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Example of Atomic Environment Vector Computation

Water

As a simple example of how atom-centred symmetry functions (ACFSs) are used to con-

struct atomic environment vectors (AEVs), let us consider a simple water molecule with the

fictitious coordinates of Table 1

Table 1: Fictitious coordinates for a water molecule.

index x y z
H 1 1 0 0
H 2 0 1 0
O 3 0 0 0

If this is the only system we want to describe, we have only two elements (Ne = 2) and

we need to compute three AEVs, one for each atom.

Radial symmetry functions are parametrised by ηR and Rs; for simplicity we only consider

here ηR = 1 and Rs = {0, 1}. Angular symmetry functions are parametrised by ηA, Rs, θs

and ζ; for simplicity we only consider here ηA = 1, Rs = 0, θs = 0 and ζ = 1.

The atomic environment vector for the oxygen atom (for Ne = 2) has the following form:

GO
3 = [GR

3;H,Rs=0, G
R
3;H,Rs=1, G

R
3,O,Rs=0, G

R
3,O,Rs=1;G

A
3;H,H , G

A
3;H,O, G

A
3;O,O]

Since there are no other oxygen atoms in the system, we have GR
3,O,Rs=0 = 0, GA

3,H,O = 0,

and GA
3,O,O = 0 since such ACSFs depend on one or two neighbouring oxygen atoms within

the cutoff distance Rc (which we consider here large enough to include all atoms of the

system). The atomic environment vector for the oxygen atom therefore reduces to

GO
3 = [GR

3;H,Rs=0, G
R
3;H,Rs=1, 0, 0;GA

3;H,H , 0, 0].
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Explicitly, the non-zero ACSFs composing the AEV for the oxygen atom are

GR
3;H,Rs=0 =

∑
j 6=3
j∈H

e−R
2
3,jfc(R3,j) = e−R

2
3,1fc(R3,1) + e−R

2
3,2fc(R3,2)

GR
3;H,Rs=1 =

∑
j 6=3
j∈H

e−(R3,j−1)2fc(R3,j) = e−(R3,1−1)2fc(R3,1) + e−(R3,2−1)2fc(R3,2)

GA
3;H,H =

∑
j,k 6=3

j∈H,k∈H

[1 + cos(θ3,j,k)]e
−
(

R3,j+R3,k
2

)2

fc(R3,j)fc(R3,k)

= [1 + cos(θ3,1,2)]e
−
(

R3,1+R3,2
2

)2

]fc(R3,1)fc(R3,2)

If we consider Rc to be large enough so that fc(R) ≈ 1 and we use the geometry defined

in Table 1, we can perform an explicit calculation for the particular configuration considered

here (where R3,1 = R3,2 = 1 and θ3,1,2 = π/2):

GO
3 = [2e−1, 2, 0, 0; e−1, 0, 0]

The AEV for oxygen encodes its atomic environment and it is, by construction, rotation-

ally and translationally invariant.

The same procedure can be repeated for every atom of the system, so that all atoms are

described by their own AEV, so that we can describe the whole system with a matrix of

AEVs of dimension Natoms ×NAEVs (where NAEVs depends on the number of elements ne as

well as the number of different values for the parameters Rs, ηR, . . . ).

Fig. 1 shows the atomic environment vectors for water computed with TorchANI.1 Dis-

crepancies with the analytical calculation above come from the fact that the radial part is

multiplied by a factor of 1/4 in the TorchANI implementation (see TorchANI code).
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Figure 1: AEVs for the atoms in the water molecule defined in Tab 1. The two hydrogen
atoms have the same AEVs because of symmetry.
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Ammonia

Let us consider another simple example: ammonia. Again, we only have two elements

(Ne = 2) and we need to compute four AEVs, one for each atom. If we consider the same

parametrisation for radial and angular symmetry functions described above, we have the

following atomic environment vector for nitrogen:

GN = [GR
N ;H,Rs=0, G

R
N ;H,Rs=1, G

R
N ;N,Rs=0, G

R
N ;N,Rs=1;G

A
N ;H,H , G

A
N ;H,N , G

A
N ;N,N ]

since there are no other nitrogen atoms in the system, the AEV for the only nitrogen atom

reduces to

GN = [GR
N ;H,Rs=0, G

R
N ;H,Rs=1, 0, 0;GA

N ;H,H , 0, 0]

Explicitly, denoting dNH the nitrogen-hydrogen distance, we have

GR
N ;H,Rs=0 =

∑
j 6=N
j∈H

e−d
2
NHfc(dNH) = 3e−d

2
NHfc(dNH)

GR
N ;H,Rs=1 =

∑
j 6=N
j∈H

e−(dNH−1)2fc(dNH) = 3e−(dNH−1)2fc(dNH)

GA
N ;H,H =

∑
j,k 6=N

j∈H,k∈H

[1 + cos(θN ;HH)]e
−
(

dNH+dNH
2

)2

fc(dNH)fc(dNH)

= 3[1 + cos(θN ;HH)]e−(dNH)2f 2
c (dNH)

Using dNH = 1 and θN ;HH = 109.5 we have the following atomic environment vector for

nitrogen

GN =
[
3e−1, 3, 0, 0; 3 (1 + cos(109.5)) e−1, 0, 0

]
.

