SUPPLEMENTARY MATERIAL

Supplementary Methods

Immunotherapy-treated lung cancer patients

Patients in the training cohort (MCC1) were enrolled in industry-sponsored clinical trials between June 2011 and January 2016 at Moffitt Cancer Center. Majority of the patients (94.6%) in MCC2 cohort treated with standard-of-care immunotherapy between May 2015 and October 2017 at Moffitt Cancer Center. Patients in the VA cohort were treated with standard-of-care immunotherapy between July 2015 and February 2019 at the James A. Haley Veterans' Hospital. Patient data were obtained using electronic medical records and institutional databases.

Common inclusion criteria for clinical trial patients included: patients who were diagnosed with histologically- or cytological-documented NSCLC with advanced/metastatic stage disease with at least one measurable lesion (\geq 10 mm), Eastern Cooperative Oncology Group (ECOG) Performance Status of 0 or 1, and provided written informed consent. Common exclusion criteria included: a concurrent medical condition requiring the use of immunosuppressive medications or immunosuppressive doses of systemic or absorbable topical corticosteroids, and presence of any active autoimmune disease.

Moffitt's Cancer Registry abstracts information from patient electronic medical records on demographics, history of smoking, stage, histology, RECIST, treatment, and vital status. Follow-up for vital status occurs annually through active (i.e., chart review and directly contacting the patient, relatives, and other medical providers) and passive methods (i.e., mortality records). Hematology data were obtained from the CDCS and included: lactate dehydrogenase (LDH), serum albumin, lymphocytes, white blood cells (WBC), neutrophils, fibrinogen, and neutrophil to lymphocyte ratio (NLR). Manually abstracted data included: targeted mutations (*EGFR, KRAS*), history of systemic treatment(s) for current lung cancer staging, ECOG

1

performance status, number of metastatic sites (number of organs that have metastatic lesions), and metastatic sites prior to treatment. Date of progression was abstracted and defined as progressive disease from RECIST or iRECIST definition or clinical progression evaluated by the treating clinicians whenever RECIST data was not available. There was loss to follow-up for 85 (47%), 42 (27%) and 27 (44%) patients in the training, validation 1, and validation 2 cohorts, respectively. The median follow-up time for the patients who were loss to follow-up was 20, 17, and 13 months for training, validation 1 and validation 2 cohorts, respectively. All patient data collected from James A. Haley Veterans' Hospital (VA cohort) were manually collected from electronic medical records of the patients.

Radiomic feature extraction

Peritumoral regions were bounded by the lung parenchyma mask to exclude any peritumoral delineation that exceeds outside of the lung parenchyma. Unstable and non-reproducible radiomic features were eliminated using methods described elsewhere [1] utilizing two publicly available datasets [2, 3]. The "Moist-run" dataset [2] was utilized to identify stable features which consist of 40 CT images of lung tumors with three different segmentation algorithms and three different initialization parameters (e.g., seed point) for each segmentation. The Reference Image Database to Evaluate Therapy Response (i.e., RIDER) test-retest dataset [3] was used to identify reproducible features which consists of 32 lung cancer patients who had two non-contrast chest CT scans acquired 15 minutes apart using the same scanner, acquisition, and processing parameters. Stable features were identified by assessing the concordance correlation coefficient (CCC) between radiomic features extracted using different segmentations from the "Moist-run" dataset. Reproducible features were identified by assessing the CCC between radiomic features extracted test and the retest scans from the RIDER dataset.

The CT images were resampled to a single voxel spacing of 1mm x 1mm x 1mm using cubic interpolation to standardize spacing across all images. Hounsfield units (HU) in all CT images were then resampled into fixed bin sizes of 25 HUs discretized from –1000 to 1000 HU.

Definitions of the Radiomic features

Grey level co-occurrence matrix-based features

The grey level co-occurrence matrix (GLCM) has been proved to be a powerful approach for image texture analysis. The GLCM is a matrix that expresses how combinations of discretized grey levels of neighboring pixels (or voxels in 3-dimensional space) in a region-of-interest are distributed along one of the spatial image directions. In other words, it describes how often a pixel of grey level *i* appears in a specific spatial relationship to a pixel of grey level *j*. Hence GLCM matrix defined as P where each matrix element $p_{ij} = P(i, j)$ represents the number of times a grey level *i* is neighbors with voxels of grey level *j* with an inter-pixel distance and orientation. The GLCM defines a square matrix whose size is equal to the largest grey level N_g appearing in the region-of-interest. Haralick et al (Haralick et al. IEEE Trans Syst Man Cybern, 6:610-621,1973) proposed 14 original statistics (e.g., contrast, correlation, energy) to be applied to the GLCM to measure the texture features. The GLCM inverse difference feature (i.e., "avatar" feature) is a measure of homogeneity, where the feature quantity is greatest if all grey levels are the same. Inverse difference is defined as follows:

$$F_{glcm.inv.diff} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{p_{ij}}{1 + |i - j|}$$

where $N_{\rm g}$ is the number of discretized grey levels inside the region-of-interest.

The seven features that were found to be correlated with GLCM inverse difference were presented in Figure 2B. The definitions for these seven features are presented below.

i) GLCM inverse variance:

GLCM_{inverse variance} =
$$2 \sum_{i=1}^{N_g} \sum_{j>1}^{N_g} \frac{p_{ij}}{(i-j)^2}$$

Grey level run length-based features

The grey level run length matrix (GLRLM) features were first presented by Galloway (M. Galloway, Computer Graphics and Image Processing, 4:172-179, 1975) to quantify texture of an image or region-of-interest. GLRLM is a matrix that consists of counts of the grey level run lengths along a desired spatial direction. A GLRLM is defined as R where each matrix element R(i, j) represents the number of runs of a grey level i of length j. Hence the GLRLM is sized N_g x N_r. Four features utilizing GLRLM were found to be correlated with GLCM inverse difference (Figure 2B).

i) Avg 3D RLV (Run length variance):

$$GLRLM_{rlv} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} (j - \mu)^2 p_{ij}$$

Where $p_{ij} = r_{ij}/N_s$ and the mean run length $\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} j p_{ij}$

ii) Avg 3D LRE (Long runs emphasis):

$$GLRLM_{lre} = \frac{1}{N_s} \sum_{j=1}^{N_r} j^2 r_j$$

where $r_j = \sum_{i=1}^{N_g} r_{ij}$.

iii) Avg 3D RP (Run percentage):

$$GLRLM_{rp} = \frac{N_s}{N_v}$$

Where N_v is the total number of voxels in a region-of-interest (ROI).

iv) Avg 3D SRE (Short runs emphasis):

$$GLRLM_{sre} = \frac{1}{N_s} \sum_{j=1}^{N_r} \frac{r_j}{j^2}$$

v) Avg 3D RLN normalized (Run length non uniformity normalized):

$$GLRLM_{rln} = \frac{1}{N_s^2} \sum_{i=1}^{N_g} r_i^2$$

Grey level size zone-based features

The grey level size zone matrix (GLSZM) counts the number of groups (i.e., zones) of connected pixels with an explicit discretized grey level value and size and was first proposed by Thibault et al (Thibault et al. 2014). The voxel connectedness depends on the desired definition of connectedness where in 3 dimensional approaches is 26-connectedness and in 2 dimensional approaches is 8-connectedness. A

GLSZM defined as S is sized as $N_g \times N_z$ where N_g is the number of discretized grey levels in the region-ofinterest and N_z is the maximum zone size. Each element $s_{ij} = s(i, j)$ is the number of zones with discretized grey level i and size j.

One feature utilizing GLSZM were found to be correlated with GLCM inverse difference (Figure 2B).

i) GLSZM low grey level zone emphasis:

$$GLSZM_{glze} = \frac{1}{N_s} \sum_{i=1}^{N_g} \frac{s_i}{i^2}$$

where
$$s_j = \sum_{i=1}^{N_g} s_{ij}$$
.

