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Supplemental Methods 
 

1. Ground site and mobile laboratory description 
 
Figure S1A shows the locations sampled by the NOAA mobile laboratory (red trace) as well as 
the ground site located at the City College of New York (CCNY) during US sampling. In addition 
to sampling in the NYC metropolitan area, the mobile laboratory was driven through Denver, CO, 
Chicago, IL, and Pittsburgh, PA to sample urban emissions of VCPs and mobile sources. 
 
Figure S2 shows the drive track of the Tofwerk mobile laboratory from Thun, Switzerland to Trecin, 
Slovakia. Urban regions sampled by the mobile laboratory with population density > 2000 people 
km-2 are shown. 
 

 
Fig. S1. NOAA mobile laboratory drive track across the U.S. with details showing sampling in New York City. The inset 
shows the location of the ground site at the City College of New York (CCNY) and a map illustrating the regions of high 
and low population density. 

 

 
Fig. S2. Tofwerk mobile laboratory drive track across Europe. Urban regions (pop. density > 2000 people km-2) sampled 
by the mobile laboratory are shown. 
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2. Instrument sensitivities and intercomparisons 

 
Table S1 summarizes the measured sensitivities, limits of detection, and precision of the NOAA 
gas-chromatography mass spectrometer (GC-MS), NOAA proton transfer reaction time-of-flight 
mass spectrometer (PTR-ToF-MS), and Tofwerk PTR-ToF-MS for key measured species. The 
PTR-ToF-MS measures major monoterpenes (limonene, ⍺-pinene, and β-pinene) with similar 
sensitivities; consequently, PTR-ToF-MS measurement of total monoterpenes is not dependent 
on the specific monoterpene distribution. The NOAA PTR-ToF-MS sensitivities are reported 
based on ion counts normalized to the reagent ion at m/z 19 (normalized counts per second, 
ncps). For species that were not directly calibrated, we estimate sensitivities for the NOAA PTR-
ToF-MS following the methods described Sekimoto et al. (1). The Tofwerk PTR-ToF-MS uses a 
Vocus drift tube, which is tuned to reduce the transmission of ions with m/z < 45; consequently, 
sensitivities are reported based on counts per second. 

 
The GC-MS has well-described, non-linear sensitivities that are specific to each compound 

for which it is calibrated. The sensitivities are for the selected ion measured (SIM) mass to charge 
ratio (m/z) at a nominal response of 10 normalized counts. The methods for determining precision 
and limits of detection (LOD) are described in Lerner et al. (2) and have been updated here using 
calibrations conducted in summer 2018. 
 
Table S1. Instrument sensitivities, precision, and limit of detection for gas-species reported here.  

  NOAA PTR-ToF-MS WAS-GC-MS Tofwerk PTR-ToF-MS 

  

Species 

Sensitivity 

(ncps/ppbv) 

LOD‡ 

(pptv) 

Sensitivity 

at 10 ncts 
(ncts/ppb) 

LOD 

(pptv) 

Sensitivity 

(cps/ppbv) 

LOD 

(pptv) 

 𝛼-pinene 27 ± 4 7 80 ± 15 0.5 1240 30 

 𝛽-pinene 27 ± 4 7 73 ± 8 9 - - 

 limonene 25 ± 3 6 38 ± 6 6 - - 

 benzene 50 ± 7 10 140 ± 20 0.8 2934 50 

 toluene 58 ± 8 10 133 ± 12 1.4 - - 

 ethanol 1.35 ± 0.56 150 - - - - 

 D5-siloxane 28 ± 3 5 - - 1800 30 

 PCBTF 69 ± 7  5 - - - - 

 ‡ Calculated as the signal + 3 times S/N ratio during background measurements. LOD for 
NOAA PTR-ToF-MS reported for 30 s measurements during ground site measurements. LOD 
for Tofwerk PTR-ToF-MS reported for 1 s measurements during mobile sampling 

 
Figure S3 compares WAS-GC-MS measurements of the monoterpene sum (limonene, α -

pinene, β-pinene, and lesser abundant monoterpenes), benzene, toluene, and C8 aromatics 
(ethylbenzene, o-, m-, and p-xylene) with the average NOAA PTR-ToF-MS signal measured 
during canister filling. For the VOC measurements described in this work, the measured mixing 
ratios agree to within 10-20% and no significant differences are observed between the two 
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seasons. Figure S4 shows comparisons of two additional VCP tracers - parachlorobenzotriflouride 
(PCBTF) and p-dichlorobenzene. The GC-MS was not calibrated for these species and 
comparisons are shown as normalized counts per second. The two instruments agree with an R2 
of 0.97 for PCBTF and 0.88 for p-dichlorobenzene.  

