Supplementary Information

Mapping the biosynthetic pathway of a hybrid polyketide-nonribosomal peptide in a metazoan

Likui Feng^{1,2}, Matthew T. Gordon¹, Ying Liu¹, Kari B. Basso¹, Rebecca A. Butcher^{1*}

¹Department of Chemistry, University of Florida, Gainesville, FL, 32611 ²Present address: Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065 *Correspondence to: butcher@chem.ufl.edu a Thioesterase (TE) domains

$PKS-1_TE_1$	DLKYPSNDLRELAHFYAEEIAAHAGNKRIFVMGHSMGGIMSREIVAELKIWG
$NRPS-1_{TE_2}$	GDTVDEVAKLYRLQIEESAENIETSKLVFI <mark>G</mark> ASSAGTFAFSTSQLFADDD
Pik_TE	GTGTGTALLPADLDTALDAQARAILRAAGDAPVVLL <mark>GHS</mark> GGALLAHELAFRLERAH
Sur_TE	NQ.TSAIEDLEELTDLYKQELNLRPDRPFVLFGHSMGGMITFRLAQKLEREG
Ybt_TE	LRHLEPLRSITQLAALLANELEASVSPDTPLLLAGHSMGAQVAFETCRLLEQRG
Rif_TE	RRHEPPVDSIGGLTNRLLEVLRPFGDRPLALFGHSMGAIIGYELALRMPEAG
<u> </u>	*

b Condensation (C) domains

$NRPS-1_C_2$	EKSSVSNPLSAIQCSKLSPETLQLIF <mark>HH</mark> ISI <mark>DG</mark> RSLAIFYQQFK
$NRPS-1C_3$	PSGASRPKDQFSIQLWMSSKNKLLTISI <mark>HH</mark> LIC <mark>D</mark> GR <mark>S</mark> LQILEHQLQ
$NRPS-1_C_4$	IR.LLCDEPINVLEGSPMIRASFISSPEKHVAFLHL <mark>HH</mark> LIS <mark>D</mark> ARSTQLTNSTMK
$PKS-1_C_1$	NHLFEIGKSTPLRVRVAEDCDNSRIHIVFNQ <mark>HH</mark> ILT <mark>DGWS</mark> MTVLSDTVS
$ArfA-C_2$	FSARRYRLDVSQAPLMRLVYARDPALDRVVGILLF <mark>HH</mark> LAM <mark>D</mark> HIALEVMR
VibH_C	QIEQDLQRSSTLIDAPITSHQVYRLSHSEHLIYTRA <mark>HH</mark> IVL <mark>D</mark> GYGMMLFEQRLS
CDA_C_1	WMDRDRATPLPLDRPGLSSHALFTLGGGRHLYYLGVHHIVIDGTSMALFYERLA
	* *

c Acyl-carrier protein (ACP) domains

PKS-1 ACP3	KTLQMAVRHKVCLAVGDVIESGLDIDESQLSTGFSE.LGIDSLATVDLLNRLNQKY
PKS-1_ACP4	ESDATVDRTEIRRKVSLAVFDLATETLSAEDLQ.SKGFTE.LGMDSLSIVDFVNRLNDKY
PKS-1_ACP6	KVKEEIKKKSLNFEEIFFEIVGITDISSKLNIPFMD.LGIDSLCMENLRYSLNKN.
Bac_ACP	
PKS-1_ACP5	MNFSVEDEEEVLELIKEKVSSILMCSPTKLKNNKNIMDMGLDSKLIVEFLNFINST.
NRPS-1_ACP7	CTARPSRSMEILISILKDQMKLLSTSHEVETTPLPYLGIDSLRLAELEYHVASH.
$PKS-1_ACP_1$.NIVDEQTNSSLSDAEIESTVRTIVKQFLDIEEDDINLLETGAVDSLTSIEMVEAFGTAV
PKS-1_ACP2	.KITKKVENEDQKRASKNMLHVWFEENFGWTDIDNTTGFFDLGLTSIQAVKLRNAIKSN.
	*

d Adenylation (A) domains

•	
EntE_A	FFALLKLGVAPVLALFSHQRSELNAYASQIEPALLIADRQHALFSGDDFLNTFV
PKS-1_A ₁	LLACVFLGLPYAPIDPTWPEPRQLFVKSKVSFTLENCF
SidN_A ₃	IVGIMKSGNTYVPIEAGLPNDRKSFLLRDSRAAMAFVCDNNFDGVELPP
Grs_A	ILAVLKAGGAYVPIDIEYPKERIQYILDDSQARMLLTQKHLVHLIHNIQFNGQVEIF
NRPS-1_A ₂	VLAAWEAGLYPVPMHKDSKEAQIEKTLEALGIEEAFDSKDLCQ
NRPS-1_A ₃	LAVQFT.GAAYLPIDASYPEERKKTILKDSVFNFEYNGRVDQE
EntE_A PKS-1_A1 SidN_A3 Grs_A NRPS-1_A2 NRPS-1_A3	TEHSSIRVVQLLNDSGEHNLQDAINHPAEDFTATPSPADEVAYFQLSGGTTGTPKLIPRT SCNLKLRNFNSRTQFGSIYSIFTSGSTGVPKGVLMA .ETKVLD.TKNQSFIENLSTQDTSDILNNYPENLDAYLLYTSGSTGTPKGVRVS .EEDTIKIREGTNLHVPSKSTDLAYVIYTSGTTGNPKGTMLE TKLRIFNKSILYDLAYVTSTSGSTGTPKLVGTS PRHRHFAISTDYCLSYIITTSGTTGTPKSVAIG *
EntE_A	HNDYYYSVRRSVEICQFTQQTRYLCAIPAAHNYAMSSPGSLGVFLAGGTVVL
PKS-1_A1	EQSVSSFMTSASKQCMFRSNIRVLDSVKQVFDVSVSNIIGSVLNGGVLIS
SidN_A3	RHNLSSFSDAWGKLIGNVAPKSLELGGVGKFLCLASRAFDVHIGEMFLAWRFGLCAVT
Grs_A	HKGISNLKVFFENSLNVTEKDRIGQFASISFDASVWEMFMALLTGASLYI
NRPS-1_A2	FEGHSNLARQYTTTYQISSRDTVGQVVDPSFDIFFADIVKTLVN
NRPS-1_A3	AKSLLNLFLSSTLTMKCSSSSRTYQFTNFVFDNSVLEVSMSIASQGTLVY

e Peptidyl-carrier protein (PCP) domains

$NRPS-1_PCP_3$.LPHPTLPNSLESDLSSIWTSL <mark>L</mark> NCPEPSPSDH. FF LI <mark>GG</mark> H <mark>SL</mark> LLVRLRHLIETKLGIS	ЗL
NRPS-1_PCP1	KAAISIARLSLTSSLKHWLEHY <mark>S</mark> NLEIPSDDDD.IFTL <mark>G</mark> VD <mark>S</mark> IAVMLAMQKLRSEN.II	ΞΙ
PKS-1_PCP ₂	KREIVVMKNSLEEKVINVFSKI <mark>L</mark> GR.NVAPTDK. <mark>F</mark> ESI <mark>GG</mark> N <mark>S</mark> LNAIQIAHRLAEELKII	ΞI
$NRPS-1_PCP_2$	KLLGLVEVRKKLELIIAAFKKF <mark>L</mark> DNTDVTKSTD. <mark>FF</mark> QA <mark>GG</mark> H <mark>S</mark> LTAMRLIDHLSDLLEVH	ΞΙ
Yer_PCP1	.AEADLPQGDIEKQVAALWQQL <mark>L</mark> STGNVTRETD. FF QQ <mark>GG</mark> D <mark>S</mark> LLATRLTGQLHQAG.YH	ΞA
$PKS-1_PCP_1$	ESLKLPKSTSCEFVIAEIWKET <mark>L</mark> GISILNDANPN <mark>FF</mark> SL <mark>GG</mark> D <mark>S</mark> LSALQVVWKVQKKTDRI	U 1
	*	

Supplementary Figure 1. Domain sequence alignments of PKS-1 and NRPS-1 with known functional domains. a Sequence alignment of TE domains with Pik TE (Pikromycin TE domain, PDB ID: 2H7Y), Sur TE (Surfactin TE domain, PDB ID: 2RON), Yer TE (Yersiniabactin TE domain, PDB ID: 6BA8), and Rif TE (Rifamycin TE domain, PDB ID: 3FLA). Sequences used for TE domains are PKS-1 TE₁ (7559-7610) and NRPS-1 TE₂ (2771-2820). The catalytic serine residue is labeled with an asterisk. **b** Sequence alignment of C domains with ArfA C₂ (Arthrofactin module A C₂ domain), VibH C (Vibriobactin free-standing C domain VibH, PDB ID: 1L5A), CDA C₁ (Calcium-dependent antibiotic synthase C₁ domain, PDB ID: 4JN3). Sequences used for C domains are PKS-1 C₁ (6653-6701), NRPS-1 C₂ (520-563), NRPS-1 C₃ (1457-1502), and NRPS-1 C₄ (1895-1947). In the HHxxxDG motif, the second histidine (asterisk) serves as a catalytic base, and the aspartate (asterisk) is critical for the structural integrity of the active site. c Sequence alignment of NRPS-1 ACP7 with PKS-1 ACP domains and Bacillus subtilis ACP (GenBank accession no. P80643, PDB ID: 1HY8). The conserved active site serine is marked with asterisk. Protein sequences used are PKS-1 ACP₁ (719-776), PKS-1 ACP2 (1776-1833), PKS-1 ACP3 (2792-2846), PKS-1 ACP4 (2940-2997), PKS-1 ACP₅ (3471-3526), PKS-1 ACP₆ (5154-5207), and NRPS-1 ACP₇ (267-320). d Sequence alignment of A domains with EntE A (Enterobactin module E, PDB ID: 3RG2), SidN A3 (A3 domain in Siderophore N synthetase, PDB ID: 3ITE), Grs A (Gramicidin S, PDB ID: 1AMU). Sequences used for A domains are PKS-1 A1 (7044-7167), NRPS-1 A2 (900-1019), and NRPS-1 A₃ (2274-2398). The conserved glycine residue in the flexible loop involved in the interaction with the pyrophosphate leaving group during amino acid loading is marked with an asterisk.¹ e Sequence alignment of PKS-1 PCP domains, NRPS-1 PCP domains, and Yer PCP₁ (Yersiniabactin synthetase PCP1 domain, GenBank accession no. Q7CI41, PDB ID: 5U3H). The serine residue for phosphopantetheinyl postranslational modification is located in the conserved PCP motif DXFFXLGGDSL and is marked with an asterisk. Protein sequences are PKS-1 PCP₁ (6462-6521), PKS-1 PCP₂ (7424-7481), NRPS-1 PCP₃ (1289-1346), NRPS-1 PCP₄ (1700-1758), and NRPS-1 PCP₅ (2648-2705). Alignment was generated by Clustal Omega 1.2.4 and ESPript 3.0.²