Stable and reproducible features

Two separate publicly available datasets (downloaded from: <u>http://www.cancerimagingarchive.net</u>) were utilized to assess stability (The Moist-run dataset [2]), and reproducibility (RIDER dataset [3]) of radiomic features to increase the likelihood of a reproducible and robust radiomics model.

The Moist-run dataset was constructed by the Quantitative Imaging Network (QIN) as part of a lung segmentation challenge [2] and consists of 40 chest CT images of 40 NSCLC patients and one thoracic phantom from five collections of Digital Imaging and Communications Medicine series. Each patient in the dataset had one lesion of interest and the thoracic phantom scan had 12 lesions of interest. The RIDER test-retest dataset which was used to find the reproducible features [3] consisted of 32 NSCLC patients with two separate non-contrast CT scans acquired within 15 minutes of each other using the same scanner with fixed acquisition and

processing parameters. As such, the only variation between the test and retest scans were attributed to patient orientation, respiratory, and movement. The images on these datasets were previously de-identified

Using the Moist run dataset, all radiomic features were computed for 9 different segmentations done by 3 different algorithms which each were run by 3 different initial parameters. Afterwards, concordance correlation coefficient (CCC) metric was calculated to assess inter- and intra-segmentation differences of the radiomic features. The RIDER dataset was utilized to assess reproducibility of radiomic features between test and re-test scans. After extracting radiomic features from both scans of the patients, CCC values were calculated and features that have a CCC < 0.75 were eliminated. Shape features were only extracted from intratumoral regions as they were proven to be highly correlated (Pearson correlation > 0.95) with their peritumoral versions.

Gene expression data for the radiogenomic analyses

Gene expression was IRON-normalized and batch-corrected for RNA quality and Pathway and Gene Ontology Enrichment was performed using Clarivate Analytics MetaCore [4]. For the radiogenomics analysis, the most informative radiomic feature was compared to every gene probesets using two different approaches: correlation and two-group analysis. For the correlation analysis, gene probesets were filtered and determined as statistically significant using the following criteria: Pearson's correlation with a threshold |R| > 0.4, an expression filter with max expression of gene > 5, and an inter-quartile filter (interquartile range > log2 (1.2 fold-changes). Gene probesets were filtered and determined as significant using the following criteria based on a Student's t test P < .001 and mean log fold-changes (LFC) between high and low prognostic radiomic feature of LFC > log2 (1.4 fold-changes). The significant probesets from the two analyses were intersected yielding a final list of probesets significantly associated with the prognostic radiomic feature.

IHC staining procedures for CAIX (human expression)

Slides were stained using a Ventana Discovery XT automated system (Ventana Medical Systems, Tucson, AZ) as per manufacturer's protocol with proprietary reagents. Briefly, slides were deparaffinized on the automated system with EZ Prep solution (Ventana). Heat-induced antigen retrieval method was used in RiboCC (Ventana). The rabbit primary antibody that reacts to *CAIX*, (#ab15086, Abcam, Cambridge, MA) was used at a 1:250 concentration in Dako antibody diluent (Carpenteria, CA) and incubated for 32 min. The Ventana OmniMap Anti-Rabbit Secondary Antibody was used for 20 min. The detection system used was the Ventana ChromoMap kit and slides were then counterstained with Hematoxylin. Slides were then dehydrated, and cover slipped as per normal laboratory protocol.

Positive pixel count algorithm

Automated evaluation of positive staining percentage was defined by the Aperio ImageScope (<u>http://www.leicabiosystems.com</u>) Positive Pixel Count Algorithm which automatically calculates the ratio of the total number of positive stained pixels to the total number of tumor and its immediate microenvironment pixels.

References

1. Tunali I, Hall LO, Napel S, et al. Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions. Med Phys 2019; 10.1002/mp.13808.

2. Kalpathy-Cramer J, Zhao B, Goldgof D, et al. A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results from a Multi-institutional Study. J Digit Imaging 2016;29(4):476-87.

3. Zhao B, James LP, Moskowitz CS, et al. Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology 2009;252(1):263-72.

4. Schabath MB, Welsh EA, Fulp WJ, et al. Differential association of STK11 and TP53 with KRAS mutationassociated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 2016;35(24):3209-16.

9

Supplementary Tables

Supplementary Table 1. Overall survival and progression free survival rates by patient risk groups for MCC1, MCC2, and VA cohorts^a

	Percent survival (95% CI) at:					
	6 months	12 months	24 months	36 months		
	(½ year)	(1 year)	(2 years)	(3 years)		
Overall survival						
Overall						
MCC1 cohort	82.7% (76.3-87.5)	60.8% (52.8-67.9)	42.1% (33.6-50.3)	32.6% (23.8-41.6)		
MCC2 cohort	61.7% (50.7-70.9)	46.2% (35.4-56.3)	22.4% (13.5-32.8)	19.2% (10.2-30.3)		
VA cohort	75.5% (62.7-84.5)	63.0% (49.4-74.0)	31.9% (17.9-46.9)	12.0% (1.2-36.3)		
By risk group						
Low-risk						
MCC1 cohort	100%	100%	88.9% (62.4-97.1)	88.9% (62.4-97.1)		
MCC2 cohort	95.0% (69.5-99.3)	85.0% (60.4-94.9)	38.9% (17.1-60.3)	38.9% (17.1-60.3)		
VA cohort	91.7% (53.9-98.8)	80.2% (40.3-94.8)	80.2% (40.3-94.8)	40.1% (1.3-83.5)		
Moderate-risk						
MCC1 cohort	92.6% (81.5-97.2)	76.4% (62.1-85.9)	59.7% (44.0-72.4)	47.9% (30.7-63.2)		
MCC2 cohort	67.8% (44.0-83.3)	56.7% (32.7-75.0)	33.1% (10.9-57.6)	n/a		
VA cohort	72.2% (45.6-87.4)	66.2% (39.6-83.2)	29.8% (9.7-53.4)	n/a		
High-risk						
MCC1 cohort	81.4% (70.1-88.7)	53.5% (40.0-65.2)	24.5% (12.1-39.2)	15.3% (5.0-30.9)		
MCC2 cohort	62.1% (42.1-76.0)	34.1% (17.8-51.2)	17.1% (5.4-34.4)	8.5% (0.8-28.4)		
VA cohort	74.4% (48.9-88.5)	57.2% (32.1-76.0)	32.7% (7.4-61.8)	n/a		
Very-high-risk						
MCC1 cohort	59.9% (41.8-73.9)	24.3% (10.6-41.1)	12.2% (3.2-27.6)	0%		
MCC2 cohort	16.7% (4.1-36.5)	11.1% (1.9-29.8)	0%	0%		
VA cohort	66.7% (33.7-86.0)	47.6% (18.2-72.4)	n/a	n/a		
Progression-free survival						
Overall						
MCC1 cohort	47.9% (40.4-55.1)	32.8% (25.7-40.0)	22.8% (16.3-30.0)	20.8% (13.9-28.5)		
MCC2 cohort	37.9% (27.7-48.0)	19.6% (11.9-28.7)	9.5% (4.0-18.0)	9.5% (4.0-18.0)		
By risk group						
Low-risk						
MCC1 cohort	75.0% (50.0-88.8)	75.0% (50.0-88.8)	68.8% (42.9-84.7)	68.8% (42.9-84.7)		
MCC2 cohort	73.7% (47.9-88.1)	46.3% (23.2-66.7)	29.8% (9.4-53.7)	29.8% (9.4-53.7)		
Moderate-risk						
MCC1 cohort	65.9% (51.4-77.0)	43.0% (29.1-56.2)	31.2% (18.6-44.7)	25.0% (11.6-41.0)		
MCC2 cohort	23.9% (8.9-42.9)	19.1% (6.1-37.7)	9.6% (0.9-31.0)	n/a		
High-risk						
MCC1 cohort	42.4% (30.6-53.6)	26.7% (16.4-38.0)	9.7% (2.9-21.4)	9.7% (2.9-21.4)		
MCC2 cohort	41.3% (23.0-58.8)	15.0% (4.7-30.8)	3.8% (0.2-16.1)	n/a		
			-			
Very-high-risk						
MCC1 cohort	15.7% (5.9-29.9)	0%	0%	0%		
MCC2 cohort	11.1% (1.9-29.8)	0%	0%	0%		

^aCells with "n/a" indicate all patients were censored prior to that specific time-point.