 

 
 
Fig. S3. Inter-comparison of NOAA PTR-ToF-MS and WAS-GC-MS for benzene, toluene, C8 aromatics, and the sum 
of monoterpenes. Box and whiskers indicate the % difference between the instruments for summer (orange) and winter 
(green) 

 
Fig. S4.  Intercomparison of NOAA PTR-ToF-MS and WAS-GC-MS for PCBTF and p-dichlorobenzene. GC-MS data 
are reported as normalized counts because a calibration standard for these two species was not available for this study. 
The estimated sensitivities of 137 ± 2 and 276 ± 9 are consistent with the sensitivities of calibrated species shown in 
Table S1. 
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Other VOCs measured by NOAA PTR-ToF-MS are used to evaluate the bottom-up inventory 
described in Section 3. Included in this comparison are measurements of common solvents, such 
as acetone and ethanol, PCBTF from solvent-based coating emissions, p-dichlorobenzene from 
pesticides, D5-siloxane from personal care products, and D4-siloxane from adhesives and other 
industrial uses. Alkane measurements from WAS-GC are also compared to constrain inventory 
sources described in Section 3, which includes both mobile sources and VCPs. 
 

3. Bottom-up anthropogenic emissions inventory and comparison with ambient VOC/CO 
ratios 

 
For the ozone modeling conducted in this study, we estimate VOC emissions from mobile 

sources, VCPs, and fugitive leaks from pipeline infrastructure as described below. The emissions 
are estimated for both winter and summer, though there is little apparent seasonality. The 
emissions are then evaluated with field measurements of VOC/CO mixing ratios measured at the 
CCNY ground site located in upper Manhattan. In the following discussion, we describe the 
VOC/CO measurements conducted at CCNY, describe the development of a bottom-up emission 
inventory for NYC, then compare the inventory to the observations for NYC. 
 

3.1   Ambient VOC/CO measurements during winter  
 

During the first two weeks sampling period in March, 2018, three winter storms impacted 
the New York City region. During this period, strong winds transported clean air from the northwest 
of the CCNY campus. In the last week of the field campaign, stagnant conditions trapped air 
masses in Manhattan, as evident by rising enhancements in CO and VOCs, such as 
monoterpenes (Fig. S5). We estimate VOC/CO ratios during the stagnation period (from 3/25 to 
3/29), and the ratios are listed in Table S2. We utilize measurements from all hours during the 
episode, assuming that photochemistry is limited, and that measurements in Manhattan reflect 
emission ratios. We also estimate VOC/CO ratios for alkanes, cycloalkanes, alkenes, aromatics, 
and monoterpenes using WAS-GC-MS measurements. During the stagnant pollution period, ~70 
canister samples were collected. Species are calculated as an emission ratio if the VOC and CO 
mixing ratios correlated with R2 > 0.30. Using the NOAA PTR-ToF-MS, we estimate VOC/CO 
ratios of oxygenates, C9 aromatics, and VCP tracers including D4-siloxane, D5-siloxane, 
parachlorobenzotriflouride, and p-dichlorobenzene. We first average the high time-resolution 
measurements of VOCs from the NOAA PTR-ToF-MS and CO to 15 minutes, and then regress 
the slope during the stagnant pollution period. 
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Fig. S5. Time series of monoterpene and carbon monoxide mixing ratios during wintertime measurements. The clean 
period was affected by a series of winter storms, which were followed by a period of stagnant weather leading to an 
accumulation of pollutants. The scatter plot inset shows correlations between monoterpene and CO mixing ratios during 
the stagnation period. 

 
For most species, measured wintertime VOC/CO ratios reported in Table S2 were unaffected 

by atmospheric chemistry. One exception are the monoterpenes, which are highly reactive 
towards ozone and the OH radical. During winter 2018, day-time ozone concentrations at CCNY 
ranged between 10-20 ppb. Figure S6A shows the evolution of limonene under wintertime 
atmospheric conditions. This simulation was conducted using the Lagrangian box model 
described in Section 5. In this simulation, ozone is initialized to 20 ppb, background ozone 
concentrations are set to 20 ppb, biogenic emissions of isoprene are turned off, photolysis rate 
constants are lower by a factor of 3 from summertime values, and the temperature is held constant 
at 0ºC. All other meteorological parameters are the same as those described in Section 5. In this 
simulation, peak OH concentrations are ~1 x 106 molecules cm-3, which is an order of magnitude 
lower than for summertime simulations. 
 

Even under wintertime conditions, over 50% of limonene reacts away within 0.5 hr of 
emission (Fig. S6). Shown for comparison are the modeled profiles for hydrocarbons (HC8) and 
small aromatics (TOL). Panel (B) shows the evolution of the same species, but during 
summertime conditions to highlight seasonal differences. The monoterpene emissions were 
determined during a stagnation period when wind speeds in NYC were < 5 m s-1. Under these 
conditions, the air exchange rate over the city amounts to 1.5 - 2 hr-1, and measured monoterpene 
mixing ratios may have been underestimated by 50%. The monoterpene/CO ratio reported in 
Table S2 reflects the measured ratio (2.1 g kg-1) adjusted for a 50% loss.   
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Fig. S6. Evolution of limonene, hydrocarbons (HC8), and aromatic species (TOL) under (A) wintertime and (B) 
summertime oxidation conditions. Shown is the evolution of the dilution-corrected measurements, normalized to the 
initial concentrations at time = 0. 
 