Supplementary Figure 2. Nemamide production in wild-type and *nrps-1* domain mutants. Extracted ion chromatograms for nemamide A (a) and nemamide B (b) in wild type, *nrps-1(reb8[ACP7_S307V])*, *nrps-1(reb32[A2_G964D])*, *nrps-1(reb31[A3_G2337D])*, *nrps-1(reb10[C3_H1486A])*, *nrps-1(gk186409[C4_S1934N]*; *gk186410[C4_D1971N])*, and *nrps-1(reb12[TE2_S2803A])* worms. The *nrps-1(gk186409[C4_S1934N]*; *gk186410[C4_D1971N])*, mutant was obtained from the Caenorhabditis Genetics Center and backcrossed four times with wild type. As indicated by the asterisks (*), both the *nrps-1(reb32[A2_G964D])* and the *nrps-1(reb32[A2_G964D])* strains produced small amounts of nemamides; the *nrps-1(reb32[A2_G964D])* strain produced 15.7±3.7% nemamide A relative to wild type, and the *nrps-1(reb31[A3_G2337D])* strain produced 2.7±0.8% nemamide A relative to wild type, suggesting that the A domains in these mutants have some residual activity. Note that the retention times of the nemamides in the Supplementary Information are different than in the main text due to the fact that the samples were analyzed on different columns.

Supplementary Figure 3. Production of intermediates in wild type and *nrps-1* **domain mutants**. The production of nemamide A (1) and intermediates 3, 4, 5, and 6 in wild type, *nrps-1(reb8[ACP7_S307V])*, *nrps-1(reb32[A2_G964D])*, *nrps-1(reb31[A3_G2337D])*, *nrps-1(reb10[C3_H1486A])*, *nrps-1(gk186409[C4_S1934N]*; *gk186410[C4_D1971N])*, and *nrps-1(reb12[TE2_S2803A])* worms. The *nrps-1(gk186409[C4_S1934N]*; *gk186410[C4_D1971N])* mutant was obtained from the Caenorhabditis Genetics Center and backcrossed four times with wild type. Percentage for each intermediate in each strain was determined by comparing the amount of the intermediate (as gauged by UV at 280 nm) relative to the mean amount of nemamide A (as gauged by UV at 280 nm) in wild type. Data represent the mean of data points (indicated as open circles), n = 3 independent experiments for wild type and n = 2 independent experiments for all mutants. In each experiment, the worm strain was grown in large-scale culture, and the worms were collected for extraction of nemamide (for wild type) and intermediates (for wild type and mutants). Source data are provided as a Source Data file.

Supplementary Figure 4. Mass spectrometry analysis of intermediate 3. a,b HR-LC-MS/MS of intermediate 3. c Analysis of the fragmentation patterns.

Supplementary Figure 5. Mass spectrometry analysis of intermediate 4. a,b HR-LC-MS/MS of intermediate 4. c Analysis of the fragmentation patterns.

Supplementary Figure 6. Mass spectrometry analysis of intermediate 5. a,b HR-LC-MS/MS of intermediate 5. c Analysis of the fragmentation patterns.

Supplementary Figure 7. Mass spectrometry analysis of intermediate 6. a,b HR-LC-MS/MS of intermediate 6. c Analysis of the fragmentation patterns.

Dual E/C	domain	unique	N-tern	ninus		Condensatio	on	
			нн	D	R	нн	D	
NRPS-1_C4 NRPS-1_C3 NRPS-1_C2 ArfB_C4 ArfB_C5 ArfA_C2 ArfB_C6			. VSGM E DD I T P D M I T P D M I T P A M I T P D M	VE QEL. LPLA LSLT LPLV LTLV	ESEQEA TLDQAA ELDQAA QLQQAA QLQQAA		IKLP LKAGHSDETS VPGGVGNV VPGGAANV VPGGAANV VPGGAANV	NHFININHIQOR KFKIPLSSQQKR QDIYGLAPLQAG QDIYPLAPLQEG QDIYPLAPLQEG QDIYPLAPLQEG
NRPS-1_C4 NRPS-1_C3 NRPS-1_C2 ArfB_C4 ArfB_C5 ArfA_C2 ArfB_C6	MNENSLEYQI ILFLSR.MTSSI ILFVMELEF ILYHHLATSAGI ILYHHLSAEQGI ILYHHITAEQGI ILYHHITAEQGI	PFIQ PFRL PYLS PYVL PYLL PYLL PYLL PYLL	P EF SNLLS QA QS QS QS	F QFAE QFAF RLIF QLAF RLAF	PHSLD SIP PILLR AGLAQ DSVER DSLER DSLER	PSKIH VKNLENLT LSNFHRVQ IKAFV LRTFS VEAFA LQAFA	RSLLMTMQEQ VGINTVMIGN GILNSLIMSH RALNAVIERH QALQQVIARH AALREVMARH AALRQVMTRH	SVFRTVIRLDSE QLLRSKLQR.VQ FILRTQYFE.DY DILRTSVVW.EG DILRTSVVW.EG DILRTSVLW.EG DILRTGVVW.EG
NRPS-1_C4 NRPS-1_C3 NRPS-1_C2 ArfB_C4 ArfB_C5 ArfA_C2 ArfB_C6	TGEPFQEVLSL G.EYQFLVLSA QYLLSG LEEPVQVVWRE LASPQQVVWRQ LNTPVQVVWRA LATPVQVVWRE	EAFI EAYLI ETFLZ PLALI APLVV AILPL QLPL QLPL	QCQVD HA AILE. ERVD. QAVP. QEVE. QEVA.	LVHS .SPS KS ADLL LDPA LDPA LDPA	EP GA EGDVLI QGDVLI DGPIII GGDVLI	.ELHARIR EQMQARFD EQLHARFD DQLHQRFS AQLFERFD	LLCDEPINVL	EGSPMIRASFIS SRPKDQFSIQL VSNPLSAIQ RRAPLMRLAYTE SQAPLMRIVYAE SQAPLMRLVYAR SQAPLIRLVYAQ
NRPS-1_C4 NRPS-1_C3 NRPS-1_C2 ArfB_C4 ArfB_C5 ArfA_C2 ArfB_C6	SPEKHVAFL WMSSKNKLLTIS CSKLSPETLQLJ DREQQRWVGILI DPAQQRVVAIII DPALDRVVGILI DPANHRVVAMLI	ILHHL: IHHL: FHHIS IHHIS IHHIS FQHL: FHHL2 FHHIZ	ISDAR ICDGR SIDGR VLDHT ILDHT AMDHI AMDHT	STQL SLQI SLAI ALEV AMEV ALEV ALEV	TNSTMI LEHQLO FYQQFI LLAEMI VGQEMI MRSEMI VQQELO	KQFSED QQALEGEA KSSST NDSLYPSG RAFMFNQA RASLSGQV QALLFGHG	PERTPKRQKF PSF IELAPKL ADLPMPV DSLGTPM VALAPPV EALIPAV	SYMDYCRLDQTS QNNFYNFSEDLC QYHDYCARAEES QYRNYVAQAQQQ PYRNYVAQARLG PYRNYVAQTRLG PYRNYVAQTRLG

Supplementary Figure 8. Domain sequence alignments of the C domains in NRPS-1 with the dual epimerase (E)/C domains from the arthrofactin biosynthetic pathway. Dual E/C domains have a unique N-terminus with catalytic residues HH-D, followed by a common C domain with a catalytic motif R-HHXXXD.³ The sequences of the C₂ domain from NRPS-1 (residues 401-586), the C₃ domain from NRPS-1 (residues 1361-1524), and the C₄ domain from NRPS-1 (residues 1815-1974) were compared to the sequences of the C domains of ArfB from the arthrofactin biosynthetic pathway. Essential residues for catalysis are indicated by arrows. The C domains in NRPS-1 are missing the catalytic residues in the N-terminus that are characteristic of dual E/C domains.

Supplementary Figure 9. Nemamide production in wild type and *pks-1* mutant strains.

Extracted ion chromatogram for nemamide A (**a**) and nemamide B (**b**) in wild type and *pks*- $1(reb29[PCP_2_S7463A])$, *pks*- $1(reb22[A_1_G7106E])$, *pks*- $1(reb9[C_1_H6685A])$, *pks*- $1(reb11[TE_1_S7593A])$, and *pks*- $1(reb13[TE_1_S7593C])$ mutant worms, containing mutations in the C-terminal NRPS module of PKS-1. Note that the nemamides could not be detected in the crude extracts of small-scale cultures of *pks*- $1(reb22[A_1_G7106E])$ (as shown here), but they could be detected in very small amounts in the partially purified extracts of large-scale cultures of *pks*- $1(reb22[A_1_G7106E])$ (as shown in Fig. 3). Note that the retention times of the nemamides in the Supplementary Information are different than in the main text due to the fact that the samples were analyzed on different columns.

Supplementary Figure 11. Failure of T20F7.7 (*pkal-1*) and C32E8.6 to rescue each other. Extracted ion chromatogram for nemamide A (a) and nemamide B (b) in wild-type, the *pkal-1* mutant, the *pkal-1* mutant in which C32E8.6 was expressed under the control of its own promoter, the C32E8.6 mutant, and the C32E8.6 mutant in which *pkal-1* was expressed under the control of its own promoter. Note that the retention times of the nemamides in the Supplementary Information are different than in the main text due to the fact that the samples were analyzed on different columns.

