1. These isomerization steps were followed by UV absorption changes at 360 nm four different temperatures in THF(unstable-*trans* to stable-*trans*: -20 °C, -15 °C, -10 °C and -5 °C; unstable-*cis* to stable-*cis*: 40 °C, 45 °C, 50 °C and 55 °C).

7. Chirality Separation for Enantiomers cis-3 and Enantiomers trans-3

7.1 Chiral HPLC of racemic compound cis-3

Figure S28. HPLC chromatogram (CHIRALPAK AD-H(ADH0CE-XG136)), 0.46 cm I.D. \times 25 cm L) of racemic compound *cis*-3, eluted with Hexane/IPA=95/5 (V/V), at a flow rate of 1.0 mL min⁻¹ detected at 254 nm.

_							
	Peak	Ret. Time	Area	Area%	T. Plate#	Tailing F.	Resolution
	1	12.300	3688423	49.719	7488	1.835	
	2	13.990	3730169	50.281	7540	1.777	2.787

Table S3. Peak table.

7.2 Chiral HPLC of (M, M)-(S, S)-cis-3

Figure S29. HPLC chromatogram (CHIRALPAK AD-H (ADH0CE-XG136)), 0.46 cm I.D. \times 25 cm L) of (*M*, *M*)-(*S*, *S*)-*cis*-3, eluted with Hexane/IPA=95/5 (V/V), at a flow rate of 1.0 mL min⁻¹ detected at 254 nm.

Peak	Ret. Time	Area	Area%	T. Plate#	Tailing F.	Resolution
1	12.357	2692432	98.511	4778	1.504	
2	14.203	40390	1.478	6085	1.240	2.559

Table S4. Peak table.

7.3 Chiral HPLC of (P, P)-(R, R)-cis-3

Figure S30. HPLC chromatogram (CHIRALPAK AD-H (ADH0CE-XG136)), 0.46 cm I.D. \times 25 cm L) of (*P*, *P*)-(*R*, *R*)-*cis*-3, eluted with Hexane/IPA=95/5 (V/V), at a flow rate of 1.0 mL min⁻¹ detected at 254 nm.

Peak	Ret. Time	Area	Area%	T. Plate#	Tailing F.	Resolution
1	12.562	97968	2.641	8144	1.228	
2	14.040	3612086	97.359	6915	1.745	2.399

7.4 CD Spectra of (M, M)-(S, S)-cis-3 and (P, P)-(R, R)-cis-3

Figure S31. CD spectra (35 µM, CH₂Cl₂, 298K) of (M, M)-(S, S)-cis-3 (peak 1) and (P, P)-(R, R)-cis-3 (peak 2).

7.5 Chiral HPLC of racemic compound trans-3

Figure S32. HPLC chromatogram (CHIRALPAK AD-H (ADH0CE-VD097)), 0.46 cm I.D. \times 25 cm L) of racemic compound *trans*-3, eluted with Hexane/EtOH=80/20 (V/V), at a flow rate of 1.0 mL min⁻¹ detected at 214 nm.

Table S6. Peak table.

Peak	Ret. Time	Area	Area%	T. Plate#	Tailing F.	Resolution
1	5.171	2782339	49.968	3820	1.313	
2	6.286	2785917	50.032	4588	1.126	3.160

7.6 Chiral HPLC of (M, M)-(S, S)-trans-3

Figure S33. HPLC chromatogram (CHIRALPAK AD-H (ADH0CE-VD097)), 0.46 cm I.D. \times 25 cm L) of (*M*, *M*)-(*S*, *S*)-*trans*-3, eluted with Hexane/EtOH=80/20 (V/V), at a flow rate of 1.0 mL min⁻¹ detected at 214 nm.

Peak	Ret. Time	Area	Area%	T. Plate#	Tailing F.	Resolution
1	5.169	1816653	99.970	3873	1.326	
2	6.377	537	0.030	26681	0.949	4.946

7.7 Chiral HPLC of (P, P)-(R, R)-trans-3

Figure S34. HPLC chromatogram (CHIRALPAK AD-H (ADH0CE-VD097)), 0.46 cm I.D. \times 25 cm L) of (*P*, *P*)-(*R*, R)-*trans*-3, eluted with Hexane/EtOH = 80/20 (V/V), at a flow rate of 1.0 mL min⁻¹ detected at 214 nm.