Supplementary rable 2. Onivariable Co	ix regression ar	ialysis of overall	Survivarior	the chilles.
Clinical covariates	HR	Р	95% CI LL	95% CI UL
Serum albumin, (g/dL)	0.309466	< .001	0.177733	0.538838
Number of metastatic sites	2.289917	< .001	1.498369	3.499618
Previous lines of therapy	1.382078	.007	1.093907	1.746162
Neutrophils, (1e+9/L)	1.054048	.03	1.006576	1.103759
WBC, (1e+9/L)	1.035022	.02	1.006785	1.064052
ECOG	1.666624	.06	0.983612	2.823915
Ratio of: Neutrophils/Lymphocytes	1.028439	.13	0.992106	1.066103
Histology	1.329578	.22	0.845967	2.089653
Sex	0.784563	.24	0.522821	1.177341
Age at initiation of IO (65)	1.220562	.35	0.802604	1.856173
KRAS mutational status	0.774548	.41	0.420311	1.427334
EGFR mutational status	0.909679	.78	0.462681	1.788522
Smoking status	0.939899	.81	0.567665	1.556216
Lymphocytes	1.004999	.98	0.728651	1.386155
Checkpoint inhibitor type				
PD-1 (reference)	1.00			
PD-L1	1.19224	.48	0.728812	1.950347
Doublet	0.6858804	.15	0.4097269	1.14816
Stage IV	1.716386	.36	0.5423838	5.431542

Supplementary Table 2. Univariable Cox regression analysis of overall survival for the clinical covariates.

Supplementary Table 3. Univariable Cox regression analysis of overall survival for radiomic features that are stable and reproducible.

				95% CI	95% CI
Radiomic features [®]	HR	Р	P ^a		UL
Group 1 features					
GICM inverse difference	2 25102		002	1 51690	2 24025
Avg 3D RI N normalized (Run length non uniformity normalized)	2.23402	5.00-05	.003	0.21507	0.67251
GICM inverse variance	0.40097	5.9E-05	.005	0.51597	1 1 2 9 6 7
Avg 3D SRE (Short runs emphasis)	2.38070	9 1E 0E	.004	1.01319	4.12007
Avg 3D RP (Run nercentage)	0.46000	0.10-05	.005	0.33369	0.09194
GI S7M Zone percentage	0.43772	0.0001	.005	0.30348	0.62055
Avg 3D LRE (Long runs emphasis)	2 1 2 2 0 2	0.0001	.005	1 /1221	2 2 2 7 5 5
Avg 3D RI V (Run length variance)	2.10290	0.00028	.02	1.4521	1 72808
Peritumoral Quartile coefficient of dispersion	0 /1027	0.00031	.02	0.2406	4.73090
Peritumoral Coefficient of variance	0.41027	0.00044	.02	0.2490	0.72256
	0.40027	0.00095	.05	0.29077	0.75250
Group 2 features					
Peritumoral GLCM sum variance	2.38627	0.00209	.10	1.3713	4.15248
Peritumoral GLCM cluster tendency	2.38627	0.00209	.10	1.3713	4.15248
GLCM joint max	2.21662	0.00211	.10	1.33449	3.68185
Peritumoral Volume at intensity fraction difference	0.47749	0.00258	.12	0.29526	0.7722
Peritumoral GLCM Joint variance	2.38808	0.00261	.12	1.355	4.20878
Peritumoral Statistical Median absolute deviation	2.31779	0.0038	.17	1.31186	4.09506
Peritumoral Intensity histogram median absolute deviation	2.31941	0.00385	.17	1.31104	4.10336
Peritumoral GLCM cluster prominence	2.47459	0.00489	.21	1.31658	4.65116
Peritumoral mean absolute deviation	2.21715	0.0057	.23	1.26083	3.89883
Peritumoral Volume at intensity fraction 10	0.50543	0.00577	.23	0.31136	0.82047
Peritumoral Intensity histogram mean absolute deviation	2.21584	0.00578	.23	1.25934	3.89882
Peritumoral Avg 3D GV (Grey level variance)	2.29666	0.00602	.23	1.26885	4.15704
Surface to volume ratio (mm2)	0.45788	0.00632	.23	0.26136	0.80215
Peritumoral Avg 3D RE (Run entropy)	2.04588	0.01262	.45	1.16577	3.59045
Peritumoral GLCM sum entropy	2.05341	0.01359	.48	1.15964	3.63606
Peritumoral GLCM correlation	1.67613	0.0163	.55	1.09971	2.55466
Peritumoral Intensity histogram entropy	1.97162	0.01906	.63	1.11772	3.47789
Peritumoral Avg 3D GLN normalize (Grey level nonuniformity normalised)	0.44736	0.023	.74	0.22361	0.89502
Peritumoral Intensity histogram uniformity	0.45465	0.02442	.75	0.22885	0.90325
Peritumoral GLCM Joint Average	1.70369	0.02875	.86	1.05683	2.74647
Peritumoral GLCM Sum average	1.70369	0.02875	.86	1.05683	2.74646
GLCM first measure of information correlation	0.50796	0.02909	.83	0.27646	0.93332
Peritumoral Minimum histogram gradient	0.57727	0.03726	1.00605	0.34422	0.96809
Peritumoral GLCM Joint entropy	1.77844	0.04547	1.18226	1.01167	3.12638
Peritumoral Intensity histogram quartile coefficient of dispersion	1.79419	0.05237	1.30921	0.99403	3.23847
Flatness	0.60238	0.06022	1.4453	0.35504	1.02203
Peritumoral GLSZM Zone size entropy	1.80822	0.06067	1.4453	0.9738	3.35763

GLSZM Small zone emphasis	0 57098	0 075	1 64997	0 30811	1 05812
Peritumoral Volume at intensity fraction 90	1 86338	0.0739	1 9402	0.90262	3 84682
Peritumoral NGTDM Complexity	1 62411	0.03233	2 62401	0.86522	3 04861
Volume at intesity fraction 90	0 76203	0.1312	5 15362	0.46958	1 23661
Volume at intesity fraction difference	1 2654	0.27124	6 25067	0.77457	2 06726
Peritumoral GLCM Difference variance	1 282/17	0.34720	6 25067	0.76171	2.00720
Peritumoral Avg 3D LRE (Long runs emphasis)	0 78181	0.34323	6 / 3829	0./01/1	1 30007
Peritumoral Avg 3D ER (Long runs emphasis)	1 24447	0.40233	6 4 4 1 0 7	0.43342	2 1/007
Peritumoral Avg 3D RF (Run Jeneth variance)	1.24447	0.42940	6 4 4 1 9 7	0.72557	2.14097
Peritumoral CLCM Joint MAX	0.80074	0.44200	6 20002	0.45594	1.41249
	0.81152	0.40754	0.20002	0.40190	1.4250
	0.7122	0.46993	6.07805	0.28366	1.78817
Compactness	0.83801	0.4855	5.63921	0.51	1.37698
Peritumoral ENERGY	1.22883	0.50817	5.3405	0.66744	2.26239
Peritumoral Intensity at volume fraction 90	0.83603	0.54944	5.08168	0.46511	1.50274
Peritumoral Intensity histogram coefficient of variance	1.15359	0.61805	4.94493	0.65788	2.02281
Energy	1.25863	0.62224	4.94436	0.50406	3.14276
Peritumoral GLSZM Low grey level zone emphasis	0.90411	0.78368	4.70208	0.44023	1.85679
Peritumoral NGTDM Coarseness	0.91104	0.84024	4.70208	0.36826	2.25387
Peritumoral Avg 3D LRLGE (Long run low grey level emphasis)	1.02909	0.94955	4.20121	0.42334	2.50163
Peritumoral NGTDM Busyness	1.01946	0.95219	3.79819	0.54301	1.91395
Peritumral Avg 3D RE (Run emphasis)	1.0101	0.98034	2.85657	0.45414	2.24669
Peritumoral Avg 3D SRLGE (Short run low grey level emphasis)	1.0065	0.98681	1.96067	0.46668	2.17077
Group 3 features					
Peritumoral Avg 3D RLN (Run length uniformity)	1.00001	0.42852		0.99998	1.00005
Major Axis Length	1.01174	0.00505		1.00352	1.02003
Longest Diameter	1.00948	0.0053		1.00281	1.01621
Minor Axis Length	1.01596	0.00601		1.00455	1.0275
Least Axis Length	1.01555	0.04569		1.0003	1.03104
GLSZM Grey level non-uniformity	1.00053	0.14298		0.99982	1.00124
Peritumoral GLSZM Zone size non-uniformity	1.00007	0.34269		0.99992	1.00022
Peritumoral GLSZM Grey level non-uniformity	1.00071	0.4389		0.99892	1.00249