3.2 Ambient VOC/CO measurements during summer 
 

One week of ground site sampling was conducted during the three-week sampling period 
in July, 2018 (7/13 – 7/18). We calculate VOC/CO ratios for the NOAA PTR-ToF-MS and WAS-
GC-MS (~50 canisters) in the same manner as for winter (Table S2). Unlike winter, we limit 
ambient VOC/CO ratios to nighttime hours following Borbon et al. (3) in order to exclude the 
effects of chemistry (which are greater during summer) on the apparent VOC/CO ratios. In 
general, the correlations of VOCs with CO were lower in the summer, likely reflecting influence of 
atmospheric chemistry. A strong seasonal pattern in VOC/CO ratios is not observed, and most 
measurements agree to within ~10% between winter and summer. 

 
Table S2. Summary of VOC/CO enhancement ratios measured at the CCNY ground site. 

 
 
VOC Species 
(WAS-GC-MS) 

 
Winter 

VOC/CO 
(g/kg)  

 
Summer 
VOC/CO 

(g/kg) 
 

 
 

VOC Species 
(NOAA PTR-ToF-MS) 

 

 
Winter 

VOC/CO 
(g/kg) 

 

 
Summer 
VOC/CO 

(g/kg) 
 

 
ethane 
propane 
n-butane 
2-methylpropane 
n-pentane 
2-methylbutane 
n-hexane 
2-methylpentane 
3-methylpentane 

 
23 
16 
18 
9.5 
9.3 
14 
3.7 
2.5 
2.5 

 
24 
14 
13 
9.3 
** 
** 
3.3 
** 
** 

 
ethanol 
acetone 
methyl ethyl ketone 
D4-siloxane 
D5-siloxane 
PCBTF 
p-dichlorobenzene 
monoterpenes 
 

 
53 
8.3 
2.0 
0.73 
2.6 
0.97 
0.53 
4.2a 

 
89 
25 
5.2 
0.47 
1.9 
** 
**  
** 
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n-heptane 
n-octane 
2,2,4-trimethylpentane 
n-nonane 
n-decane 
 
methylcyclopentane 
cyclohexane 
methylcyclohexane 
 
ethene 
propene 
1-butene 
cis/trans-2-butene 
1,3-butadiene 
3-methyl-1-butene 
 
benzene 
toluene 
C8 aromatics 
C9 aromatics 

1.7 
1.2 
2.5 
1.6 
1.9 
 
1.6 
1.5 
1.9 
 
18 
3.3 
0.5 
0.64 
0.41 
0.14 
 
3.2 
6.3 
9.1 
2.7 

1.6 
1.3 
** 
1.8 
2.2 
 
** 
** 
** 
 
7.9 
2.0 
0.48 
** 
0.27 
** 
 
2.7 
5.6 
7.2 
3.2 
 

**   VOC/CO has an R2 less than 0.30. 
a. Accounts for estimated ~50% chemical loss rate based on Fig. S6 
 

3.3 FIVE-VCP inventory description 
 
Mobile sources comprise both on-road and off-road gasoline and diesel engines. We 

estimate nitrogen oxides (NOx) and CO emissions utilizing the Fuel-based Inventory of Vehicle 
Emissions, or FIVE (4-6). Briefly, on-road gasoline and diesel fuel sales are reported by state 
each year (7). Similarly, off-road gasoline (8) and diesel (9) fuel sales are reported by state each 
year. The most recent reports of mobile source fuels are for 2017, and projected to 2018 based 
on refinery fuel sales volumes (10, 11). To estimate tailpipe emissions from on-road vehicles, we 
utilize NOx and CO emission factors (in g/kg fuel) estimated from tunnel and near-road remote 
sensing studies described by McDonald et al. (6). The regression analysis is updated to include 
more recent studies that occurred from 2015-18 for both light-duty (12-14) and heavy-duty (15, 
16) vehicles. Cold-start emissions are accounted for by utilizing the EPA MOVES model (17). 
Tailpipe and non-tailpipe emissions of VOCs are estimated by ratio to CO (5, 18). Off-road 
gasoline emission factors are based on laboratory testing (19, 20) and remote sensing of 
recreational boats (21). Off-road diesel emission factors are from the EPA NONROAD model (22). 
For three-dimensional chemical transport modeling, mobile source emissions are spatially- and 
temporally-allocated according to the NEI 2014 (23). Seasonal adjustment factors are taken into 
account between winter and summer. In winter, cold-start emissions from on-road gasoline 
vehicles are higher (17), but evaporative gasoline emissions lower (24). A summary of mobile 
source fuel use and emission factors are provided in Table S3 for Manhattan. 
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Table S3. Summary of fuel use, emission factors, and VOC emissions for mobile source engines 
in Manhattan, NY during the NY-ICE/LISTOS 2018 field measurements. 