Supplementary Figure 12. Nemamide production in wild type and mutant rescue strains. Extracted ion chromatograms for nemamide A (a) and nemamide B (b). Mutants were rescued by complementing with sl2::mCherry plasmids under control of gene promoters::genes. Note that the retention times of the nemamides in the Supplementary Information are different than in the main text due to the fact that the samples were analyzed on different columns.

Supplementary Figure 13. Imaging of translational reporter strains. Analysis of in translational reporter worm strains *Pnemt-1::nemt-1::sl2::mcherry* (**a**), *Ppkal-1::pkal-1::sl2::mcherry* (**b**), *PC32E8.6::C32E8.6::sl2::mcherry* (**c**), *PY71H2B.1::Y71H2B.1::sl2::mcherry* (**d**), and *PC24A3.4::C24A3.4::sl2::mcherry* (**e**) demonstrated expression of nemamide biosynthetic genes primarily in the CANs.

Supplementary Figure 14. Mass spectrometry analysis of intermediate 7. a,b HR-LC-MS/MS of intermediate 7. c Analysis of the fragmentation patterns.

Supplementary Figure 15. Mass spectrometry analysis of desmethyl-nemamide, 8. a,b HR-LC-MS/MS of desmethyl-nemamide, 8. c Analysis of the fragmentation patterns.

Supplementary Figure 16. PKAL-1 is not an FACL. Reaction of PKAL-1 with fatty acids of various lengths, ATP, and CoA did not result in the corresponding fatty acyl-CoAs. Several fatty acyl-CoAs were used as standards.

ecFAAL	1
FAAL FAAL FadD32 FadD30 FadD30 FadD30 FadD20 mtPaAL FadD17 FadD15 ACSM2A tFACL FadD15 aSFACL FadD30 FadD30 FACSM2A	MVYMSN.
ecFAAL ecFAAL	$\begin{array}{cccc} \alpha 1 & & & & & & & & & & \\ & & & & & & & & & & \\ 10 & & & & & & & & & \\ 20 & & & & & & & & & & \\ 10 & & & & & & & & & & \\ 10 & & & & & & & & & & \\ 20 & & & & & & & & & & \\ 30 & & & & & & & & & & \\ KIFTHSLPM.RYAD.FPTLVDALDYAALSSA.GMNFYDRRCQLEDQLEYQTLKKIFTH.OULDIDALDYAALSSA.GMNFYDRRCQLEDQLEYQTLK$
lpFAL FadD32 FadD26 mtFAL FadD21 PKAL-1 SeFACL FadD17 FadD17 FadD15 ACSM2A ttFACL FadD5 asFACL FadD7	<pre>MKKEYL.QCQS.LVDVVRLRALHSPNKKSCT.FLNKELEETMTY.EQLD FIVNGKIRFP.ANTN.LVRHVEKMAKVRGDKLAYR.FLDFSTERDGVARDIIW.SDFS MS.VISTLRDRATTTPSDEAFV.FMDYDTKTGQQIDRMTW.SQLY MSVRSLPAALRACARLQPHDPAFT.FMDYEQDWDGVAITITW.SQLY MSVRSLPAALRACARLQPHDPAFT.FMDYEQDWDGVAITITW.SQLY MSDSS.VISLLRERAGLQPDDAAFT.YIDYEQDWDGVAITITW.SQLY MSVTSLEL.FHDILLENVKFG.IRQALVHDNQVITF.EEIP APGNVSIKWEDGTLNLAANCLDRHLQENGDRTAIIWEGDDT.SQSKHISY.RELH FMTPTHPT.VTELLLPLSEIDD.RGVYFEDSFTSW.RDHI FASDVLD.HWADMEKAGKRPP.SPALWWVNG.KGKELMWNFRELS MKDYLDELN.LWFLERAALFGRKEVVSRLHTGEVKTTY.AEVY .QQPYLARRQN.WUNQLERHAMMQP.DAPALFF.VGNTMTW.ADLR .ASDFGPR.IADLVEVAATRLP.EAPALVV.TADRIAISH.RDLA</pre>
ecFAAL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ecFAAL lpFAAL FadD32 FadD30 FadD26 mtFPAAL FadD17 FadD17 FadD15 ACSM2A ttFACL FadD5 asFACL FadD7	ARAEAGAKRI. LSLNLKKGD RVALIAETSSEFVEAFFACQYAGLVAVPLAIPMGVGQ QHAKAIAATI. QAEGAKPGD RVLLFAPGLPLIQAFLGCIYAGLVAVPLAIPMGVGQ QHAKAIAATI. QAEGAKPGD RVLLFAPGLPLIQAFLGCIYAGCIAVPIYPPAQEKL ARNRAVGARL. QQVT. QPGD RVALLCPQNLDVIJSFGALVSGRIAVPLFPAPGH SRVTAVSAYL. ISYG. RHADRRRTAAISAPGGLDYVAGFLGALQAGGFIAVPLFPEPLGSLR RRACIIAEEL. KLCG. LPGD RVAVLAPQGLEYVLAFLGALQAGFIAVPLSVPQGGVT RRTINVAQEL. SRCG. STGD RVVISAPQGLEYVLAFLGALQAGFIAVPLSVPQGGVT RRTIVAHEV. RRHC. TTGD RAVILAPQGLEYVLAFLGSMQAGAIAVPLSVPQGGVT RRTIVAHEV. RRHC. TTGD RAVILAPQGLAYIAAFLGSMQAGAIAVPLSVPQGGVT RRTALVHLEGISQGD TILVCLPNSIWYPLLFLSCAKICAVPLSVPQGGVT RGAAIAAALRERLDPARPF HVGVLLQNTPFFSATLVAGALSGIVPVGNPVRRGAA RGAAIAAALGL. ISLGVQAGD
ecFAAL	$\xrightarrow{\alpha 4}_{120} \xrightarrow{\beta 5} \xrightarrow{\eta 1}_{140} \xrightarrow{\alpha 5} \xrightarrow{\eta 2}_{150} \xrightarrow{\pi} \cdots \xrightarrow{\beta 6}_{2020000000000000000000000000000000000$
ecPAAL lpFAAL FadD32 FadD30 FadD26 mtFAAL FadD21 PRAL-1 seFACL FadD17 FadD15 ACSM2A ttFACL FadD5 asFACL FadD7	RDSWSAKLQGLLASCQPAAIITGDEWLPLVNA.ATHDNPELHVLSHAW. LDKAQRIVTNSKPVIVLMIADHIKKFTADELNTNPKFLKIPAIA VGRLHAVLDCAPSTILTTTSQAETRVRA.TIATHGAKERPVIA DKRTGLAVLDCAPSTILTTSQAETRVRA.TIATHGAKERPVIA DDRVSAVLQDSKPVAILTTSSVCOVTK.YAASHDGQPAPVVE DERSDSVLSDSSPVAILTTSSAVDDVVQ.HVARRPGESPPSIIE DERVSAVLADASPSVILTTSSAVDAVE.HHRPNTNNVGPIE TKSLKQSGAKLVITADEGVRAGRSIPLKNVDDALKNPNTSVEHVIVLKRT LAGIIAKADCQLVITGSGSA
ecFAAL	$\begin{array}{cccc} \alpha 6 & & & & \\ \hline & & & & \\ \hline & & & & \\ 160 & & & & \\ \hline & & & & 170 & \\ \hline & & & &$
ecFAAL lpFAAL FadD32 FadD26 mtFAAL FadD27 PKAL-1 SeFACL FadD17 FadD15 ACSM2A ttFACL FadD5 asFACL FadD7	FKALP. EADVA. LQRPVPNDIAYLQYTSGSTRFPRGV LESIE LNRSSSWQ. PTSIKSNDIAFLQYTSGSTRFPRGV VDAVP. TEVAATWQ. QPEANEETVAYLQYTSGSTRFPSGV UDTLD. EPSGDNCD. LDSQLSDWSSUQYTSGSTRTPAGV VDLLD. LDSPRQMP. AFSRQHTGAAYLQYTSGSTRTPAGV VDLLD. LDSPRQMP. AFSRQHTGAAYLQYTSGSTRTPAGV VDLLD. LDAPNGYT. FKEDEYPSTAYLQYTSGSTRTPAGV VDLLD. LDAPNGYT. FKEDEYPSTAYLQYTSGSTRTPAGV VDLLD. LDAPNGYT. FKEDEYPSTAYLQYTSGSTRTPAGV VK. TY. DRIT. GHEDFRPEN. LDIDSILLAFFSSGTTGAPKCV GSDIDWQEGRDLWWRDLI. EKASPEHQPEAM. NAEDPLFILYTSGSTGKPKGV SPEN. TD EVAH. RDTEVRFRSADLADLEMLIFTSGTSGDPKAV GDNA. LDRL. TEAGASVDPAELTARLAALRSTDPATLIYTSGTGSGLPKMA APEG. YL. NF.KKLL. NAESTHHCVETGS. QEASAIYFTSGTSGLPKMA APEG. YL. ALGEEADPVRVPE. RAACGMAYTTGCTGCKPKGA SQDS.VF. GY. EL. ALGEEADPVRVPE. RAACGMAYTTGCTCLPKGV SQDS.VF. GY. EDLL. NAEGEPVSYGPPIEDPQR. EPAQPAFIFYTSGTTGLFKGV </th