^a*P* values are Bonferroni-Holm corrected. HR= hazard ratio; SE= standard error; LL= lower limit; UL= upper limit

^bGroup 1 features are significantly associated with overall survival, group 2 features are not significantly associated with survival, and group 3 features are highly correlated with tumor volume. Group 3 features were not included in the Bonferroni-Holm analyses.

Ov	erall survival	Univariable Model ^a HR (95% Cl)	Multivariable Model ^b HR (95% CI)
Risk gr	oup ^c		
	Low-risk	1.00 (Reference)	1.00 (Reference)
	Moderate-risk	4.07 (0.90 – 18.26)	4.00 (0.83 – 19.17)
	High-risk	4.72 (1.02 – 21.94)	4.54 (0.90 – 23.11)
	Very-high risk	9.72 (2.08 – 45.49)	13.81 (2.58 – 73.93)
Age			1.00 (0.96 – 1.05)
Stage			0.66 (0.23 – 1.93)
ECOG			1.98 (0.99 – 3.94)
Lymph	ocytes		1.13 (0.53 – 2.40)
NLR			1.09 (0.99 – 1.18)

Supplementary Table 4. Univariable and multivariable Cox regression analysis for overall survival for the VA cohort (N = 62)

Abbreviations: SD = standard deviation; HR = hazard ratio; CI = confidence interval; NLR = neutrophils to lymphocytes ratio

^aThe main effects for each risk group with the low risk group as the referent category. ^bThese models included the clinical covariates that were found to be significant different between the training and validation cohorts (Table 1) and the risk groups using the low risk group as the referent category.

^cLow risk group refers to patients who have low GLCM inverse difference (≤ 0.43) and lower number of metastatic sites (1). The moderate risk group refers to patients who either have low GLCM inverse difference (≤ 0.43) and higher number of metastatic sites (≥ 2) or patients who have higher GLCM inverse difference (>0.43), higher serum albumin (≥ 3.9) and lower number of metastatic sites (1). The high-risk group refers to either patients who have higher GLCM inverse difference (>0.43), higher serum albumin (≥ 3.9) and higher number of metastatic sites (≥ 2) or patients who have higher GLCM inverse difference (>0.43), lower serum albumin (<3.9) and lower number of metastatic sites (1). The very-high-risk group refers to patients who have higher GLCM inverse difference (>0.43), lower serum albumin (<3.9) and lower number of metastatic sites (≥ 2).

Supplementary Table 5. Patient characte	eristics by CART r	isk groups ^c for the	MCC1 cohort.		
Characteristic	Low-risk	Moderate-risk	High-risk	Very-high-risk	Pa
Age at diagnosis, N (%)					
Dichotomized					
< 65	9 (42.9)	22 (40.7)	26 (37.1)	11 (31.4)	
≥ 65	12 (57.1)	32 (59.3)	44 (62.9)	24 (68.6)	.79
Sex, N (%)					
Female	8 (38.1)	31 (57.4)	40 (57.1)	16 (45.7)	
Male	13 (61.9)	23 (42.6)	30 (42.9)	19 (54.3)	.32
Smoking status, N (%)					
Never smoker	4 (19.1)	10 (18.9)	12 (17.9)	4 (11.4)	01
Ever smoker	17 (80.9)	43 (81.1)	55 (82.1)	31 (88.6)	.81
Staga N (%)					
Stage, N (%)	2 (0 5)	0 (0)	2 (4 2)	1 (2 0)	
	2 (9.5) 10 (00 E)	U (U)	3 (4.3) 67 (05 7)	1 (2.9) 24 (07 1)	1.4
IV	19 (90.5)	54 (100)	67 (95.7)	34 (97.1)	.14
Histology N (%)					
Adenocarcinoma/others	17 (81 0)	13 (79 6)	53 (75 7)	24 (68 6)	
Squamous cell carcinoma	/ (31.0)	43 (75.0) 11 (20 A)	17 (24 3)	24 (00.0) 11 (31 <i>/</i>)	64
Squamous cen carcinoma	4 (19.0)	11 (20.4)	17 (24.3)	11 (31.4)	.04
Checkpoint inhibitors N (%)					
Anti PD-L1	4 (19.1)	11 (20.37)	24 (34.3)	9 (25.7)	
Anti PD-1	7 (33.3)	16 (29.6)	25 (35.7)	9 (25.7)	
Doublet	10 (47.6)	27 (50.0)	21 (30.0)	17 (48.6)	.29
2000.00		_/ (0010)	(0000)	_/ (.0.0)	
ECOG performance status, N (%)					
0	10 (47.6)	10 (18.5)	15 (21.4)	4 (11.4)	
1	11 (52.4)	44 (81.5)	55 (78.6)	31 (88.6)	.02
Previous lines of therapy on current diag	nosis <i>,</i> N (%)				
None	10 (47.6)	33 (61.1)	10 (14.3)	17 (48.6)	
1	4 (19.1)	13 (24.1)	24 (34.3)	7 (20.0)	
≥2	7 (33.3)	8 (14.8)	36 (51.4)	11 (31.4)	< .001
Number of metastatic sites ^b , N (%)					
1	21 (100)	14 (25.9)	47 (67.1)	0 (0)	
≥2	0 (0)	40 (74.1)	23 (32.9)	35 (100)	< .001
EGFR mutational status, N (%)					
Not Detected	14 (77.8)	36 (87.8)	37 (75.5)	20 (83.3)	
Detected	4 (22.2)	5 (12.2)	12 (24.5)	4 (16.7)	.50
KDAC mutational status NI (0()					
RRAS mutational status, N (%)	7 (50.2)	17 (00 7)	26 (70.2)	11 (04 C)	
Not Detected	/ (58.3)	17 (60.7)	26 (70.3)	11 (84.0) 2 (15 4)	40
Delecleu	5 (41./)	TT (22.2)	11 (29.7)	2 (15.4)	.40
Hematology median (05% CI)					
Serum albumin ^b $(a/d1)$	10(28-12)	/ 1 <i>(</i> / 1₋/ 3)	10(20,11)	36/35-37)	< 001
$\frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \frac{1}$	1 0 (0 8-1 1)	→.⊥(+.⊥ ⁻ 4.∠) 1 2 (1 2_1 <i>1</i>)	(J.J ⁻ 4.1) 1 Δ (1 2.1 5)	1 2 (0 8-1 6)	.001.001
WBC $(1 \rho + Q/I)$	1.0 (0.0 ⁻ 1.4) 6 8 (5 1-2 2)	TIS (TIS-TIA)	1.7 (1.3-1.3) 6 9 (6 <i>1.</i> 7 <i>1</i>)	2 2 (7 1-10 0)	.22 رم
Neutronbils $(1e+9/L)$	4 8 (3 7-6 <i>1</i>)	0.5 (0.4-0.0) Δ 7 (Δ 1-5 3)	ΔΔ(3 Q_Λ Q)	6.1(5.1-7.1)	.02 007
Ratio of: Neutronhils/Lymphocytos	4.0 (3.7-0.4) A 1 (7 7-5 7)	3 <u>4</u> (7 <u>8</u> -1 0)	3 1 (7 8-2 7)	Δ 6 (2 8-7 0)	.007
Ratio of Neutrophils/Lympholytes	-+ (<i>z</i> . / - J. /)	5.7 (2.0-4.0)	J.1 (2.0-J.7)	0 (3.0-7.0)	.004

Abbreviations:

^aP values for continuous variables were calculated using Kruskall-Wallis test and Fisher's Exact Test of categorical variables. All tests were two-sided.