 

 
Source Category 

 

Fuel Use 
(t/d) 

 

NOx EF 
(g/kg) 

 

CO EF 
(g/kg) 

 

 

VOC EF 
(g/kg) 

 

VOC Emis 
(t/d) 

 
On-road Gasoline 
    tailpipe (winter) 
    non-tailpipe (winter) 
    tailpipe (summer) 
    non-tailpipe (summer) 
 
On-road Diesel 
 
Off-road Gasoline 
 
Off-road Diesel 

 
 
1310 ± 90 
1310 ± 90 
1310 ± 90 
1310 ± 90 

 
740 ± 70 

 
360 ± 180 

 
120 ± 10 

 
 

2.7 ± 0.4a 
-- 

2.5 ± 0.4a 
-- 
 

14 ± 2b 
 

16 ± 4c 
 

22 ± 7d 

 
 

19 ± 2a 
-- 

13 ± 1a 
-- 
 

4 ± 2b 
 

470 ± 80c 
 

11 ± 5d 
 

 
 

1.6 ± 0.2e 
0.88 ± 0.46f 
1.1 ± 0.1e 
1.1 ± 0.6f 

 
0.58 ± 0.29g 

 
60 ± 40c 

 
1.8 ± 1.0d 

 
 

2.1 ± 0.3 
0.6 ± 0.3 
1.4 ± 0.3 
1.4 ± 0.7 

 
0.4 ± 0.2 

 
21 ± 18 

 
0.2 ± 0.1 

 
a. Light-duty gasoline vehicle running exhaust emission factor estimated by regression analysis of tunnel 

and near-road remote sensing studies, updated from McDonald et al. (6). Scaled to include cold start 
emissions based on EPA MOVES model (17). 

b. Heavy-duty diesel vehicle running exhaust emission factor estimated by regression analysis of tunnel 
and near-road remote sensing studies, updated from McDonald et al. (6). 

c. Based on emission factor testing of two- and four-stroke gasoline engines (19, 20) and recreational 
boats (21). 

d. From EPA NONROAD model (22). 
e. Tailpipe VOC EF estimated by ratio to CO from McDonald et al. (18). 
f. Tailpipe vs. non-tailpipe VOC EF determined to be 50/50 split in summer based on literature values 

(24-26) and EPA MOVES model (17). In winter, tailpipe vs. non-tailpipe VOC EF estimated to be 65/35 
split based on Rubin et al. (24) and ambient temperature differences between winter and summer in 
New York City. 

g. Tailpipe VOC EF estimate by ratio to CO from Yanowitz et al. (27). 
 
VCP emissions are estimated following McDonald et al. (28). Briefly, a mass balance of the 

petrochemical industry was performed for the year 2012 where per capita use of coatings, inks, 
adhesives, personal care products, cleaning agents, and pesticides was estimated. We assume 
consumer usage of VCPs has not changed significantly between 2012 and 2018. Emission factors 
were based on a review of indoor air quality literature (28). The only emission factors that have 
been adjusted here are for architectural/industrial coatings and consumer/industrial adhesives to 
account for more stringent regulations in New York State relative to federal standards (29), and 
to account for increasingly stringent VOC standards implemented between 2012 and 2018. Most 
VCP emissions are found in the area source inventory, with a small fraction of industrial VCP 
emissions in the point source inventory. For area source VCPs, we allocate emissions spatially 
according to population density, which is consistent with our mobile laboratory measurements. 
Point source VCPs are allocated to facilities geo-located in the NEI 2014 (23). We do not account 
for seasonality in VCP emissions, since seasonality is not evident in our VOC/CO measurements 
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at the CCNY ground site (Table S2). For diurnal patterns, we utilize those reported by Coggon et 
al. (30) for personal care products and the NEI 2014 for other VCPs. A summary of VCP use and 
emission factors are provided in Table S4 for Manhattan. 

 
Table S4. Summary of VCP use, emission factors, and VOC emissions in Manhattan. 

 
Source Category 

Use 
(g/person/d)  

VOC EFc 
(mg/g) 

 

VOC Emisg 
(t/d) 

 
 
Coatings 
    Architectural 
    Industrial 
 
Printing Inks 
 
Adhesives 
    Consumer 
    Industrial 
 
Personal Care 
    Hair Care 
    Perfumes 
    Lotions 
    Other Cosmetics 
 
Cleaning Agents 
    Surface Cleaners 
    Dishwashing 
    Laundry 
    Air Fresheners 
    Polishes 
    Industrial Degreasing  
 
Pesticides 

 
 

21 ± 3 
7.8 ± 1.2a 

 
1.4 ± 0.5a 

 
 

11.6 ± 5.5 
8.3 ± 3.9a 

 
 

6.1 ± 2.9 
2.5 ± 1.2 
6.1 ± 2.9 

11.4 ± 5.3 
 
 