Peak	Ret. Time	Area	Area%	T. Plate#	Tailing F.	Resolution
1	5.119	4476	0.235	5902	1.376	
2	6.286	1898036	99.765	4697	1.122	3.684

7.8 CD Spectra of (*M*, *M*)-(*S*, *S*)-trans-3 and (*P*, *P*)-(*R*, *R*)-trans-3

Figure S35. CD spectra (75 µM, CH₂Cl₂, 298K) of (M, M)-(S, S)-trans-3 (peak 1) and (P, P)-(R, R)-trans-3 (peak 2).

8. Chiral Recognition, Binding Studies

Figure S36. (a) ESI-mass spectrum of (P, P)-(R, R)-*cis*-3 \supset G3(R) (894.5521). (b) Job's plot based on the proton shift of H_f in CD₂Cl₂.

Figure S37. Partial ¹H NMR spectral of (P, P)-(R, R)-*cis*-3 (5 mM, 400 MHz, 293 K, CD₂Cl₂) upon the stepwise addition of **G3**(*R*).

Figure S38. (a) ESI-mass spectrum of (P, P)-(R, R)-cis- $3 \supset G3(S)$ (894.5519). (b) Job's plot based on the proton shift of H_f in CD₂Cl₂.

Figure S39. Partial ¹H NMR spectral of (P, P)-(R, R)-cis-3 (5 mM, 400 MHz, 293 K, CD₂Cl₂) upon the stepwise addition of G3(*S*).

Table S9. Boltzmann averaged energies, dihedral angles (θ) and distances between the methyl rings of the fjord region.

	(P, P) - (R, R) -stable- <i>cis</i> - 3 \supset	(P, P) - (R, R) -stable- <i>cis</i> - 3 \supset	G3 (<i>R</i>)
	G3 (<i>R</i>)	G3 (<i>S</i>)	
G (Ha)	-2873.6292	-2873.6317	-637.1560
θ (°)	7.07	6.53	
Me-Me (Å)	3.43	3.49	

SUPPORTING INFORMATION

Figure S40. Partial ¹H NMR spectral of (P, P)-(R, R)-trans-3 (3.65 mM, 400 MHz, 293 K, CD₂Cl₂) upon the stepwise addition of G3(R).

Figure S41. Partial ¹H NMR spectral of (P, P)-(R, R)-trans-3 (3.65 mM, 400 MHz, 293 K, CD₂Cl₂) upon the stepwise addition of G3(*S*).

Figure S42. Partial ¹H NMR spectral of (P, P)-(R, R)-trans-3/(M, M)-(S, S)-trans-3 (PSS₃₁₀ mixture) (3.56 mM, 400 MHz, 293 K, CD₂Cl₂) upon the stepwise addition of G3(R).

Figure S43. Partial ¹H NMR spectral of (P, P)-(R, R)-trans-3/(M, M)-(S, S)-trans-3 (PSS₃₁₀ mixture) (3.56 mM, 400 MHz, 293 K, CD₂Cl₂) upon the stepwise addition of G3(S).

9. Characterization

Figure S44. ¹H NMR spectrum of compound stable-*trans*-2 (400 MHz, 298 K, (CD₃)₂SO).

Figure S45. ¹³C NMR spectrum of compound stable-*trans*-2 (100 MHz, 298 K, (CD₃)₂SO))

Figure S46. EI-mass spectrum of compound stable-*trans*-2 ([M]^{+•}: 348.2091).

Figure S47. ¹H NMR spectrum of compound stable-*cis*-2 (400 MHz, 298 K, CD₂Cl₂).

Figure S48. ¹³C NMR spectrum of compound stable-*cis*-2 (100 MHz, 298 K, CD₂Cl₂).

Figure S49. ESI-mass spectrum of compound stable-*cis*-2 ([M]^{+•}: 348.2090).

Figure S50. ¹H NMR spectrum of compound stable-*trans*-3 (400 MHz, 298 K, (CD₃)₂CO).

Figure S51. ¹³C NMR spectrum of compound stable-*cis*-3 (100 MHz, 298 K, CD₂Cl₂).

Figure S52. ESI-mass spectrum of compound stable-trans-3 ([M+Na]⁺: 705.3969).

Figure S53. ¹H NMR spectrum of compound stable-*cis*-3 (400 MHz, 298 K, CDCl₃).

Figure S54. ¹³C NMR spectrum of compound stable-*cis*-3 (100 MHz, 298 K, CDCl₃).

Figure S55. ESI-mass spectrum of compound stable-*cis*-3 ([M+Na]⁺: 705.3978).