gate motif 1

OCEAN	β8 α7	β9	α8 α9	9
ecraal	200 21	0, ¹¹ 220, 2	30 240	••••
ecFAAL lpFAAL	IITHREVMANLRAIS MVSHHNLLDNLNKIFTSFHM	HDGIKLRPGDRCVSWLPFY NDETIIFSWLPPH	HDMGLVGFLLTPV. HDMGLIGCILTPI.	YGGI
FadD32 FadD30	QITHLNLPTNVVQVLNALEG VLSMRNVTENVDOIIRNYFR	QEGDRGVSWLPFF HEGGAPRLPSSVVSWLPLY	HDMGLITVLLASV.	LG.H
FadD26	IVSHTNVIANVTQSMYGYFG	DPAKIPTGTVVSWLPLY	HDMGLILGICAPL.	VARR
FadD21	MISHRNLQANFQQLMSNYFG	DTDGIPPPNSALVSWLPFY DRNGVAPPDTTIVSWLPFY	HDMGLVIGICAPI. HDMGLVLGIIAPI.	LGGY
PKAL-1 sefacl	LLTHRNFLAATYSLKKFL LHTTGGYLVYAATTF	FDQLLAQSSMKTLAFLPFH KYVFDYHPGDIYWCT	HASGFWALLICLLE ADVGWVTGHSYLLY	GPLACGA
FadD17	KCSHRKVAIAGVTI	TQRFSLGRDDVCYVSMPLF	HSNAVLVGWA	VAAACQ.
ACSM2A	EHSYSSLGLKAKMDAG	WTGLQASDIMWTI	SDTGWILNILCSLM	EPWALGA
FadD5	VYSHRALVLHSLAASL VLTHANLTGQAMTALY	VDGTALSEKDVVLPVVPMF TSGANI.NSDVGFVGVPLF	HVNAWCLPYA. HIAGIGNMLT	ATLV.GA GLLL.GL
asFACL FadD7	IIPQRAAESRVLFMST PWTHANIASSVRAI	QVGLRHGRHNVVLGLMPLY ITGYRLSPRDATVAVMPLY	HVVGFFAVLV.	AALALDG
		gate	motif 2	
	β10 α10 α11	β11		α12
ecfaal	250 260	270 270 2	80 [.]	
ecFAAL	SVDYLRTQDFAMRPLQWLKL	ISKNRGTVSVAPP	FGYEL	
FadD32	SFTFMTPAAFVRRPGRWIRE	LARKPGETGGTFSAAPN	FAFEH	
FadD30 FadD26	PVILTSPEAFIRKPARWMQL RAMLMSPMSFLRRPARWMQL	LAKHQAPFSAAPN LATSGRCFSAAPN	FAFDL	
mtFAAL FadD21	PAVLTSPVSFLQRPARWMHL RSELTSPLAFLORPARWLHS	MASDFHAFSAAPN	FAFEL	
PKAL-1	TTYIMSEFHPIVMMDL	IEKYEIDTINIVP	PIANI	
SeFACL FadD17	.GSMALRRKFSASQFLAD	VRRYGATYANYVGKP	LSYVLATPE	
FadD15 ACSM2A	KVTVGFTSDIKNLLPM CTFVHLLPKFDPLVILKT	LAVFKPTVVVSVP LSSYPIKSMMGAP	RVFEKVYNTAEQNA.	ANAGKGR
ttFACL FadD5	K.QVLPGPRLDPASLVEL	FDGEGVTFTAGVP	TVWLA	
asFACL	TYVVVEEFRPVDALQL	VQQEQVTSLFATP	THLDA	
FadD7	AVSLPARGRFSAHTFWDD	IKAVGATWYTAVP	ттнот	
ecFAAL			13 β12	
		290	300	310
ecFAAL lpFAAL			KKEGLDLSSWVTAF	IGAEPIS N <mark>G</mark> AEPVR
FadD32			DEPPLDLSNVKGIL	NGSEPVS NGAEOVO
FadD26	AV.RR		DMAGLDLRDVVGIV	SGSERIH
mtFAAL FadD21	AV.RK		DIEGLDLGNVLGIT	SGAERVH
PKAL-1	FLK.MG	ILQGR DKAIEGT	DRSSLRTIL	C <mark>G</mark> SSGLQ SVGEPIN
FadD17	LPD.D. TFATAAOTAVDWSEACD.RG	GPGLLLRAKHAVEDRLVYR	KLRAALGGNCRAAV	YGNEGVP SGGAPLG
ACSM2A	LLQ.QD	L	FPHLQNCVT	VGESLLP
ttFACL FadD5	VCT.EQ	QARPR	DLRLRVLS	VGGSAAP WGAAPAP
asFACL FadD7	LAA.AA	AHAGSSL ATEPSGR	K LDSLRHVT	FAGATMP SCSAPLT
ecFAAL	$\alpha 14 \qquad \eta 3 \qquad \eta 4$	$\xrightarrow{\beta_{13}} \overset{\eta_5}{\longrightarrow} \overset{\beta_{14}}{\longrightarrow} \mathbf{T}$	τ β15 α15	ووو
ecFAAL	320 330 AEOLHOFAECFROVNFDNKT	340 350 FMPCYGLAENALAVSFSDE	360 ASGVVVNEVDRDILI	370 EYOGKAV
1pFAAL	EETMEHFYQAFKEFGFRKEA	FYPCYGLAEATLLVTGGTP	GSSYKTLTLAKEOF	QDHRVHF
FadD32	PNTITKFLRRFRPYNLMPAA	VKPSYGMAEAVVYLATTKA	GSPPTSTEFDADSL	ARGHAEL
FadD26 mtFAAL	AATIKRFADRFARFNLQERV	I R P S Y G L A E A T L Y V A A P E A I R P S <mark>Y G</mark> L A E A T V Y V A T S K P	GQPPETVDFDTESL	TAGQARP SAGHAKP
FadD21 PKAL-1	PNTLSRFCNRFAPYNFREDM KDRCKRLLS.IFPOVTH	I R P S Y G L A E A T L Y V A S R N S F I O G Y G M T E L V V L S C V T P F	GDKPEVVYFEPDKL: DDNFE	STGSANR
seFACL	PEAWEWYWKKIGKEKCP	VVDTWWQTETGGFMITPLP	G	
FadD17 FadD15	ARLGHFYRGAGLT	IYEGYGLSGTSGGVAISQF	N	
ACSM2A ttFACL	ETLENWRAQTGLD RSLIARFERMGVE	IRES <mark>YG</mark> QTETGLTCMVS VRQG <mark>YG</mark> LTETSPVVVQNFV	KSHLESLSEEE	
FadD5 asFACL	DALLROMSATFPETQ	ILAAFGQTEMSPVTCML	LGED	
FadD7	AQAALALQTEFAAP.	VVCAFGMTEATHQVTTTQI	EGIDQ	<u></u>
		gate motif 3	insertion	motif
ecFAAL	TT $\xrightarrow{\beta 16}$ $\xrightarrow{\beta 17}$	тт тт	TT ^{β19}	. 🔶 тт
	380 390 ADCAEMDAUCEEUNCEEU	400 DE UCIEID NEACMDU	410	420
1pFAAL	A.DDNSPGSYKLVSSGNP	IQEVKIID.PDTLIPC	DFDQVGEIW	. VQSNSV
FadD32 FadD30	V.AADAPNAVAQVSAGKVGV S.TFETERATRLIRYHSDDK	SEWAVIVD.ADTASEL EPLLRIVD.PDSNIEL	PDGQIGEIW GPGRIGEIW	. LHGNNL . IHGKNV
FadD26	C.GTDGSVGTELISYGSP.D C.AGG., GATSLISYMIP P	PSSVRIVN.PETMVEN	PPGVVGEIW	.VHGDHV
FadD21	C.EPKTGTPLLSYGMP.T	SPTVRIVD.PDTCIEC	PAGTIGEIW	.VKGDNV
SeFACL	AIELKAGSATR	PFFGVQPALVDNEGHPQ	EGATEGNLVITDSW	PGQARTL
FadD17 FadD15	LDTPAGALGP	LPGGIQIVD.PDTGEPC PVPGNSLRIAD	PTGVVGELVN	.TAGPGG .VRGGVV
ACSM2A	KTMKIKPGYMGT	AASCYDVQIIDDKGNVLP.	.PGTEGDIGIRVK.	PIRPIGI
FadD5	AIAKRGSVGRVIP	TVAARVVDQNMNDVPV	GEVGEIV	.YRAPTL
ASFACL	TETPVVSTGLVGR	VRIVRIGGGVDEIV	ANGEEGELIV PAGAVGEIW	. AASDSA