35 ± 16 
50 ± 22 
64 ± 28 

1.5 ± 0.7 
2.7 ± 1.2 

0.70 ± 0.31a 
 

4.3 ± 2.0b 

 
 

270 ± 90d,e 
250 ± 80d,e 

 
67 ± 31 

 
 

250 ± 140f 
370 ± 200f 

 
 

310 ± 260 
490 ± 270 
540 ± 290 
420 ± 250 

 
 

78 ± 75 
8.5 ± 4.6 
1.1 ± 1.0 

210 ± 110 
420 ± 140 
120 ± 40 

 
370 ± 210 

 
 

9.7 ± 3.5 
3.2 ± 1.1 

 
0.2 ± 0.1 

 
 

4.8 ± 3.5 
5.1 ± 3.7 

 
 

3.1 ± 3.1 
2.0 ± 1.5 
5.5 ± 3.9 
8.0 ± 6.0 

 
 

4.6 ± 4.6 
0.71 ± 0.49 
0.12 ± 0.12 
0.54 ± 0.38 

1.9 ± 1.1 
0.1 ± 0.1 

 
2.6 ± 2.0 

a. Excludes point source emissions of VCPs, and only includes those found in the area source inventory. 
Nationally, area sources account for 79%, 74%, 67%, and 100% of industrial adhesives, coatings, inks, 
and degreasing emissions, respectively. Point sources of VCP emissions are located at industrial 
facilities. No point source VCP emissions are in Manhattan. 

b. Excludes agricultural uses of pesticides. 
c. Emission factors are from McDonald et al. (28), except where otherwise denoted. 
d. Estimated to be ~25% lower than national emission factors, based on more stringent New York state 

regulations of architectural and industrial maintenance (AIM) coatings (29). 
e. Coating emission factors estimated to be ~20% lower in 2018 than in 2012 (31). 
f. Consumer and industrial adhesives estimated to be ~40% and ~10% lower than national emission 

factors, respectively, based on more stringent New York state regulations (32). 
g. Population of Manhattan is ~1.7 million people in 2018. 
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For other anthropogenic emission sectors (e.g., point and area sources) we utilize emissions 

from the National Emissions Inventory (NEI) 2014 platform (23). Power plant emissions are 
updated to 2018 utilizing stack monitors from the Continuous Emissions Monitoring System 
(CEMS). Fugitive leaks of non-methane VOCs associated with natural gas infrastructure, primarily 
ethane, is estimated based on recent aircraft measurements over New York City (33). Similar to 
VCPs, we do not see strong seasonality in fugitive leaks of pipeline natural gas as the ethane/CO 
ER is relatively similar between winter and summer (see Table S2). 

 
The overall distribution of fossil-VOC emissions for Manhattan, NY are shown in Fig. S7 for 

the FIVE-VCP (panel A) and NEI 2014 (panel B) inventories. The distribution of VOC emissions 
in FIVE-VCP (Fig. S7A) is quite similar to the NEI 2014 (Fig. S7B). The main difference is that the 
per capita emissions in the FIVE-VCP inventory is higher than the NEI 2014 by ~50% for both 
mobile source engines and VCPs. This is in contrast to McDonald et al. (28), which found that 
VCP emissions were underestimated by factors of 2.5 and 3 for Los Angeles and the US, 
respectively. We also estimate higher off-road gasoline emissions relative to on-road engines. 
Compared to the NEI 2014, FIVE off-road gasoline emissions are higher by a factor of ~2 and on-
road gasoline emissions lower by a factor of ~2. Previously, our FIVE off-road gasoline emissions 
were a factor of ~2 lower than the NEI 2014 across the US (28). The lower FIVE on-road gasoline 
emissions are consistent with our prior results (28). This highlights that methodological differences 
exist in how the NEI 2014 is constructed across different regions of the country. Hence, a single 
nationwide scaling factor for VOC emissions is likely not appropriate. Here, we construct mobile 
source and VCP emissions from first principles for each state separately. 

 
 

 
Fig. S7. Distribution of VOC emissions in Manhattan from the (A) FIVE-VCP 2018 and (B) NEI 2014 inventories. The 
pie charts show the contribution of VCPs (outlined in black), mobile sources (on-road + off-road engines), and other 
fossil fuel sources. A further emissions breakdown of VCP sources can be found in Table S4. 

 
3.4 Evaluation of FIVE-VCP with measurements 

 
To be able to evaluate our FIVE-VCP VOC inventory with ambient measurements, we 

speciate VOC emissions to individual species. We follow the approach of McDonald et al. (28). 
For mobile source fuels, we speciate VOCs using literature values for gasoline fuel, gasoline 
exhaust, and diesel exhaust (34). The VOC composition of pipeline natural gas can be found at: 
http://www.1line.williams.com/Transco/index.html. For VCPs, we update speciation profiles 
utilizing more recent CARB surveys of consumer products (35) and architectural coatings (36) 



 13 

shown in Fig. S8. Note that the CARB surveys do not include industrial VCPs; therefore, these 
speciation profiles are taken from the EPA SPECIATE Database (v4.4) (37). For industrial VCPs, 
we utilize the same speciation as in McDonald et al. (28). 