Fig. 2 shows the atomic environment vectors for ammonia computed with TorchANI.1
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Figure 2: AEVs for the atoms in the ammonia molecule defined in Tab 1. The three hydrogen
atoms have the same AEVs because of symmetry.
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Discrepancies with the analytical calculation above come from the fact that the radial part

is multiplied by a factor of 1/4 in the TorchANI implementation (see TorchANI code) and

that the angle between two vectors is computed as θ = arccos(0.95 ∗ c) where c = ~v1·~v2
|~v1||~v2|

instead of θ = arccos(c) (see TorchANI code).
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Gradients

The model, consisting of the AEVComputer and a collection of NNs, can be described as a

function of the atomic coordinates f(~R), returning the binding affinity a:

a = f(~R)

The loss function (MSE loss) is defined as the mean square difference between predicted

and experimental affinities. For a single prediction a and the corresponding experimental

affinity A, the loss function is:

L(a,A) = (a− A)2

Given that a = f(~R), the gradient of the loss function with respect to the atomic coordinates

can be computed using the chain rule

∇~RL(a,A) = ∇~R(a(~R)− A)2 = 2(a− A)∇~Ra = 2(a− A)∇~Rf(~r)

The negative gradient of the loss function indicates the directions where the atoms can be

moved to minimise the loss function, i.e. bring the predicted binding affinity a closer to the

expected binding affinity A.

In some cases, such as classification of actives and decoys, it is clear what the desired

outcome of the model is (i.e. an active molecule) and therefore the loss can be computed

with respect to the desired output. In other cases, such as the prediction of the binding

affinity, the desired outcome A (experimental binding affinity) is usually not known, and

therefore it is not possible to compute the loss and its gradient. However, it remains possible

to compute the gradient of the output with respect to the atomic coordinates.

The gradient of the predicted binding affinity a can be computed by differentiating f
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with respect to the atomic coordinates ~R:

∇~Ra = ∇~Rf(~R).

This gradient can be computed with back-propagation and only requires a forward pass

within the network. The positive gradient of the input indicates the directions where the

atoms can be moved in order to increase (maximise) the predicted binding affinity.

For convenience of visualization, it is possible to show the (magnitude) of the gradient

on each atom as color-coded.
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Table 2: Model performance—with consensus scoring—on the validation set for different
values of d, all else being fixed to optimal values (256-128-64-1 feed-forward atomic NNs,
batch size of 64 and dropout probability of 25%). The approximate training time per epoch
is also reported. Training is performed on an NVIDIA GeForce GTX 1080 Ti GPU.

Distance (Å) RMSE Pearson’s r Time (s/epoch)

0.0 1.52 0.72 1.6
2.5 1.51 0.74 3.3
3.0 1.42 0.76 5.0
3.5 1.37 0.78 5.7
4.0 1.35 0.78 6.3

10



H C O N S P F Cl Br I
Elements

102

103

104

105

Co
un

t
Ligand

(a) Ligand

H C O N S Se
Elements

101

102

103

104

105

Co
un

t

Protein

(b) Protein

Figure 3: Number of atoms—within d = 3.5 Å from the ligand—for each element in the
PDBbind 2016 refined set2 when only protein residues are considered.
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Figure 4: Number of atoms—within d = 3.5 Å from the ligand—for each element in the
PDBbind 2016 refined set.2 The following PDB IDs correspond to selenoproteins: 1uj6,
1nu3, 3gpo, 2wqp, 3m89, 3hx3, 2qry.
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Figure 5: Comparison of per-class Pearson correlation coefficient between AEScore and
GNINA.3,4 The difference in correlation coefficient between the two methods (AEScore −
GNINA) is also reported.
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Figure 6: Per-class Pearson correlation coefficient, with each bar color-coded by the corre-
sponding RMSE in pK units, for the 57 classes of the CASF-2016 dataset. The model is
trained on systems without hydrogen atoms.
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Figure 7: Per-class Kendall correlation coefficient, with each bar color-coded by the corre-
sponding RMSE in pK units, for the 57 classes of the CASF-2016 dataset.
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Figure 8: Per-class Spearman correlation coefficient, with each bar color-coded by the cor-
responding RMSE in pK units, for the 57 classes of the CASF-2016 dataset. The model is
trained on systems without hydrogen atoms.
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Figure 9: Per-class Kendall correlation coefficient, with each bar color-coded by the corre-
sponding RMSE in pK units, for the 57 classes of the CASF-2016 dataset. The model is
trained on systems without hydrogen atoms.
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Figure 10: Pearson’s correlation coefficient for different models incorporating atoms from the
protein and the ligand (P + L, d = 3.5 �A) or atoms of the ligand only (L), for the CASF-2013
and CASF-2016 benchmarks, together with 90% confidence intervals.
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Figure 11: Predicted affinity as a function of the angle of rotation for the CNN-based scoring
function gnina3,4 on the 1O5B complex—the one with smaller absolute prediction error—of
the CASF 2016 data set. Predictions are obtained using the pre-trained Default2018 model.
The complex is rotated around the protein center of mass along the z axis.
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Table 3: Comparison between models incorporating atoms from the protein and the ligand
(P + L, d = 3.5 �A) or atoms of the ligand only (L). The best performance for each test set
is underlined. RMSE values are given in pK units.