^bSerum albumin and number of metastatic sites were not considered as potential confounders as these covariates were already part of the CART models. CI = confidence interval

^cLow-risk group refers to patients who have low GLCM inverse difference (≤ 0.43) and lower number of metastatic sites (n=1). The moderate risk group refers to patients who either have low GLCM inverse difference (≤ 0.43) and higher number of metastatic sites (≥ 2) or patients who have higher GLCM inverse difference (>0.43), higher serum albumin (≥ 3.9) and lower number of metastatic sites (1). The high-risk group refers to either patients who have higher GLCM inverse difference (>0.43), higher serum albumin (≥ 3.9) and higher number of metastatic sites (≥ 2) or patients who have higher function (≥ 3.9) and higher number of metastatic sites (≥ 2) or patients who have higher GLCM inverse difference (>0.43), higher serum albumin (≥ 3.9) and higher number of metastatic sites (≥ 2) or patients who have higher GLCM inverse difference (>0.43), lower serum albumin (<3.9) and lower number of metastatic sites (n=1). The very-high-risk group refers to patients who have higher GLCM inverse difference (>0.43), lower serum albumin (<3.9) and lower number of metastatic sites (n=1). The very-high-risk group refers to patients who have higher GLCM inverse difference (>0.43), lower serum albumin (<3.9) and lower number of metastatic sites (≥ 2).

covariates that were significantly associated with OS in univariable analyses							
Radiomic Features	HR	Ρ	95%	% CI			
GLCM inverse difference Peritumoral quartile coefficient of	1.23	.03	1.03	1.47			
dispersion	0.09	.002	0.02	0.43			
Serum albumin, (g/dL)	0.36	.002	0.19	0.68			
Number of metastatic sites	2.7	< .001	1.72	4.26			
Previous lines of therapy	1.45	.007	1.11	1.89			
WBC (1e+9/L)	0.99	.85	0.91	1.08			
Neutrophils, (1e+9/L)	1.02	0.79	0.89	1.16			

Supplementary Table 6. Multivariable model of radiomic features and clinical covariates that were significantly associated with OS in univariable analyses

Supplementary Tabl	Supplementary Table 7. Gene list for statistically significant probes							
		Log2 Ratio						
		(High GLCM -	Correlation					
Probeset	Р	Low GLCM)	Coefficient	Symbol	Location	Description		
merck-						carbonic anhydrase		
NM_001216_at	1.32E-05	1.370676338	0.439478749	CA9	9p13.3	9		
merck2-						carbonic anhydrase		
DQ892208_at	2.49E-05	1.250844271	0.433548156	CA9	9p13.3	9		
						family with		
merck-						sequence similarity		
NM_138435_at	0.000522015	0.621354657	0.408057524	FAM83F	22q13.1	83 member F		
merck2-						tyrosinase related		
BC052608_at	0.000601472	-1.14810035	-0.400142163	TYRP1	9p23	protein 1		
merck2-								
BC065305_at	0.000129621	-1.16182618	-0.400529687	C7	5p13.1	complement C7		
merck-								
NM_001009567_s						mannose receptor		
at	0.0005668	-0.505840657	-0.400805476	MRC1	10p12.33	C-type 1		
merck-						collagen type VI		
NM_153264_s_at	8.23E-05	-1.207502221	-0.401264345	COL6A5	3q22.1	alpha 5 chain		
merck-						shroom family		
AK092659_at	5.61E-05	-0.665885655	-0.401815358	SHROOM4	Xp11.22	member 4		
merck2-						junction adhesion		
AJ515553_at	0.000143828	-0.581436069	-0.402041333	JAML	11q23.3	molecule like		
merck-								
NM_004165_at	2.38E-05	-0.931657378	-0.402299785	RRAD	16q22.1	RRAD		
merck-								
ENS10000037067	0.005.00	0.00014070	0 400 450005	5111.4	× 26.2	four and a half LIM		
8_s_at	8.26E-06	-0.63811276	-0.402452885	FHL1	Xq26.3	domains 1		
merck-		0 076777077	0 402260025	F111 4	V=2C 2	four and a half LIM		
	3.15E-00	-0.976777977	-0.403208835	FILI	хү26.3	uomains 1		
merck2-	1 925 05	0.042025020	0.40261000	POPO2	2-12.2			
BX648828_at	1.83E-05	-0.943935929	-0.40361099	RUBUZ	3012.3	guidance receptor 2		
	0 000669776	0 660061462	0 402640886	4001	7-14-2	aquaporin 1 (Colton		
at	0.000008770	-0.009001402	-0.403040880	AQFI	7p14.5			
BC050635 at		-0 75/2111/2	-0 402710847	CELE2	10n1/	family member 2		
merck-	0.081-05	-0.754511145	-0.403710847		10014	single stranded DNA		
ΔE077048 a at	7 66F-05	-0 560297305	-0 404203317	SSBP2	5a14 1	hinding protein 2		
merck-	7.002.05	0.500257505	0.404203317	55512	5414.1	ABI family member		
AK123737 s at	4 98F-05	-0 946965722	-0 404803204	ABI3BP	3a12.2	3 hinding protein		
merck-	4.562 65	0.540505722	0.404003204	ADISDI	5912.2	5 binding protein		
AK091353 at	0 000364347	-0 618962068	-0 405158937	NUDT16	3a22 1	nudix hydrolase 16		
merck-	0.000001017	0.010302000	0.100100000	1100110	5922.1	nddix nydrolase 10		
NM 015717 at	0 000804365	-1 258808138	-0 40528679	CD207	2n13 3	CD207 molecule		
merck-		1.200000100	0110020079	00207	291010			
NM 000231 at	0.000169064	-0.874940131	-0.405591591	SGCG	13a12.12	sarcoglycan gamma		
merck2-						serum deprivation		
NM 004657 at	1.21E-05	-1.111171997	-0.405621821	SDPR	2q32.3	response		
merck-					-1			
NM 003018 s at	0.000833713	-2.146148608	-0.405772801	SFTPC	8p21.3	surfactant protein C		
morek	0.000102147	0 607791077	0 406292629		7021.2	caveolin 2		
merck-	0.000183147	-0.00//819//	-0.400283028	CAVZ	/431.2	CaveOIIII Z		