 

 
Fig. S8. VOC speciation profiles utilized in this study for fossil fuels and VCPs. Speciation profiles for VCPs have been 
updated to include the Consumer Product 2015 Survey from CARB (35). 

Since the ambient VOC measurements are reported as enhancement ratios relative to CO 
(Table S2), we also evaluate the FIVE CO emissions (note that there are no primary CO emissions 
from VCPs). In 2015, the National Science Foundation and National Center for Atmospheric 
Research conducted a study aboard a C-130 aircraft over the Eastern US, the Wintertime 
Investigation of Transport, Emissions, and Reactivity (WINTER) field campaign. During WINTER, 
several of the flights targeted outflow from New York City (38). Additional flights were conducted 
over the Washington, DC and Baltimore region. We utilize both areas to evaluate the FIVE CO 
inventory here. Though the FIVE emissions were constructed for the year 2018, we do not expect 
significant changes in emissions between 2015 and 2018 as ambient decreases in urban CO 
have plateaued since around 2010 (5, 39). 

 
On February 3, 2015 the C-130 measured downwind of NYC during westerly winds (Fig. 

S9A), data can be found at: https://data.eol.ucar.edu/master_lists/generated/winter/). Though 
other flights were conducted downwind of NYC, we choose this day since it is possible to derive 
CO emissions using the aircraft measurements and the mass balance technique. When winds 
are steady and the planetary boundary layer (PBL) depth is known, then an emissions flux can 
be derived using mass balance. Previously, mass balance techniques have been demonstrated 
in oil and gas fields (40-42) and urban areas (33, 43). Following the analysis of Peischl et al. (40), 
CO fluxes are calculated and compared to those from FIVE (Fig. S9A). Comparisons are limited 
to the hours estimated for the footprints shown, i.e., 15:00 to 17:00 LT for the smaller rectangular 
footprint, and 11:00 to 17:00 for the larger footprint. The latitudinal extent of the footprints is 
defined based on the CO enhancement plume and the wind direction. The longitudinal extent of 
the footprints is defined based on the average wind speed and back trajectories determined using 
the HYSPLIT model (44), which is plotted as a black trace in Fig. S9A.  The footprints do not 
extend further to the east with the downwind transects because we assume the wintertime PBL 
is decoupled from the residual layer at 17:00.  This decoupling would trap emissions from within 
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the footprints in the evening residual layer sampled by the C-130.  For the mass balance legs, we 
estimate emissions of 52 ± 21 t hr-1 from the nearest transect, corresponding to the smaller 
footprint shown in Figure S9A, and 108 ± 42 t hr-1 and 127 ± 50 t hr-1 for the two transects further 
downwind, corresponding to the larger dashed and solid maroon footprint boxes.  Uncertainties 
are estimated by quadrature addition of the following: PBL depth, ±300 m; wind speed, ± 1 m s-1; 
and CO measurement uncertainty, ± 5%; and CO background uncertainty, ± 13%. In general, 
there is good agreement in the mean emissions from the footprint boxes between the FIVE 
inventory and aircraft-derived emissions, and differences within the uncertainties of the bottom-
up inventory (6). In NYC, CO emissions are dominated by mobile source engines (~90% of the 
total).  

 
Over the DC/Baltimore region, we evaluate FIVE against mass balance estimates of CO 

reported by Salmon et al. (43). In total, mass balance estimates were derived from five research 
aircraft flights from the NSF/NCAR C130, Purdue Airborne Laboratory for Atmospheric Research, 
and University of Maryland Experimental Cessna. FIVE emissions are consistent with the top-
down mass balance estimates, though there is large variability in the top-down emissions. Outside 
urbanized areas, emissions from wood smoke are also an important source of regional CO and 
aerosols (38), and whose emissions are likely more variable day-to-day than mobile source 
engines. In short, FIVE is consistent with aircraft measurements over two major Eastern US urban 
regions (within 5-30%). This is in contrast to emissions from the NEI 2011 and NEI 2014, which 
have been suggested to be high by a factor of ~2 (6, 43). By using the FIVE-VCP emissions 
inventory in this study, it is unlikely that uncertainties in CO emissions inventories affect our 
VOC/CO comparisons described next. 

 

 
Fig. S9. (A) Flight path over New York City on February 3, 2015 during the WINTER campaign (blue dots). The flight 
path is sized by measured CO mixing ratios (in ppb). CO emissions from FIVE are colored on a logarithmic scale. Red 
boxes show the footprint over which the bottom-up FIVE inventory is compared with aircraft-derived emissions. 
Comparisons are limited to afternoon hours (11:00 to 17:00 local time). Uncertainties in the FIVE inventory are 
estimated at ~20% (6) and ~40% for mass balance emissions (42). (B) Same as panel A, except for the Washington, 
DC and Baltimore region during the same campaign. Aircraft-derived emissions have been previously reported by 
Salmon et al. (43) and shown here. The red box shows the footprint of the five research aircraft flights with mass 
balance estimates of CO emissions. 