Figure S56. ¹H NMR spectrum of the reference compounds stable-*cis*-R₁ (400 MHz, 298 K, CDCl₃).

Figure S57. ¹³C NMR spectrum of compound stable-*cis*-R₁ (100 MHz, 298 K, CDCl₃).

Figure S58. ESI-mass spectrum of the reference compounds stable-*cis*-R₁ ([M+Na]⁺: 487.2808).

Figure S59. ¹H NMR spectrum of the reference compounds stable-*trans*-R₁ (400 MHz, 298 K, CDCl₃).

Figure S60. ¹³C NMR spectrum of compound stable-*trans*-R₁ (100 MHz, 298 K, CDCl₃).

Figure S61. ESI-mass spectrum of the reference compounds stable-*trans*- \mathbf{R}_1 ([M+H]⁺: 465.2999, [M+Na]⁺: 487.2803).

Figure S62. ¹H NMR spectrum of the reference compounds stable-*cis*-**R**₂ (400 MHz, 298 K, CDCl₃).

Figure S63. ¹³C NMR spectrum of compound stable-*cis*-R₂ (100 MHz, 298 K, CDCl₃).

Figure S64. ESI-mass spectrum of the reference compounds stable-*cis*-R₂ ([M+Na]⁺: 485.2667).

Figure S65. ESI-mass spectrum of the reaction solution between stable-*trans*-2 and LY3.

Figure S66. ¹H NMR spectrum of the reference compounds stable-*cis*-R₃ (400 MHz, 298 K, CDCl₃).

Figure S67. ¹³C NMR spectrum of compound stable-*cis*-R₃ (150 MHz, 298 K, CDCl₃).

Figure S68. ESI-mass spectrum of the reference compounds stable-*cis*-R₃ ([M+Na]⁺: 617.3436).

Figure S69. ¹H NMR spectrum of the reference compounds stable-*trans*-R₃ (400 MHz, 298 K, CDCl₃).

Figure S70. ¹³C NMR spectrum of compound stable-*trans*-R₃ (100 MHz, 298 K, CDCl₃).

Figure S71. ESI-mass spectrum of the reference compounds stable-*trans*-R₃ ([M+Na]⁺: 617.3443).

Figure S72. ¹H NMR spectrum of compound **G3**(*R*) (400 MHz, 298 K, CDCl₃).

Figure S73. ¹³C NMR spectrum of compound **G3**(*R*) (100 MHz, 298 K, CDCl₃).

Figure S74. ESI-mass spectrum of compounds G3(*R*) ([M-PF₆⁻]⁺: 212.1437).

Figure S75. ¹H NMR spectrum of compound G3(S) (400 MHz, 298 K, CDCl₃).

Figure S76. ¹³C NMR spectrum of compound G3(S) (100 MHz, 298 K, CDCl₃).

Figure S77. ESI-mass spectrum of compounds **G3**(*S*) ([M-PF₆⁻]⁺: 212.1430).

10. References

- T. M. Neubauer, T. van Leeuwen, D. Zhao, A. S. Lubbe, J. C. M. Kistemaker, B. L. Feringa, *Org. Lett.* 2014, 16, 4220-4223.
- [2] L. Yu, Q. Yang, J. Xiang, H. Sun, L. Wang, Q. Li, A. Guan, Y. Tang, Analyst 2015, 140, 1637-1646.
- [3] L. Ji, Z. Yang, Y. Zhao, M. Sun, L. Cao, X.-J. Yang, Y.-Y. Wang, B. Wu, Chem. Commun. 2016, 52, 7310-7313.
- [4] Y. Liu, Q. Zhang, W.-H. Jin, T.-Y. Xu, D.-H. Qu, H. Tian, Chem. Commun. 2018, 54, 10642-10645.
- [5] P. M. Reichstein, S. Gödrich, G. Papastavrou, M. Thelakkat, *Macromolecules* 2016, 49, 5484-5493.
- [6] C. Zhang, S. Li, J. Zhang, K. Zhu, N. Li, F. Huang, Org. Lett. 2007, 9, 5553-5556.
- [7] B. Spingler, S. Schnidrig, T. Todorova, F. Wild, *CrystEngComm* 2012, 14, 751-757.
- [8] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.
- [9] P. Pracht, F. Bohle, S. Grimme, *Phys. Chem. Chem. Phys.* 2020, 22, 7169-7192.
- [10] Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.