NM 001233 at						
 merck-						indolethylamine N-
NM 006774 at	3.50E-05	-1.096470411	-0.40702071	INMT	7p14.3	methyltransferase
merck-					F -	cholesterol 25-
NM 003956 at	2.66E-05	-1.117257052	-0.407471565	CH25H	10q23.31	hydroxylase
merck-					I	transcription factor
NM_198392_at	7.04E-06	-1.465595101	-0.407583914	TCF21	6q23.2	21
merck-					6p12.1 6p12.3-	collagen type XXI
NM_030820_at	0.000101006	-1.108105019	-0.407880565	COL21A1	p11.2	alpha 1 chain
merck-						family with
ENST0000036855						sequence similarity
7_at	7.55E-06	-0.95478475	-0.408531546	FAM162B	6q22.1	162 member B
merck-						cytochrome c
NM_032609_s_at	3.10E-06	-0.993974659	-0.408770739	COX4I2	20q11.21	oxidase subunit 412
merck2-						serum deprivation
BM555890_a_at	1.54E-05	-1.065187208	-0.409387768	SDPR	2q32.3	response
merck-						parathyroid
NM_000316_at	0.000802569	-0.554507482	-0.410011189	PTH1R	3p21.31	hormone 1 receptor
merck-						zinc finger protein
AK090694_at	4.38E-05	-0.693074069	-0.410126842	ZNF366	5q13.2 5q13.2	366
merck2-	0.000500.444			05514	40.05.0	GDNF family
NM_005264_at	0.000539411	-0.738028013	-0.41021/1/8	GFRA1	10q25.3	receptor alpha 1
merck-	0 000174011	1 105706271	0 410719605	C1OTNE7	4-15 22	C1q and INF
NIM_031911_a_at	0.000174311	-1.105/962/1	-0.410718695	CIQINF7	4p15.32	related 7
Merck-	0.000107602	0 550120097	0 411070457		11022.2	junction adhesion
NIVI_155200_5_at	0.000197602	-0.559129987	-0.411070457	JAIVIL	11425.5	
merck2-726653 at	0 000305672	-0 564899229	-0 41193139	Ι ΑΜΑ2	6a22 33	alpha 2
merck-	0.000303072	0.504055225	0.41199199	L/ (11/1/ 12	0422.00	
AF074993 at	6.96E-06	-0.571877851	-0.412045353	CAV1	7a31.2	caveolin 1
					· · · ·	long intergenic non-
merck-						protein coding RNA
AK055621_at	0.000219429	-0.889372602	-0.412414835	LINC00968	8q12.1	968
merck-						
NM_001753_at	5.72E-06	-0.630940993	-0.412502185	CAV1	7q31.2	caveolin 1
						sprouty RTK
merck-						signaling antagonist
NM_030964_s_at	9.38E-05	-0.612566723	-0.412609943	SPRY4	5q31.3	4
merck-						
AK093713_at	4.83E-06	-0.906997129	-0.412839223			
merck-	4 775 0.0			51/52		ryanodine receptor
NM_001035_a_at	1.//E-06	-0.942099651	-0.416588769	RYR2	1q43	2
ma a nalv2						AIPase Na+/K+
merckZ-		1.045611021	0 41 9220622		1~72.2	transporting
EB38/139_d_dl	1.12E-05	-1.045011921	-0.418330623	AIPIAZ	1423.2	Subunit alpha 2
NM 01/017 at	4 80F-06	-1 07/865523	-0 /187/015	NTNG1	1n12 2	netrin G1
merck2-	4.802-00	-1.074805525	-0.41874915	NINGI	1013.5	indolethylamine N-
NM 006774 at	1 8/F-05	-1 1/7/17221	-0/18770379	INIMT	7n1/1 3	methyltransferase
merck-	1.042 05	1.1.7/71/221	0.410770373		, http://	meanymanisterase
HSS00001975 s a				10010192		uncharacterized
t	1.33E-05	-0.555345671	-0.420548137	8304	6a23.2	LOC101928304
merck-						microfibrillar
NM_002404_at	4.87E-05	-0.79518393	-0.420697232	MFAP4	17p11.2	associated protein 4

merck-						transcription factor
NM_003206_a_at	6.39E-07	-1.256723496	-0.420972884	TCF21	6q23.2	21
						membrane
merck-						spanning 4-domains
NM_000139_at	0.000759594	-0.896722186	-0.421165414	MS4A2	11q12.1	A2
merck-						PBX/knotted 1
NM_022062_s_at	4.34E-07	-0.827394611	-0.421219534	PKNOX2	11q24.2	homeobox 2
						TAL bHLH
						transcription factor
						1, erythroid
merck-	1 74 5 0 6	0.000404	0 424204007	TAL 4	1-22	differentiation
NIM_003189_at	1.71E-06	-0.823409424	-0.421281907	IALI	1033	Tactor
ΔK057197 a at	0 000112885	-1 5829/8367	-0 /21358/9/	PRGA	1031 1	proteoglycan /
a_at	0.000112005	-1.382348307	-0.421330434	1104	1451.1	
NM 000426 at	0 000227964	-0 586936306	-0 4224352	Ι ΔΜΑ2	6a22 33	alnha 2
merck2-	0.000227504	0.500550500	0.4224332	L/ ((V)/ (2	0922.00	zinc finger protein
AL832100 at	0.000117353	-0.554763515	-0.422497317	ZNF540	19a13.12	540
						surfactant
merck-						associated 1,
AY102069_at	0.000146733	-1.344709354	-0.422630104	SFTA1P	10p14	pseudogene
						Rap guanine
merck-						nucleotide
BC039203_at	7.60E-05	-0.587628672	-0.423279126	RAPGEF5	7p15.3	exchange factor 5
merck2-						slit guidance ligand
BC062365_at	5.42E-05	-0.942233186	-0.423444816	SLIT3	5q34-q35.1	3
merck-						
NM_212464_s_at	7.97E-06	-0.712560384	-0.423771173	CAPN3	15q15.1	calpain 3
merck-	0.000004000	4.475202400	0 400004700	05544	40.25.2	GDNF family
BX648964_at	0.000381206	-1.175392198	-0.423981709	GFRA1	10q25.3	receptor alpha 1
Merck-	0 000208447	0 609250629	0 425120456		10 0 1 2 1 2	
NIVI_152606_at	0.000298447	-0.098250028	-0.425139450	ZINF540	19013.12	540
merck-						open reading frame
AK123264 at	1 88F-05	-0 891514948	-0 425996926	Clorf132	1n32 2	132
////	1.002 05	0.031314340	0.423330320	01011132	1952.2	sodium voltage-
merck-						gated channel alpha
BU681386 at	2.76E-06	-1.558515379	-0.426107186	SCN7A	2q24.3	subunit 7
 merck2-					•	glucosidase alpha,
CB240565_at	1.53E-05	-0.717460833	-0.426664568	GANC	15q15.1	neutral C
						sodium voltage-
merck-						gated channel beta
NM_174934_at	6.67E-06	-0.943362036	-0.426758185	SCN4B	11q23.3	subunit 4
merck-						glutathione
NM_002084_at	3.43E-06	-0.771043271	-0.427463786	GPX3	5q33.1	peroxidase 3
merck-						
NM_018488_at	7.56E-06	-0.88784239	-0.427639025	TBX4	17q23.2	T-box 4
merck-	7 505 00	4 005000050	0 400000004	EN AGNI	4.24	
AL133118_at	7.58E-06	-1.085830953	-0.428022321	EMCN	4q24	endomucin
						ADP-
morek						(Dombrook blood
AKU2773U8 24	6 77F-05	-0 971112662	-0 428367285	ΔRT/	12n12 2	
at	0.772-05	0.571112002	0.420507205		7 21 12	group)
merck-	0.000237851	-0.547434758	-0.428515485	IMEM243	/q21.12	transmembrane