 
Combining petrochemical product sales and VOC emission factors (Tables S3-S4), and VOC 

speciation profiles (Fig. S8), along with our FIVE CO emissions (Fig. S9), we are able to estimate 
VOC/CO emission ratios from our bottom-up inventory (Fig. S10). We compare the bottom-up 
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VOC/CO emission ratios with those measured at the CCNY ground site averaged between 
wintertime and summertime. By only considering fossil fuel sources of emissions, the inventory 
significantly under-predicts ambient levels of VOCs by a factor of ~3 (Fig. S10A). Only when VCP 
emissions are included can we reconcile the inventory and ambient observations of VOC/CO 
ratios (Fig. S10B). These results for NYC are similar to the findings of McDonald et al. (28) for 
Los Angeles. 

 

 
 

Fig. S10. Comparison of VOC/CO ratios from the FIVE-VCP inventory to ambient VOC/CO ratios measured at the 
CCNY ground site during winter, 2018. Comparisons between the inventory-observations are made for (A) fossil fuels 
only and (B) with VCPs added. The dashed line is a regression through the points shown, which is used to calculate 
the bias and R2 values. 

 
4. Description of WRF-Chem model simulations 

 
In this study, we utilize a three-dimensional chemical transport model to assess the influence 

of anthropogenic VOC emissions on ozone exceedances in the Long Island Sound region. We 
utilize a mesoscale model, the Weather Research and Forecasting with Chemistry (WRF-Chem) 
model, where chemistry is fully coupled with meteorology (45). In the summer of 2018, a 
significant heatwave impacted the Eastern US. Figure S11 illustrates hourly ozone measured at 
CCNY. During the early July episode (yellow band), ozone regularly exceeded 100 ppb in 
Manhattan, and values were higher downwind. For reference, the current National Ambient Air 
Quality Standard (NAAQS) of 70 ppb MDA8 ozone is shown. Though we simulate ~1 month in 
WRF-Chem (gray band, 6/25 to 7/31), we focus on modeling results for July 2, 2018. This was 
the peak of the air pollution episode and widespread ozone exceedances were seen along the 
Eastern seaboard. We utilize this episode as a case study to assess the sensitivity of 
anthropogenic VOCs on ozone formation under policy-relevant conditions. The duration of the 
WRF-Chem simulation allows for sufficient spin-up time to fully model the early July heatwave, 
as well as smaller ozone exceedance events that occurred later in the summer. We focus on gas-
phase chemistry since the measurements utilized in this study did not measure aerosol species. 
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Fig. S11. Ozone mixing ratios measured at the CCNY site. Gray highlighted region shows the duration of the WRF-
Chem simulation (6/27 to 7/31). The yellow band shows that the highest ozone values measured in the summer of 2018 
were in early July, and the peak occurred on 7/2. The red dotted line illustrates the current MDA8 ozone standard (70 
ppb). 

 
4.1 WRF-Chem model setup 

 
Here, we use WRF-Chem version 4.1 to simulate the Continental US at 12 km x 12 km 

horizontal resolution with 50 vertical levels (up to 50 hPa). The continental run provides initial and 
boundary conditions for the nested Eastern US domain at 4 km x 4 km horizontal resolution. We 
make the nested domain sufficiently large to reduce potential effects of complex terrain, due to 
the Appalachian Mountains, on our nested meteorological simulations. Domains are illustrated in 
Fig. S12. 

WRF-Chem settings are provided in Table S5, many of which were used in a previous 
modeling study over the Southeastern US (6). For meteorology, we initialize with the North 
American Mesoscale (NAM) model. We utilize the Noah Land Surface Model and Mellor-Yamada 
Nakanishi and Niino (MYNN) planetary boundary layer scheme. For chemistry, we utilized the 
Madronich Photolysis (TUV) scheme, the RACM-ESRL chemical mechanism described by Kim 
et al. (46), and a modified chemical mechanism that accounts for the chemistry of key oxygenated 
VCP emissions (termed RACM-ESRL-VCP, see Section 4.3). 

Model-ready anthropogenic emissions were prepared based on what was described in 
Section 3. Point source emissions are from the NEI 2014, except for power plants which have 
been updated to 2018 with stack monitoring data. Mobile source emissions are from FIVE and 
are mapped for the CONUS and Eastern US domains, including for CO, NOx, and VOCs. Other 
mobile source species are taken from the NEI 2014. VCP emissions are estimated similarly to 
McDonald et al. (28) and mapped spatially by population density across the CONUS and Eastern 
US domains, except for agricultural pesticides and industrial VCPs. Agricultural pesticides are 
mapped spatially and temporally according to the NEI 2014. Point source emissions of VCPs are 
allocated to individual facilities according to the NEI 2014. All other area and point source 
emissions are mapped from the NEI 2014. The anthropogenic emission files are available at: 
https://www.esrl.noaa.gov/csd/groups/csd7/measurements/2018nyice/. 
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For biogenic emissions we utilize the Model of Emissions of Gases and Aerosols from Nature 
(MEGAN) model, version 2.1 (47), with adjusted isoprene emissions based on mobile van 
measurements (green dots shown in Fig. S12, sized by isoprene concentrations). A further 
description of how biogenic isoprene emissions are adjusted is provided in Section 4.3.3. 