	α16		β20	β21
ecfaal	430	440	450	460
ecFAAL	MSGYFGDQVS	.QDEI.AATGWLD	TGDLGYL.LD	GYLYVTGRI
FadD32	GTGYWNQPEE.TRHAFAGKIKDD GTGYWGKEEE.SAOTFKNILKSRISESR	E.RSAIYLR AEGAP.DDALWVR	TGDLGFL.HE	DHLYIAGRI
FadD30	STGYHNADDALNRDKFQASIREA	.SAGT.PRSPWLR	TGDLGFI.VG	DEFYIVGRM
mtFAAL	ANGYWQKPDE.SERTFGGKIVTP	.SPGT.PEGPWLR	TGDSGFV.TD	GKMFIIGRI
FadD21	AEGYWNKPDE.TRHTFGAMLVHP	.SAGT.PDGSWLR	TGDLGFL.SE	DEMFIVGRM
SeFACL	FGDHERFEQT	.YF.S.TFKNMYF	SGDGARRDED	GYYWITGRV
FadD17	FEGYYNDEAA	.EAER.MAGGVYH	SGDLAYRDDA	GYAYFAGRL
ACSM2A	FSGYVDNPDK	.TAAN.IRGDFWL	LGDRGIKDED	GYFQFMGRA
ttFACL FadD5	TGGYYGNEEA	TRSALTPDGFFR	TGDIAVWDEE	GYVEIKDRL
asFACL	FVGYLNQPQA	.TAEK.LQDGWYR	TSDVAVWTPE	GTVRILGRV
FadD7	VRGYLGDPTI	.TAAN.FTDGWLR	TGDLGSLSAA	GDLSIRGRI
	β22 β23 α17	624		B25
ecFAAL		$TT \longrightarrow TT$	—	
ecFAAL	KDLII, IRGRNIWPODIBYIAEOEPEIH	SGDATAFVTAOE		
1pFAAL	KDLII.IYGKNHYPÕDIEFSLMĤSPLHH	VLGKC <mark>A</mark> AFVIQĒE	HEY	
FadD32 FadD30	KDLVI.IDERNHYPODIECTAGESTKAL KDLII.ODGVNHYPDDIETTVKEFTG	GRVAAFSVPAN	IQLPQTVFDDS)G.V	HAGLKFDPE
FadD26	KDLLI.VDGRNHYPDDIEATIQEITG	GRAAAIAVPDD)I.T	
mtFAAL FadD21	KDLLI.VYGRNHSPDDIBATIQEITR KDMLI.VYGRNHYPEDIBSTVOEITG	GRCAAISVPGD)RST)H.T	
PKAL-1	KDLIK.LNGYQVSPTEIENVILTLPK	.VAEVAVVGIEDE	LCG	
FadD17	GDWMR.VDGENLGTAEIESALVAHPK	. ATEVAVYPVPDP	VVG	
FadD15	KEIIVTAGGKNVAPAVLEDQLRAHPL	. ISQAVVVGDAKP	FIG	
ttFACL	KDLIK.SGGEWISSVDLENALMEHPA	.VVETAVISSPDF .VKEAAVVAIPHP	VRG	
FadD5	KDMII.SGGENIYCAELENVLASHPD	.IAEVAVIGRADE	:KWĜ	
FadD7	DDMII.SGCENIHPSEIDRVLGTAPG KELIN.RGCEKISPERVEGVLASHPN	.VTEVVVIGLADO .VMEAAVFGVPHO	2RWG 2LYG	
	hinge region	_		
		0 0000000	α18	0.0.0.0
ecraal	510	520	?	530
ecFAAL	LQIQCRISD	EERRGQLIH	HALAAR	IQSEFGV.T
lpFAAL	DTSEOLVIVGERA	DVAQDNLFN AGTHKLDHOPIVI	DIRAA	IAVGHGVTV
FadD30	EHLVIAAEVRTEHGP	DKVTIMDFŠTIKF	RLVVSA	LSKLHGLHV
FadD26	EKLVAIIELKKRGDS	AEEVMLKLRSVKF DQDAMARLGAIKF	REVISA	LSSSHGLSV
FadD21	EKLVTVIELKLLGDS	AGEAMDELDVIKN	INVTAA	ISRSHGLNV
PKAL-1	OAIYAYVTLNHGEEP	SPELYA.	EVRNWVRK	
FadD17	DQVMAALVLAPGTKF	DAI	KFRAFLTE	QPDL
FadD15 ACSM2A	EVVKAFVVLA	SOFLSHDPEQLTE	KELQQH.VKSV	ILAVSHAESI
ttFACL	ERPLAVVV	GEKPTPE	SELNEHLLKAG	F
FadD5 asFACL	QSVTACVVPR	LGETLSAD	DLGE.FLTDR	6L 6L
FadD7	EAVAAVIVPR	ESAPPTRE	SELVQFCRER.	L
OCFAAT.		α19		
cornin	540 550	560 570	?	
CFAAL	AAIDLLPPHSIPRTSSGKPARAEA	KKRYQKAYAASLN RKHIIDKTIDIV	VQESLA	 FF
FadD32	RDVLLVSAGTIPRTSSGKIGRRAC	RAAYLDGSLRSGV	/GSPTVFA	TSD
FadD30	TDFLLVPPGALPKTTSGKISRAAC	AKQYGANKLQRVA	ATFP	
mtFAAL	ADLVLVAPGSIPITTSGKVRRGAC	VEQYRQDQFARLI	DA	
FadD21	ADLVLVPPGSIPTTTSGKIRRAAC	VEQYRLQQFTRLI MVV)G	
SeFACL	GPLATPDVLHWTDSLPKTRSGKIMRRIL	RKIAAGDTSNLGI	DTSTLADPGVV	EKLLEEKQA
FadD17	GHKQWPSYVRVSAGLPRTMTFKVIKRQL RKFRILPVDFTEDTGELTPTMKVKRKVV	SAEGVACADPVWE	····IRR····	
ACSM2A	APYKYPRKIEFVLNLPKTVTGKIQRAKL	RDKE	· · · · · · · · · · · · · ·	
ttFACL FadD5	AKWQLPDAYVFAEEIPRTSAGKFLKRAL	REQYKNYYGGA		FRRE NROK
asFACL	ADFKRPKRYFILDQLPKNALNKVLRRQL	VQQVSS	·····	
FadD7	AAFEIPASFQEASGLPHTAKGSLDRRAV	AERFGHSV		•••••
	highly conserved			
ecFAAL	loop region in			
	C-domain			
ecFAAL lpFAAL				
FadD32				
FadD30 FadD26				
mtFAAL				
FadD21 PKAL-1				
SEFACL	IAMPS			
FadD17 FadD15				
ACSM2A				
FadD5	L			
asFACL				
radul				

Supplementary Figure 17. Sequence alignment of PKAL-1 with FAAL enzymes. The

FAAL enzymes (in green) are ecFAAL from *Escherichia coli*, lpFAAL from *Legionella pneumophila*, mtFAAL from *Mycobacterium tuberculosis*, and FadD21, FadD26, FadD30, and FadD32 from *M. tuberculosis*, and FACL enzymes (in blue), including seFACL from *Salmonella enterica*, ttFACL from *Thermus thermophilus*, asFACL from *Alcaligenes sp.*, ACSM2A from human, and FadD5, FadD7, FadD15, and FadD17 from *M. tuberculosis*. The conserved motifs, including the insertion motif that is present in the FAAL enzymes, but missing in PKAL-1 and FACL enzymes, are indicated.

Supplementary Figure 18. Comparison of the modeled PKAL-1 structure to the structures of FACL enzymes bound to CoA substrates. PKAL-1 was modeled using Phyre2⁴, and six

templates 5GXD, 6EQO, 6PLJ, 5ES8, 6MFZ, and 5U89 were selected for modeling, enabling 100% of residues to be modeled at >90% confidence. Using Pymol 2.3.3, the PKAL-1 structural model was then overlaid with the structures of three FACL enzymes in the thioester-forming conformation: (a) 1PG4, the structure of acetyl-CoA synthetase from Salmonella enterica (seFACL), bound to adenosine-5'-propylphosphate and CoA (in red), (b) 3EQ6, the structure of the human medium-chain acyl-CoA synthetase (ACSM2A) bound to AMP and butyryl-CoA (in red), and (c) 3CW9, the structure of 4-chlorobenzoate:CoA ligase from Alcaligenes sp. (asFACL) bound to 4-chlorophenyacyl-CoA (in red). In (a), the seFACL structure has a beta hairpin (circled in pink), which contains R191 that binds CoA and which is missing in the PKAL-1 model. A hydrophobic pocket for the adenine ring of CoA that is formed by I196 in the beta hairpin and F193 and G165 is also missing in the PKAL-1 model. In (b), the ACSM2A structure has several residues, including R501, R542, Y540, and O139, which are important for binding of the CoA substrate and which are replaced with C434, G473, L471, and E91, respectively, in the PKAL-1 model. In (\mathbf{c}), the asFACL structure has several residues, including W440, S407, K477, R475, and R87, which are important for binding of the CoA substrate and which are replaced with C434, L401, G473, L471, and E91, respectively, in the PKAL-1 model.

Supplementary Figure 19. Loading of PKS-1_ACP1 or NRPS-1_ACP7 by PKAL-1. To determine the carrier protein specificity of PKAL-1, PKAL-1 was incubated with (**a**) holo-ACP7 (positive control), ATP, and C14:0 fatty acid, or with (**b**-**d**) holo-ACP1 from PKS-1, ATP, and C12:0 fatty acid (**b**), C14:0 fatty acid (**c**), or C16:0 fatty acid (**d**). Samples were analyzed by MALDI to determine if the fatty acid substrates were loaded onto the respective carrier proteins.

Supplementary Figure 20. Kinetic data for PKAL-1 against various fatty acid substrates. a PKAL-1 was analyzed in an enzyme-coupled continuous kinetic assay using C8:0, C10:0, C12:0, C14:0, and C16:0 fatty acids as substrates. Kinetic constants, including K_m (b), k_{cat} (c), and k_{cat} / K_m (d), were obtained using GraphPad software. Data represent the mean \pm SEM of three independent experiments. Source data are provided as a Source Data file.

Species	235	236	239	278	299	301	322	330	331	517
C. elegans	D	V	S	F	Т	G	Ι	Ι	W	Κ
C. angaria	D	V	S	F	Т	G	Ι	Ι	W	Κ
C. japonica	D	V	А	F	Т	G	Ι	V	W	Κ
C. brenneri	D	V	S	F	Т	G	Ι	Ι	W	Κ
C. remanei	D	V	S	F	Т	G	Ι	V	W	Κ
C. briggsae	D	V	S	F	Т	G	Ι	V	W	Κ
C. tropicalis	D	V	S	F	Т	G	Ι	Ι	W	Κ
A. suum	D	V	Μ	Y	F	G	Ι	Ι	W	Κ
T. canis	D	V	Μ	F	F	G	Ι	Ι	W	Κ
D. immitis	D	V	Μ	F	Y	G	Ι	Ι	W	Κ
O. volvulus	D	V	V	F	Y	G	Ι	V	W	Κ
L. loa	D	V	V	F	Y	G	Ι	V	W	Κ
B. malayi	D	V	Μ	F	F	G	Ι	Ι	W	Κ
P. pacificus	D	V	F	F	Ι	G	Ι	Ι	W	Κ
P. exspectatus	D	V	F	F	Ι	G	Ι	Ι	W	Κ
S. carpocapsae	D	V	F	F	Y	G	Ι	Ι	W	Κ
B. xylophilus	D	V	F	F	Ι	G	Ι	Ι	W	Κ
A. ceylanicum	D	V	Μ	F	F	G	Ι	V	W	Κ
A. duodenale	D	V	Μ	F	L	G	Ι	Ι	W	Κ
O. dentatum	D	V	L	F	F	G	Ι	V	W	Κ
N. americanus	D	V	F	F	V	G	Ι	V	W	Κ
H. bacteriophora	D	V	V	F	F	G	Ι	V	W	Κ
H. contortus	D	V	F	F	F	G	Ι	V	W	Κ

Supplementary Table 1. A domain selectivity codes for the PKS-1 A₁ domain from various nematode species.