Model AEV Test Set RMSE Pearson’s r

AEScore P + L CASF-2013 1.46 0.76
AEScore L CASF-2013 1.65 0.70

AEScore (no H) P + L CASF-2013 1.48 0.75
AEScore (no H) L CASF-2013 1.69 0.67

∆-AEScore P + L CASF-2013 1.53 0.74
∆-AEScore L CASF-2013 1.65 0.68

∆-AEScore (no H) P + L CASF-2013 1.52 0.74
∆-AEScore (no H) L CASF-2013 1.61 0.70

Vina (optim) — CASF-2013 1.83 0.60

AEScore P + L CASF-2016 1.30 0.80
AEScore L CASF-2016 1.49 0.74

AEScore (no H) P + L CASF-2016 1.28 0.81
AEScore (no H) L CASF-2016 1.59 0.69

AEScore95 (no H) P + L CASF-2016 1.22 0.83
AEScore95 (no H) L CASF-2016 1.50 0.72

∆-AEScore P + L CASF-2016 1.34 0.79
∆-AEScore L CASF-2016 1.41 0.76

∆-AEScore (no H) P + L CASF-2016 1.32 0.80
∆-AEScore (no H) L CASF-2016 1.40 0.77

Vina (optim) — CASF-2016 1.75 0.60
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Table 4: Performance of different machine learning and deep learning models for affinity
prediction on the CASF-2013 and CASF-2016 benchmarks. NN denotes feed-forward neural
networks, CNN denotes convolutional neural networks, and ML denotes “classical” machine
learning methods (random forests, gradient boosting trees, ...). “Refined”, “general” and
“core” all refer to the PDBbind dataset.

Model Type Training Set Test Set RMSE Pearson’s r

AEScore† NN Refined 2016 CASF-2013 1.46 0.76
AEScore†(no H) NN Refined 2016 CASF-2013 1.48 0.75
RosENet5 CNN Refined 2016 CASF-2013 1.43 0.80
AGL-Score6 ML Refined 2016 CASF-2013 1.46 0.79
1D2D CNN7 CNN Refined 2013 CASF-2013 1.47 0.78
Res4HTMD5 CNN Refined 2016 CASF-2013 1.48 0.77
NNScore 2.08,9* ML General 2018 CASF-2013 — 0.75
RF Score9,10* ML General 2018 CASF-2013 — 0.75
Pafnucy11 CNN General 2016 CASF-2013 1.62 0.70
Vina (optim) — — CASF-2013 1.82 0.61

AEScore† NN Refined 2016 CASF-2016 1.30 0.80
AEScore†(no H) NN Refined 2016 CASF-2016 1.28 0.81
AEScore95

†(no H) NN Refined 2016 - 95% CASF-2016 1.22 0.83
AGL-Score6 ML Refined 2016 CASF-2016 1.28 0.83
NNScore 2.08,9* NN General 2018 CASF-2016 — 0.82
RF Score9,10* ML General 2016 CASF-2016 — 0.81
pair12 NN Refined 2018 CASF-2016 1.45 0.78
Vina (optim) — — CASF-2016 1.75 0.59

AEScore† NN Refined 2016 Core 2016 1.32 0.80
AEScore†(no H) NN Refined 2016 Core 2016 1.32 0.81
AEScore95

†(no H) NN Refined 2016 - 95% Core 2016 1.22 0.83
1D2D CNN7 CNN Refined 2016 Core 2016 1.21 0.85
Res4HTMD5 CNN Refined 2016 Core 2016 1.25 0.83
RosENet5 CNN Refined 2016 Core 2016 1.24 0.82
KDeep13 CNN Refined 2016 Core 2016 1.27 0.82
AutoDock & RF-Score14 ML Refined 2016 Core 2016 1.36 0.82
DeepAtom15 CNN Refined 2016 Core 2016 1.32 0.81
AK-score (ensemble)16 CNN Refined 2018 Core 2016 — 0.81
gnina17,18• CNN General 2016 Core 2016 1.37 0.80
RF Score10,13 ML Refined 2016 Core 2016 1.39 0.80
Pafnucy11 CNN General 2016 Core 2016 1.42 0.78
gnina17,18• CNN Refined 2016 Core 2016 1.50 0.73
AK-score single16 CNN Refined 2018 Core 2016 — 0.76

† This work.
* Systems that could not be parsed by OpenBabel or RDKit were excluded from the test

sets, resulting in 180 and 276 complexes for CASF-2013 and CASF-2016, respectively.
• 280 protein-ligand complexes in the test set.
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