NM_024315_at						protein 243
merck-						MAM domain
NM_153267_at	1.50E-05	-1.481129251	-0.429033119	MAMDC2	9q21.12	containing 2
merck2-						
BC021053_at	0.000265327	-0.804390544	-0.429755873	SELENOP	5p12	selenoprotein P
						FXYD domain
merck						transport regulator
NM 021902 s at	5.78E-05	-0.943043399	-0.430648796	FXYD1	19a13.12	
merck-						integrin subunit
BX106890_a_at	9.05E-06	-1.063343772	-0.431307083	ITGA8	10p13	alpha 8
						cytochrome P450
merck2-						family 21 subfamily
NG_001111_s_at	0.000100391	-1.078026891	-0.431685313	CYP21A2	6p21.33	A member 2
merck2-	F 225 0C	4 4 2 5 7 0 4 0 7 6	0.424000000	EN AGNI	4-24	
AI478811_at	5.32E-06	-1.135784076	-0.431808963		4q24	endomucin
ΔK057923 at	1 96F-06	-1 02717316	-0 /3225/395	ADAIVITS9-	3n1/ 1	RNA 2
merck-	1.502-00	-1.02717510	-0.432234333	7.52	5914.1	carboxypeptidase
NM 001870 at	0.000687921	-0.873028541	-0.432337314	CPA3	3q24	A3
merck-					•	syntaxin binding
AL834346_at	1.24E-05	-1.269938187	-0.433030705	STXBP6	14q12	protein 6
merck-						roundabout
NM_002942_at	6.56E-05	-1.512198445	-0.433032352	ROBO2	3p12.3	guidance receptor 2
						growth
merck-	0.005.00	4 470070464	0 40076457	00540	40, 44, 22	differentiation
NM_004962_at	8.33E-06	-1.470970464	-0.43376457	GDF10	10011.22	factor 10
merck-						transcription
NM 015215 at	0.000517422	-0.832668783	-0.434041057	CAMTA1	1p36.31-p36.23	activator 1
merck-						four and a half LIM
AK058175_a_at	4.66E-06	-0.856094267	-0.434194991	FHL5	6q16.1	domains 5
merck-						
NM_004484_at	7.79E-06	-1.073685005	-0.434742986	GPC3	Xq26.2	glypican 3
						chromosome 8
merck-	5 04 5 05	0 700447050	0.425066242	60 (46	0.40.4	open reading frame
NM_152765_s_at	5.81E-05	-0.723117859	-0.435866312	C80rf46	8q13.1	46
BC142620 at	8 78F-06	-1 19675256	-0 436106626	TBX4	17a23.2	T-box 4
dt	01/02 00	1.13073230	0.100100020	10/11	1,420,5	alcohol
						dehydrogenase 1B
merck2-						(class I), beta
AV653866_at	0.000107965	-1.595989074	-0.438897535	ADH1B	4q23	polypeptide
merck2-						
NM_152547_at	4.83E-07	-1.701825785	-0.440036633	BTNL9	5q35.3	butyrophilin like 9
ma a male 2						AlPase Na+/K+
	1 835-06	-1 3/3722201	-0 //01265/1	ΔΤD1ΛΟ	1023.2	transporting
merck-	1.031-00	1.343723331	0.440130341		1923.2	integrin subunit
NM 003638 a at	1.48E-05	-1.018309335	-0.442618163	ITGA8	10p13	alpha 8
merck-						solute carrier family
NM_058240_s_at	3.08E-05	-0.839862119	-0.444406373	SLC8A3	14q24.2	8 member A3
merck-						alcohol
						areenter

						(class I), beta
merck-						ροιγρερτίαε
NM 152547 s at	7.01E-07	-1.685132055	-0.4504326	BTNL9	5a35.3	butyrophilin like 9
						alcohol
						dehydrogenase 1B
merck2-						(class I), beta
X03350_at	0.00011975	-1.673130597	-0.451055184	ADH1B	4q23	polypeptide
merck-						
ENST0000037524						
7_a_at	9.91E-05	-0.955407969	-0.451579506	TNXB	6p21.33-p21.32	tenascin XB
						transmembrane 4 L
merck2-						six family member
AK092282_at	1.19E-05	-0.84235733	-0.452254129	TM4SF18	3q25.1	18
merck-						
ENST0000037807						integrin subunit
6_at	2.24E-05	-1.010155062	-0.45243341	ITGA8	10p13	alpha 8
						HIG1 hypoxia
merck-						inducible domain
NM_016438_at	5.68E-08	-1.081742653	-0.452722602	HIGD1B	17q21.31	family member 1B
						cytochrome P450
merck2-						family 21 subfamily
NM_000500_at	0.000108697	-1.085759757	-0.453248691	CYP21A2	6p21.33	A member 2
merck2-						microfibrillar
BC047725_at	2.33E-05	-0.998553607	-0.456631723	MFAP4	17p11.2	associated protein 4
merck2-	2 025 05	1 521755022	0 45756447			
ABV00894_dt	5.022-05	-1.521755052	-0.43730447			
NIM 001/152 at	2 09F-05	-0 7582378/2	-0.457710072	FOXE2	6n25 3	forkhead box F2
	2.052.05	0.750257042	0.437710072	10/12	0p23.5	hematopoietic
merck2-						prostaglandin D
NM 014485 at	8 37F-05	-0 964111203	-0 458292656	HPGDS	4a22 3	synthase
merck-	0.072.00	0.001111200	01100202000		192210	leucine rich repeat
NM 018334 at	1.16E-05	-1.12425379	-0.458857073	LRRN3	7q31.1	neuronal 3
						inter-alpha-trypsin
merck-						inhibitor heavy
ENST000029844						chain family
1_a_at	6.61E-06	-1.200919933	-0.461301197	ITIH5	10p14	member 5
merck2-						
NM_019105_at	4.04E-05	-1.005138039	-0.463323093	TNXB	6p21.33-p21.32	tenascin XB
						alcohol
						dehydrogenase 1B
merck-	5 405 05					(class I), beta
BX647469_a_at	5.18E-05	-1.803332146	-0.465262841	ADH1B	4q23	polypeptide
merck-	2 025 06	1 (12047424	0.460000000	TN 455 44.00	17-22	transmembrane
NM_018286_at	3.02E-06	-1.613847131	-0.468823039	TMEM100	1/q22	protein 100
merck2-	0.000426100	0.000007000	0.46024750	CED	10-12 2	complement factor
AI020331_at	0.000436108	-0.09928/666	-0.40934759		тартз.3	
						ADAIVI
						metanopeptidase
morek						WI[[]
		-1 2/5210/01	-0 471570735	ΔΠΛΛΙΤΟΟ	11074 3	type 1 motif 9
	2.995-05	-1.343310481	-0.4/15/8/35	ADAIVI120	11424.3	
merck-	6.62E-05	-0.988050389	-0.473135606	HPGDS	4q22.3	hematopoietic

BC020734_a_at						prostaglandin D
						synthase
merck2-						transmembrane
AK095175_at	2.38E-06	-1.736491019	-0.474890237	TMEM100	17q22	protein 100
merck2-						complement factor
BC057807_at	3.54E-05	-0.846869648	-0.476359552	CFD	19p13.3	D
						inter-alpha-trypsin
						inhibitor heavy
merck2-						chain family
AK027375_at	7.29E-07	-1.239488868	-0.479279361	ITIH5	10p14	member 5
merck-						Fc fragment of IgE
NM_002001_at	3.63E-05	-1.321088694	-0.480942825	FCER1A	1q23.2	receptor la
						inter-alpha-trypsin
						inhibitor heavy
merck-						chain family
NM 030569 at	2.93E-07	-1.392536082	-0.481247896	ITIH5	10p14	member 5
merck2-					·	regulator of cell
BI597924 at	1.51E-07	-0.857341242	-0.486209534	RGCC	13q14.11	cycle
merck2-					•	four and a half LIM
NM 020482 at	6.37E-07	-1.26649873	-0.491293697	FHL5	6q16.1	domains 5
merck-					•	
NM_014279_at	0.000746598	-0.82623735	-0.492027847	OLFM1	9q34.3	olfactomedin 1
merck-						chromosome 1
NM 001007544 a						open reading frame
t	3.07E-05	-1.164078018	-0.499238556	C1orf186	1q32.1	186
merck-						regulator of cell
NM_014059_s_at	9.59E-08	-0.91803703	-0.499821141	RGCC	13q14.11	cycle
merck-						
NM_001765_at	8.79E-06	-1.053206977	-0.505355871	CD1C	1q23.1	CD1c molecule
						vascular endothelial
						growth factor D
merck-				VEGFD		PIR-FIGF
NM_004469 at	3.30E-07	-2.185856675	-0.506521247	PIR-FIGF	Xp22.2	readthrough
merck2-				T		, j
AK226024 at	8.20E-06	-1.089628741	-0.508387798	CD1C	1q23.1	CD1c molecule