Enriched	Predicted function from WormBase	Initial	Defective
genes		strain used	in
		for	nemamide
		screening	production?
C24A3.4	Predicted to have CoA-transferase activity; homolog of human	VC40591	Yes
	AMACR (alpha-methylacyl-CoA racemase)		
srv-1	Serpentine receptor, class V		
T22F3.12	Predicted to have peptidyl-prolyl cis-trans isomerase activity;		
	ortholog of PPIAL4A (peptidylprolyl isomerase A like 4A);		
	PPIAL4D (peptidylprolyl isomerase A like 4D); and PPIL6		
	(peptidylprolyl isomerase like 6)		
F49C12.10	Predicted to have methyltransferase activity	VC20249	Yes
(nemt-1)	Durdisted to have anothing events in Carolanite dama france estimiter		
annc-3	hamalag of human ZDUUC21 (zing finger DUUC type)		
	nomolog of numan ZDHHC21 (Zine ninger DHHC-type		
cvk-1	Predicted to have Rho GTPase binding activity and actin binding		
Cyn-1	activity		
C32E8.6	Contains AMP-dependent synthetase domain	No strain	Yes
	1 5	available	
		(RAB60,	
		RAB61	
		generated)	
T05A1.5	Ortholog of human SLC22A9 (solute carrier family 22 member 9)		
pks-1	Polyketide synthase	N/A	Yes
C08G5.6	No homology to known protein domains		
C03F11.4	No homology to known protein domains; located in the genome near <i>pks-1</i>	VC40279	No
ZK112.6	Weak homology to acetyl-CoA synthetase		
Y46H3C.7	No homology to known protein domains		
C41A3.2	No homology to known protein domains; enriched in coelomocyte,		
	germ line, head mesodermal cell, and sensory neurons; located in		
	the genome near <i>pks-1</i>		
aexr-1	Predicted to have neuropeptide receptor activity		
R04A9.6	No homology to known protein domains; enriched in AVE and		
	hypodermis		
acy-2	Predicted to have adenylate cyclase activity; involved in adenylate		
	cyclase-modulating G protein-coupled receptor signaling pathway		
000115-11	and nematode larval development		
C23H5.11	No nomology to known protein domains		
F2/C8.2	Contains an acyl-CoA N-acyltransferases domain; enriched in		
	GABAergic neurons, body wall muscle cell, excretory cell, and		
nan 52	Scall $contains prion like (O/N risk) domains envised in chalingersis$		
pqn-32	neurons coelomocyte germ line germline precursor cell and head		
	mesodermal cell		

Supplementary Table 2. Genes with enriched expression (> 5-fold) in the CANs.

pak-1	Member of P21-activated kinase family; exhibits GTP binding		
	activity and protein kinase activity; involved in hemidesmosome		
	assembly, inductive cell migration, and motor neuron axon		
	guidance		
T12G3.4	Ortholog of human APMAP (adipocyte plasma membrane-		
	associated protein)		
Y54E5A.2	No homology to known protein domains; enriched in males;		
	involved in spermatogenesis		
nrps-1	Nonribosomal peptide synthetase	N/A	Yes
F27C8.3	No homology to known protein domains		
ace-3	Exhibits acetylcholinesterase activity; involved in hatching and		
	regulation of backward locomotion; expressed in body wall		
	musculature, neurons, pharyngeal muscle cell, and vulva		
ZK112.5	No homology to known protein domains; enriched in coelomocyte,		
	male-specific tissues, and pharynx		
F13H8.9	Ortholog of human SCLY (selenocysteine lyase)	RB2336	No
lips-13	Predicted to have lipase activity		
F09C12.6	Predicted to have G-protein coupled receptor activity		
moc-1	Predicted to have molybdopterin adenylyltransferase activity and		
	molybdopterin molybdotransferase activity; expressed in tail;		
	ortholog of human GPHN (gephyrin)		
F42C5.6	Contains SUP-1-like domain; expressed in AVE		
K10C2.12	Contains ubiquitin-like domain; expressed in AVG, RIM, and		
	command interneuron		
acbp-6	Predicted to have fatty-acyl-CoA-binding activity		
acs-9	Member of fatty acyl-CoA synthetase family; predicted to have	VC40189	Yes
(pkal-1)	catalytic activity		
swt-1	Exhibits sugar transmembrane transporter activity; localizes to		
	golgi and plasma membrane; ortholog of human SLC50A1 (solute		
	carrier family 50 member 1)		
Y71H2B.1	Predicted to have fatty-acyl-CoA binding activity	VC40597	Yes
F40E3.5	Predicted to have protein serine/threonine phosphatase activity	VC40998	No

Genes were identified using the dataset of Cao *et al.* and GExplore, applying an enrichment ratio of 5-fold in the CANs and a false detection rate of 0.05.^{5,6} Enrichment ratio reflects the ratio of gene expression in the cell type where the gene is most highly expressed versus gene expression in the cell type where the gene is next most highly expressed. Genes were selected for screening for involvement in nemamide production based on the putative enzymatic role of the encoded protein and the availability of a corresponding loss-of-function mutant. C03F11.4 was selected based on its proximity to *pks-1* in the genome.

Strain	Genotype	Mutation	Background	Resource
N2	wild type			CGC
VC40591	C24A3.4(gk961371) X	Large deletion		CGC
VC20249	F49C12.10(gk208727) IV	R176Opal		CGC
VC40279	C03F11.4(<i>gk551362</i>) X	R144Opal		CGC
RB2336	F13H8.9(<i>ok3172</i>) II	754bp deletion with		CGC
		28 bp insertion		
VC40597	Y71H2B.1 <i>(gk712674)</i> III	W136Opal		CGC
VC40998	F40E3.5(gk930567) I	Q47Ochre		CGC
VC40189	acs-9(gk504580) X	Q436Amber		CGC
RAB43	nrps-1(gk186409[C4_S1934N];	Located in NRPS-	VC20469 (4X	CGC
	<i>gk186410[C</i> 4_ <i>D1971N])</i> III	1_C_4	outcrossing)	
RAB45	Y71H2B.1 <i>(gk712674)</i> III	W136Opal	VC40597(2X	CGC
			outcrossing)	
RAB51	<i>nrps-1(reb8[ACP₇_S307V])</i> III	NRPS-1_ACP7	N2	CRISPR-Cas9
RAB52	<i>pks-1(reb9[C1_H6685A])</i> X	PKS-1_ C_1	N2	CRISPR-Cas9
RAB53	<i>nrps-1(reb10[C₃_H1486A])</i> III	NRPS-1_ C_3	N2	CRISPR-Cas9
RAB54	<i>pks-1(reb11[TE₁_S7593A])</i> X	$PKS-1_TE_1$	N2	CRISPR-Cas9
RAB55	<i>nrps-1(reb12[TE₂S2803A])</i> III	NRPS-1_TE ₂	N2	CRISPR-Cas9
RAB56	pks-1(reb13[TE1_S7593C];	$PKS-1_TE_1$	N2	CRISPR-Cas9
	reb14[TE1_G7596A]) X			
RAB57	nemt-1(reb15) IV	306 bp deletion with	N2	CRISPR-Cas9
		27 bp insertion		
RAB58	pkal-1(reb21) X	154 bp deletion with	N2	CRISPR-Cas9
		single base 'T'		
		insertion		
RAB59	pkal-1(reb28) X	552 bp deletion	N2	CRISPR-Cas9
RAB60	C32E8.6(reb23) I	991 bp deletion with	N2	CRISPR-Cas9
		10 bp insertion		
RAB61	C32E8.6(<i>reb24</i>) I	993 bp deletion	N2	CRISPR-Cas9
RAB62	C24A3.4(<i>reb16</i>) X	1361 bp deletion	N2	CRISPR-Cas9
RAB67	pkal-1(reb28); pks-			Outcrossing
	<i>l(reb11[TE₁_S7593A])</i>			
RAB68	pkal-1(reb28);			Outcrossing
RAB69	nemt-1(reb15); pks-1(reb11[TE ₁ _			Outcrossing
	S7593A])			
RAB72	rebEx15 (Pnemt-1::gfp, 50 ng/µL;		N2	Transgenesis
	CAN::mcherry, 50 ng/ μ L)			
RAB73	rebEx16 (Ppkal-1::gfp, 50 ng/µL;		N2	Transgenesis
	CAN::mcherry, 50 ng/µL)			
RAB74	rebEx17 (PC32E8.6::gfp, 50 ng/µL;		N2	Transgenesis
	CAN::mcherry, 50 ng/µL)			

Supplementary Table 3. Strains used in this study.

RAB76	nemt-1(reb15);			Transgenesis
	1::nemt-1::sl2::mcherry, 50 ng/µL)			-
RAB77	pkal-1(reb28); rebEx20(Ppkal-			Transgenesis
	1::pkal-1::sl2::mcherry, 50 ng/µL)			-
RAB78	C32E8.6(reb24);			Transgenesis
	rebEx21(PC32E8.6::C32E8.6::sl2::			c
	mcherry, 50 ng/µL)			
RAB79	C32E8.6(reb24); rebEx20(Ppkal-			Transgenesis
	1::pkal-1::sl2::mcherry, 50 ng/µL)			-
RAB80	pkal-1(reb28);			Transgenesis
	rebEx21(PC32E8.6::C32E8.6::sl2::			-
	mcherry, 50 ng/ μ L)			
RAB81	Y71H2B.1(gk712674);			Transgenesis
	rebEx22(PY71H2B.1::Y71H2B.1::sl			
	2::mcherry, 50 ng/ μ L)			
RAB82	C24A3.4(<i>reb16</i>);			Transgenesis
	rebEx23(PC24A3.4::C24A3.4::sl2::m			
	cherry, 50 ng/µL)			
RAB89	<i>pks-1(reb22[A</i> 1_G7106E]) X	PKS-1_A ₁	N2	CRISPR-Cas9
RAB103	<i>pks-1(reb29[PCP</i> 2_ <i>S</i> 7463 <i>A])</i> X	PKS-1_PCP ₂	N2	CRISPR-Cas9
RAB109	<i>nrps-1(reb31[A₃_G2337D])</i> III	NRPS-1_ A_3	N2	CRISPR-Cas9
RAB110	<i>nrps-1(reb32[A</i> 2_ <i>G964D])</i> III	NRPS-1_ A_2	N2	CRISPR-Cas9

Strain	Genotype	Sequence
RAB43	nrps-1 (gk186409[C4_S1934N];	Forward: CTGAAGCCTTTATTCAGTGCCAAG
	<i>gk186410[C</i> 4_ <i>D1971N])</i> III	Reverse: CTTGCACTGCTAGAGCTAAGCTTC
RAB45	Y71H2B.1 <i>(gk712674)</i> III	Forward: GGAAAGCACGGAGATTTTGAAG
		Reverse: AGTGATGGGAATGGTCTCTGTT
RAB51	nrps-1(reb8[ACP7_S307V]) III	Forward: GAAGGAGCAGCAAACATCGAGAA
		Reverse: ATCTGAGTGACCTGCTTTCAGAG
RAB52	<i>pks-1(reb9[C1_H6685A])</i> X	Forward: CATCTGTAAACCCTGCAGATATTGC
		Reverse: CGGCATCGCAGAAAACTGATAATGC
RAB53	<i>nrps-1(reb10[C₃_H1486A])</i> III	Forward: GAAGCTGGTGGAGTTGTCCAATGCT
		Reverse: GAAACTGTATCCCAGTTCTCTGGAG
RAB54	<i>pks-1(reb11[TE1_S7593A])</i> X	Forward: GGTGATTAAATCTGGAGTAC
		Reverse: TAGTCCAGAGAAGACGTACT
RAB55	<i>nrps-1(reb12[TE₂_S2803A])</i> III	Forward: TCGAGACCAAACTCGGAATC
		Reverse: TCTGAGAAAATGTTCACCGG
RAB56	pks-1(reb13[TE ₁ _S7593C];	Forward: GAGGTGATTAAATCTGGAGTACGGC
	<i>reb14[TE1_G7596A])</i> X	Reverse: TCACTATCCGGTAGTCCAGAGAAG
RAB57	nemt-1(reb15) IV	Forward: AGTGGCTTTGCCTTTCCTCCTT
		Reverse: AGCCCTCAACTACTTCATCAGTG
RAB58	pkal-1(reb21) X	Forward: GAGCTCGGGATTTCTCAAGGT
		Reverse: CAATTCTGCAACACAGAATGTCG
RAB59	pkal-1(reb28) X	Forward: GAGCTCGGGATTTCTCAAGGT
		Reverse: CAATTCTGCAACACAGAATGTCG
RAB60	<i>C32E8.6(reb23)</i> I	Forward: GCTTCAACTCCAGAGAATCAGG
		Reverse: CAACGGCTCTCCGCTCTTAAG
RAB61	<i>C32E8.6 (reb24)</i> I	Forward: GCTTCAACTCCAGAGAATCAGG
		Reverse: CAACGGCTCTCCGCTCTTAAG
RAB62	C24A3.4(<i>reb16</i>) X	Forward: CTCTGCCGTACCAGTGATGTTCTA
		Reverse: CTATCCATGTGCTACCAAACTTGTC
RAB89	<i>pks-1(reb22[A</i> 1_G7106E]) X	Forward: CACCACTATACCAATTCGAAGAACTG
		Reverse: AGTGACTTGTCAACTTTCCCACTTG
RAB103	<i>pks-1(reb29[PCP</i> 2_ <i>S</i> 7463 <i>A])</i> X	Forward: GAGACTCACTGAGCAATGAAACTTG
		Reverse: TCCAGATTTAATCACCTCTTCAGC
RAB109	<i>nrps-1(reb31[A₃_G2337D])</i> III	Forward: CTACCAGCAATTCTTTACTGCTAATTC
		Reverse: CTTCTCAATTCTACAGACATCTCCA
RAB110	<i>nrps-1(reb32[A</i> 2_G964D]) III	Forward: CCGTATCTCAAATCATAGGCC
		Reverse: CCTATGTCCTCGCACCTTCACCTG

Supplementary Table 4. Single worm PCR primers for mutant strains in this study.

Strain	Genotype	Wild type	Mutant	Enzyme digestion
RAB43	nrps-1	445 bp	445 bp	Wild type is cut by BtsIMutI to
	(gk186409[C ₄ _S1934N];			265bp + 180bp; no cut for
	<i>gk186410[C₄_D1971N])</i> III			mutant
RAB45	Y71H2B.1 <i>(gk712674)</i> III	700 bp	700 bp	Wild type is cut by HinfI into
				450bp + 200bp + 50bp;
				mutant is cut by HinfI into
				500bp + 200bp
RAB51	nrps-1(reb8[ACP ₇ S307V])	820 bp	820 bp	Mutant is cut by AatII into
	III			438bp + 382bp
RAB52	<i>pks-1(reb9[C1_H6685A])</i> X	1098 bp	1098 bp	Mutant is cut by SphI into
				750bp + 348bp
RAB53	$nrps-1(reb10[C_3_H1486A])$	993 bp	993 bp	Mutant is cut by AseI into
	III			658bp + 335bp
RAB54	<i>pks-1(reb11[TE</i> 1_ <i>S</i> 7593 <i>A])</i> X	562 bp	562 bp	Mutant is cut by SphI into
				355bp + 207bp
RAB55	nrps-1(reb12[TE ₂ _S2803A])	539 bp	539 bp	Mutant is cut by NheI into
	III			318bp + 221bp
RAB56	pks-1(reb13[TE ₁ _S7593C];	574 bp	574 bp	Mutant is cut by KasI into
	reb14[TE1_G7596A]) X			364bp + 210bp
RAB57	nemt-1(reb15) IV	981 bp	702 bp	
RAB58	pkal-1(reb21) X	1723 bp	1570 bp	
RAB59	pkal-1(reb28) X	1723 bp	1171 bp	
RAB60	<i>C32E8.6(reb23)</i> I	1405 bp	424 bp	
RAB61	<i>C32E8.6(reb24)</i> I	1405 bp	412 bp	
RAB62	C24A3.4(<i>reb16</i>) X	1863 bp	502 bp	
RAB89	<i>pks-1(reb22[A</i> 1_G7106E]) X	1350 bp	1350 bp	Mutant is cut by Sall into
				914bp + 436bp
RAB103	<i>pks-1(reb29[PCP</i> ₂ <i>S</i> 7463 <i>A])</i>	1057bp	1057bp	Mutant is cut by Sall into
	Х			914bp + 436bp
RAB109	nrps-1(reb31[A3_G2337D])	1009bp	1009bp	Wild type cut by BspEI to
	III			395bp + 614bp
				(mutant not cut)
RAB110	nrps-1(reb32[A2_ G964D])	1062bp	1062bp	Mutant cut by SalI to 380bp +
	III			682bp

Supplementary Table 5. Single-worm PCR information used to confirm genotype of wildtype and mutant worm strains used in this study.

Strain	Genotype (alleles)	DNA encoding sgRNA (20 bases+NGG, and vector for
		cloning) or crRNA
RAB51	nrps-1(reb8[ACP ₇ S307V]) III	CTCCAGCTCGGCGAGTCTTA AGG (pTM55-FE*)
RAB52	<i>pks-1(reb9[C1_H6685A])</i> X	ATCATATTTTAACTGATGGT <u>TGG</u> (pTM55-FE*)
RAB53	<i>nrps-1(reb10[C₃_H1486A])</i> III	GGCTTCTACCATCGCAGATC <u>AGG</u> (pTM55-FE*)
RAB54	<i>pks-1(reb11[TE₁_S7593A])</i> X	TTCGTTATGGGGCACTCGAT GGG (pTM55)
		CTTCGTTATGGGGCACTCGA <u>TGG</u> (pTM55)
		GTTATGGGGCACTCGATGGG <u>TGG</u> (pTM55)
RAB55	<i>nrps-1(reb12[TE₂_S2803A])</i> III	ACCTCTAAATTGGTGTTCAT <u>TGG</u> (pTM55)
		TTCATTGGCGCCTCGTCTGC <u>TGG</u> (pTM55)
RAB56	<i>pks-1(reb13[TE</i> 1_ <i>S</i> 7593 <i>C</i>];	TTCGTTATGGGGCACTCGAT <u>GGG</u> (pTM55)
	<i>reb14[TE₁_G7596A])</i> X	CTTCGTTATGGGGCACTCGA TGG (pTM55)
		GTTATGGGGGCACTCGATGGG TGG (pTM55)
RAB57	nemt-1(reb15) IV	TATTACTACAGTTATGGCTT <u>TGG</u> (pTM55-FE*)
		CGAGAAATATGGAACACAGG <u>TGG</u> (pTM55-FE*)
RAB58	pkal-1(reb21) X	AAACTATTGGGCACTTTCGG <u>AGG</u> (pTM55-FE*)
		CCCAGAATCCAGATGCATGG TGG (pTM55-FE*)
		TCTTGTGGACATATTCTGCC <u>AGG</u> (pTM55-FE*)
RAB59	pkal-1(reb28) X	AAACTATTGGGCACTTTCGG <u>AGG</u> (pTM55-FE*)
		CCCAGAATCCAGATGCATGG TGG (pTM55-FE*)
		TCTTGTGGACATATTCTGCC <u>AGG</u> (pTM55-FE*)
RAB60	C32E8.6(reb23) I	CTTCCATTCTTCCATGCGGG <u>TGG</u> (pTM55-FE*)
		GACGTGATCCGGAAAGTGGA GGG (pTM55-FE*)
RAB61	C32E8.6(reb24) I	CTTCCATTCTTCCATGCGGG <u>TGG</u> (pTM55-FE*)
		GACGTGATCCGGAAAGTGGA GGG (pTM55-FE*)
RAB89	<i>pks-1(reb22[A</i> 1_G7106E]) X	AGGGACACCTGTTGAGCCAC <u>TGG</u> (pTM55-FE*)
RAB103	<i>pks-1(reb29[PCP</i> 2_ <i>S</i> 7463 <i>A])</i> X	AGCAATTTGAATAGCATTGA <u>GGG</u> (pTM55-FE*)
RAB109	<i>nrps-1(reb31[A₃_G2337D])</i> III	rCrUrUrCrGrGrUrGrUrArCrCrCrGrUrUrGrUrUrC
		rGrUrUrUrUrArGrArGrCrUrArUrGrCrU
RAB110	<i>nrps-1(reb32[A</i> 2_ <i>G964D])</i> III	rGrCrUrUrArCrGrUrCrArCrCrUrCrArArCrArUrC
		rGrUrUrUrUrArGrArGrCrUrArUrGrCrU

Supplementary Table 6. gRNA sequences used for CRISPR-Cas9 in this study.