Supplementary Table 8. The radiomics quality score (RQS)				
Criteria	Points system	Study point		
Image protocol quality - well-documented image protocols (for example, contrast, slice thickness, energy, etc.) and/or usage of public image protocols allow reproducibility/replicability	+ 1 (if protocols are well-documented) + 1 (if public protocol is used)	2		
Multiple segmentations - possible actions are: segmentation by different physicians/algorithms/software, perturbing segmentations by (random) noise, segmentation at different breathing cycles. Analyse feature robustness to segmentation variabilities	1	1		
Phantom study on all scanners - detect inter-scanner differences and vendor-dependent features. Analyse feature robustness to these sources of variability	1	0		
Imaging at multiple time points - collect images of individuals at additional time points. Analyse feature robustness to temporal variabilities (for example, organ movement, organ expansion/shrinkage)	1	1		
Feature reduction or adjustment for multiple testing - decreases the risk of overfitting. Overfitting is inevitable if the number of features exceeds the number of samples. Consider feature robustness when selecting features	 – 3 (if neither measure is implemented) + 3 (if either measure is implemented) 	3		
Multivariable analysis with non radiomics features (for example, EGFR mutation) - is expected to provide a more holistic model. Permits correlating/inferencing between radiomics and non radiomics features	1	1		
Detect and discuss biological correlates - demonstration of phenotypic differences (possibly associated with underlying gene–protein expression patterns) deepens understanding of radiomics and biology	1	1		
Cut-off analyses - determine risk groups by either the median, a previously published cut-off or report a continuous risk variable. Reduces the risk of reporting overly optimistic results	1	1		
Discrimination statistics - report discrimination statistics (for example, C-statistic, ROC curve, AUC) and their statistical significance (for example, p-values, confidence intervals). One can also apply resampling method (for example, bootstrapping, cross-validation)	+ 1 (if a discrimination statistic and its statistical significance are reported) + 1 (if a resampling method technique is also applied)	1		
Calibration statistics - report calibration statistics (for example, Calibration-in-the-large/slope, calibration plots) and their statistical significance (for example, <i>P</i> -values, confidence intervals). One can also apply resampling method (for example, bootstrapping, cross-validation)	+ 1 (if a calibration statistic and its statistical significance are reported) + 1 (if a resampling method technique is also applied)	0		
Prospective study registered in a trial database - provides the highest level of evidence supporting the clinical validity and usefulness of the radiomics biomarker	+ 7 (for prospective validation of a radiomics signature in an appropriate trial)	0		

	- 5 (if validation is missing) + 2 (if validation is based on a dataset from the same institute) + 3 (if validation is based on a dataset from another	
	institute) + 4 (if validation is based on two datasets	
Validation - the validation is performed without retraining	from two distinct institutes) + 4 (if the study	
and without adaptation of the cut-off value, provides	validates a previously published signature) + 5 (if	
crucial information with regard to credible clinical	validation is based on three or more datasets from	
performance	distinct institutes)	5*
Comparison to 'gold standard' - assess the extent to which the model agrees with/is superior to the current 'gold standard' method (for example, TNM-staging for survival prediction). This comparison shows the added		
value of radiomics	2	2
Potential clinical utility - report on the current and potential application of the model in a clinical setting (for example, decision curve analysis)	2	2
	2	۷
Cost-effectiveness analysis - report on the cost- effectiveness of the clinical application (for example,		
QALYs generated)	1	0
	+ 1 (if scans are open source) + 1 (if region of interest segmentations are open source) + 1 (if code is open source) + 1 (if radiomics features are	
Open science and data - make code and data publicly	calculated on a set of representative ROIs and the	
available. Open science facilitates knowledge transfer and	calculated features and representative ROIs are	
reproducibility of the study	open source)	2**
		22/36 score

	GLCM inverse difference		
		Training cohort	
Clinical covariate	LOW	HIGH	Pa
Age at immunotherapy baseline, N (%)			
< 65	20 (44.4)	48 (35.6)	.29
≥ 65	25 (55.6)	87 (64.4)	
Gender, N (%)			
Female	21 (46.7)	74 (54.8)	.39
Male	24 (53.3)	61 (45.2)	
Smoking status ¹			
Never smokers	8 (18.2)	22 (16.7)	.82
Ever smokers	36 (81.8)	110 (83.3)	
Unknown/Missing			
Stage, N (%)			
III	2 (4.4)	4 (3.0)	.64
IV	43 (95.6)	131 (97.0)	
ECOG performance status, N (%)	/		
0	15 (3.3)	24 (17.8)	.04
1	30 (66.7)	111 (82.2)	
2	0 (0)	0 (0)	
Previous lines of therapy on current diagnos	5IS 10 (42 2)		02
none 1	19 (42.2)	51 (37.8) 26 (26.7)	.82
1	12 (20.7)	30 (20.7) 49 (25 6)	
22	14 (51.1)	48 (55.0)	
Number of metastatic sites			
1 to 2	3 (8 6)	3 (25 0)	87
> 3	1 (2 9)	3 (25.0)	.07
2.5	1 (2.5)	5 (25.0)	
EGER mutational status ¹			
Not Detected	30 (85.7)	77 (79.4)	.46
Detected	5 (14.3)	20 (20.6)	
Detetted	5 (1 110)	20 (2010)	
KRAS mutational status ¹			
Not Detected	16 (64.0)	45 (69.2)	.63
Detected	9 (36.0)	20 (30.8)	
	- ((- 0.0)	
Hematology, median, (Range)			
Serum albumin, (g/dL)	4.0 (3.1-47)	4.0 (2.8-4.9)	.19
Lymphocytes, (1e+9/L)	1.2 (0.5-2.7)	1.3 (0.3-3.7)	.15
WBC, (1e+9/L)	6.5 (0.5-2.7)	7.2 (0.3-3.6)	.24

Supplementary Table 9. Clinical covariates by image feature GLCM inverse difference in the training cohort

Neutrophils, (1e+9/L)	4.8 (3.7-16.8)	4.7 (3.2-61.5)	.38
Ratio of: Neutrophils/Lymphocytes	3.7 (1.2-26.0)	3.7 (1.1-30.4	.89

Abbreviations: CI = confidence interval; NLR = neutrophils to lymphocytes ratio; ^aP values for Smoking status, EGFR mutational status and KRAS mutational status were calculated for patients without missing/inconclusive data. P values for continuous variables were calculated using Mann-Whitney test and Fisher's Exact Test of categorical variables.

Supplementary Figures

Supplementary Figure 1. **Kaplan-Meier survival curves for the MCC1 (training), MCC2 (test), and VA (validation) cohorts. A)** Overall survival for the MCC1, MCC2, and VA cohorts. **B)** Overall survival for the MCC1 and MCC2 cohorts. **C)** Progression-free survival for the MCC1 and MCC2 cohorts. **PFS** was not available for the VA cohort.

TRAINING COHORT

Supplementary Figure 2. Overall survival and progression-free survival for the six risk groups identified by CART in the training

cohort. Groups 2 and 3 and groups 4 and 5 were combined for the subsequent analyses.

Supplementary Figure 3. Time-dependent AUC curves for Cox regression models based on 6, 12, 24 and 36 months for training (top), test (middle) and validation cohorts (bottom). A) AUCs for the final model that included 2 clinical and 1 radiomic feature. B) AUCs for the model with only 2 clinical features. All features and clinical covariates included were dichotomized by novel cut-points found by CART. (mn = months)

Supplementary Figure 4. **Patients on low and very-high risk groups.** First column represents the primary target lesion CT scan. Second column represents the tumor segmentation. Third column represents a gradient image of the segmented area for visualization of the tumor texture. Patient on the top was identified as a low risk patient to immunotherapy and had a less dense tumor phenotype with lower GLCM inverse difference score. Patient on the bottom was identified as a very-high risk patient and had a dense tumor phenotype with higher GLCM inverse score.

Supplementary Figure 5. The patient cohorts utilized in this study. The training cohort was utilized for model building and finding most informative radiomics and clinical covariates. The clinical-radiomics risk-model found in the training cohort were validated in two independent validation cohorts. The prognostic non-immunotherapy cohorts were only used for further validation of the single radiomic feature (GLCM inverse difference) as a pan-signature for survival of lung cancer.

Supplementary Figure 6. Whisker-box plots for GLCM inverse difference. The mean GLCM inverse difference was not statistically significantly different between all three immunotherapy treated cohorts (Student's t test P > .05).