* pTM55-FE is a modified version of pTM55 (a gift of Patrick McGrath) and was mutated to enable a higher level of recognition efficiency⁷ by Cas9.

Strain	Genotype (alleles)	Repair template*
RAB51	nrps-	ATGAAGTTGAAACCACTCCTCTACCATACCTCGGAATCG
	1(reb8[ACP7_S307V])	ACGTCTTAAGACTCGCCGAGCTGGAGTACCACGTGGCT
	III	AGT (underlined: AatII; S307V: TCC»GTC)
RAB52	pks-	TGATAACAGTCGAATTCACATCGTTTTCAATCA <u>GCAT<mark>GC</mark></u>
	<i>l(reb9[C1_H6685A])</i> X	AATTTTAACTGATGGTTGGTCAATGACTGTTCTTTCTGA
		CACTGT (underlined: SphI; H6685A: CAT»GCA)
RAB53	nrps-	CTGGATGAGTAGCAAAAATAAGTTATTGACAATTTCCATT
	1(reb10[C ₃ _H1486A])	CAC <mark>GCATTAAT</mark> CTGCGATGGTAGAAGCCTGCAGATTCTC
	III	GAG (underlined: Asel; H1486A: CAC»GCA)
RAB54	pks-	TGCCGCACATGCCGGAAACAAGAGAATCTTCGTTATGGG
	1(reb11[TE ₁ _S7593A])	GCATGCGATGGGTGGAATAATGAGTCGCGAAATAGTGGC
	Х	TGAGCTCAAAAT (underlined: SphI; S7593A: TCG»GCG)
RAB55	nrps-	GTGCTGAAAATATTGAAACCTCTAAATTGGTGTTCATTGG
	1(reb12[TE ₂ _S2803A])	CGCC <u>GCTAGC</u> GCTGGTACTTTTGCATTTTCCACGTCACA
	III	ACTTTTTG (underlined: NheI; S2803A: TCG»GCT)
RAB56	pks-	TGCCGCACATGCCGGAAACAAGAGAATCTTCGTTATGGG
	1(reb13[TE ₁ _S7593C];	ACAT <mark>TGC</mark> ATG <u>GGCGCC</u> ATAATGAGTCGCGAAATAGTGGC
	<i>reb14[TE₁_G7596A])</i> X	TGAGCTCAAAAT (underlined: KasI; S7593C/G7596A: TCG»
		TGC/ GGA»GCC)
RAB89	pks-	AGAACTCAATTTGGAAGTATTTACTCCATATTCACCAGTGA
	<i>l(reb22[A₁_G7106E])</i> X	GTCGACAGGTGTCCCTAAAGGAGTTTTGATGGCGGAACA
		GTCA(underlined: Sall; G7106E: GGC»GAG)
RAB103	pks-	GTGGCGCCGACAGATAAATTTGAAAGTATTGGTGGAA <u>ACG</u>
	<i>l(reb29[PCP₂S7463A])</i>	CGTTAAATGCTATTCAAATTGCTCATCGGTTGGCTGAAG
	Х	AG(underlined: MluI; S7463A: TCC»GCG)
RAB109	nrps-1(reb31[A ₃ _	CACCGACTATTGTCTCTCCTACATTATCACAACT <u>AGTGAT</u> AC
	<i>G2337D])</i> III	TACTGGTACACCGAAGTCGGTAGCAATCGGAGCGAAATC
		(bold: changed for crRNA binding purposes; underlined: previous
		BspEI site; G2337D; GGA»GAT)
RAB110	$nrps-1(reb32[A_2])$	CAACAAATCCATCCTATACGACCTAGCTTACGTCAC <u>GTC</u>
	<i>G964D])</i> III	GACAAGTGACAGCACTGGGACCCCGAAACTGGTTGG
		AACCTCATTTG
		(bold: changed for crRNA binding purposes; underlined: SalI; G964D;
		GGA» <mark>GAC</mark>)

Supplementary Table 7. Repair templates used for CRISPR-Cas9 in this study.

* The underlined bases indicate restriction sites designed for screening worms for the desired mutations, and the bases labeled in red code for the amino acid that was mutated. Additional silent base changes made because they were necessary for creating or removing the restriction sites have not been indicated.

Strain	Genotype	Name and Sequence*
RAB72	rebEx15	nemt-1p_SalI_Fwd
		GCGC <u>GTCGAC</u> CGAAAATCTCAAGTCTTGTCTTAA**
		nemt-1p_NotI_Rev
		CATG <u>GCGGCCGC</u> AGTGAATATGTGTTTACGAGTAAATG**
RAB73	rebEx16	pkal-1p_SalI_Fwd
		GCGC <u>GTCGAC</u> GCTATAAATGGGTACCTGGCCGTAA**
		pkal-1p_NotI_Rev
		CATG <u>GCGGCCGC</u> CGTAGAGAAGAAACTGTGACAGTTC**
RAB74	rebEx17	C32E8.6p_SalI_Fwd
		GCGC <u>GTCGAC</u> GTACCGGGAATCGAAAAATTGTCC**
		C32E8.6p_NotI_Rev
		CATG <u>GCGGCCGC</u> TCTTATTGTACAGAATGTTTCTTTCC**
RAB76	rebEx19	nemt-1SL2_SalI_Fwd
		GCGC <u>GTCGAC</u> CGAAAATCTCAAGTCTTGTCTTAA***
		nemt-1SL2_NotI_Rev
		CATG <u>GCGGCCGC</u> AGTGAATATGTGTTTACGAGTAAATG***
RAB77	rebEx20	pkal-1SL2_PstI_Fwd
		CATG <u>CTGCAG</u> GCTATAAATGGGTACCTGGCCGTAA***
		pkal-1SL2_NotI_Rev
		CATG <u>GCGGCCGC</u> TCAATAGTACATTAGCCTATTCTTTTG***
RAB78	rebEx21	C32E8.6SL2_SalI_Fwd
		GCGC <u>GTCGAC</u> GTACCGGGAATCGAAAAATTGTCC***
		C32E8.6SL2_NotI_Rev
		CATG <u>GCGGCCGC</u> TCAATGCAACATATGACGGACTAG***
RAB81	rebEx22	Y71H2B.1SL2_PstI_Fwd
		CATG <u>CTGCAG</u> CCAGATGAAGAAAACGATGGAACT***
		Y71H2B.1SL2_Notl_Rev
		CATG <u>GCGGCCGC</u> TTAAACCCATCCCTCTGGAGGATT***
RAB82	rebEx23	C24A3.4SL2_Sall_Fwd
		GCAG <u>GTCGAC</u> GGTCTCTACAGTGATGACACTCATT***
		C24A3.4SL2_NotI_Rev
		CATG <u>GCGGCCGC</u> TCACAGCTTGGACCGCGCCGCAAA***

Supplementary Table 8. Primers for construction of transcriptional and translational reporter strains.

*The underlined bases indicate restriction sites used for plasmid construction.

**Used to amplify gene promoter for insertion into pPD114.108.

***Used to promoter and gene from genomic DNA for insertion into pBS77-SL2-mCherry.

Purpose	Name and sequence*
PKAL-1 expression vector	pkal-1_for
	CATG <u>CCATGG</u> GGGCGAAATATTATCCAGAAAC
	pkal-1_rev
	CATG <u>GCGGCCGC</u> ATAGTACATTAGCCTATTC
PKS-1_ACP ₁ expression vector	pks-1_acp1_for
	GCGC <u>CCATGG</u> GGCTTTCTGATGCGGAAATTGAGTC
	pks-1_acp1_rev
	CATG <u>GCGGCCGC</u> AGTTGTTGCTTTAGTAACTGGAAC
NRPS-1_ACP7 expression vector	nrps-1_acp7_for
	CATG <u>CCATGG</u> GGAGTGAAGACTCCGATGAAGAAGT
	nrps-1_acp7_rev
	CATG <u>GCGGCCGC</u> TCCGGACCCCAGCGCTTTCTCAC
Mutagenesis of PKAL-1	pkal-1K488A_1
	GTCAAGTGGGGCCATTCAAAAGAATAG
	pkal-1K488A_2
	GATTTTGGCATCTCTTTTATAATTG
Mutagenesis of PKS-1_ACP ₁	pks-1_acp1_1
	ATATACCATGTACTGGTCTGATGCGGAAATTGAG
	pks-1_acp1_2
	CTCCTTCTTAAAGTTAAACAAAATTATTTC
Mutagenesis of NRPS-1_ACP7	nrps-1_acp7_1
	GTACAGTGAAGACTCCGATGAAG
	nrps-1_acp7_2
	CACATATATCTCCTTCTTAAAGTTAAAC

Sup	plementarv	Table 9.	Primers f	or constru	ction of 1	protein ex	pression	plasmids.
~~~~	pro						010001011	

*The underlined bases indicate restriction sites used for plasmid construction.

#### References

- 1 Trautman, E. P., Healy, A. R., Shine, E. E., Herzon, S. B. & Crawford, J. M. Domaintargeted metabolomics delineates the heterocycle assembly steps of colibactin biosynthesis. *J Am Chem Soc* **139**, 4195-4201 (2017).
- 2 Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res* **42**, W320-324 (2014).
- 3 Balibar, C. J., Vaillancourt, F. H. & Walsh, C. T. Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. *Chem Biol* **12**, 1189-1200 (2005).
- 4 Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. *Nat Protoc* **10**, 845-858 (2015).
- 5 Cao, J. *et al.* Comprehensive single-cell transcriptional profiling of a multicellular organism. *Science* **357**, 661-667 (2017).
- 6 Hutter, H. & Suh, J. GExplore 1.4: An expanded web interface for queries on *Caenorhabditis elegans* protein and gene function. *Worm* **5**, e1234659 (2016).
- 7 Chen, B. *et al.* Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. *Cell* **155**, 1479-1491 (2013).