 

 
Fig. S12. The continental US (CONUS) is modeled at 12 km x 12 km resolution, which feeds a nested Eastern US 
domain at 4 km x 4 km resolution. The dark pink area denotes the New York City region where we calculate model-
observation statistics of surface ozone. The mobile van drive track across the US (green circles, sized by isoprene 
mixing ratios) are used to assess biogenic emission inventories. 

 
Table S5. WRF-Chem Model Configuration Used in This Study.a 

 

Settings 
 

 

Description 
 

Horizontal Resolution 
 

Vertical Resolution 
 

Meteorology 
 

Surface Layer 
 

Planetary Boundary Layer 
 

Cumulus Scheme 
 

Land Surface 
 

Microphysics 
 

Short- and Long-Wave 
Radiation 
 

Gas-Phase Chemistry 
 

Photolysis 

 

12 km x 12 km + nested Eastern US 4 km x 4km domain 
 

50 levels (up to 50 hPa) 
 

North American Mesoscale Model 
 

Mellor-Yamada Nakanishi and Niino 
 

Mellor-Yamada Nakanishi and Niino Level 2.5 
 

Grell-Devenyi (GD) Ensemble Cumulus 
 

Noah Land Surface Model 
 

WRF Single Moment 5-Class 
 

Rapid Radiative Transfer Model for General Circulation 
Models 
 

RACM_ESRL (base case), RACM-ESRL-VCP (updated oVCP 
chemistry) 
 

Madronich Photolysis (TUV) 
a. See http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html for full 

description of model options. 

D1: 12 km x 12 km
D2: 4 km x 4 km
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4.2 Chemical Mechanism 
 

A challenge for three-dimensional chemical transport models (CTMs) is whether current 
condensed mechanisms are able to represent the chemistry of oxygenated VCP emissions. As 
Fig. S8 illustrates, oxygenated VCPs (oVCPs) including alcohols, ketones, and esters are a large 
fraction of total VCP emissions. Traditionally, oVCP emissions are mapped to surrogate alkane 
bins, which is also the case for the RACM-ESRL chemical mechanism. Oxygenated VCPs, such 
as alcohols and glycols, are more reactive towards atmospheric oxidants than their alkane 
counterparts(48). Furthermore, the differences in functionality lead to the formation of secondary 
products at different rates and yields. For example, ethanol (the dominant oVCP) is lumped to 
HC3 in RACM_ESRL, which represents alkanes, alkynes, and esters with OH rate constants less 
than 3.4x10-12 cm3 s-1 (46, 49). The resulting high-NOx pathways lead to a mix of aldehydes and 
ketones at comparable yields. In reality, ethanol is expected to react with OH to primarily form 
acetaldehyde(48), which leads directly to peroxyacetyl nitrate (PAN), the most important 
temporary NOx reservoir. 

 
In this study, we account for the chemistry of major oxygenated VCP emissions by 

incorporating known oVCP oxidation mechanisms into RACM-ESRL. We focus on including the 
chemistry of methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, glycerol, and 
acetone. Ethanol and isopropanol are common solvents used in most VCP sectors. Glycerol and 
propylene glycol are predominantly used in personal care and cleaning products. Ethylene glycol 
is mostly used in non-fragranced products, such as coatings and adhesives. In total, these 
species account for ~90% (mol/mol) of the oVCP emissions represented in FIVE-VCP inventory. 
Furthermore, these species represent >50% the total OH reactivity attributable to VCP emissions 
(see Section 9 in the Supplemental Discussion).  

 
The directly emitted OVOCs are added as new species to the RACM-ESRL-VCP mechanism 

and their oxidation products are mapped to surrogates already included in RACM-ESRL. This 
approach accounts for the reactivity and oxidation chemistry of these OVOCs while also limiting 
the number of additional surrogates, which keeps the computational cost in the three-dimensional 
model manageable. 
 

The atmospheric degradation of ethanol (EOH), methanol (MOH), acetone (ACT), and 
ethylene glycol (ETEG) are represented in reduced mechanisms, such as RACM2 (49). We 
incorporate these reactions into RACM-ESRL directly, and update the reaction rate coefficients 
based on the 2019 Jet Propulsion Laboratory Evaluation (50). Table S6 summarizes the reactions 
that are added to RACM-ESRL. We refer to the resulting mechanism as RACM-ESRL-VCP. 

 
Isopropanol, propylene glycol, and glycerol are not included in RACM2. While these species 

could be lumped to surrogate bins (e.g., ethylene glycol), we choose to treat these species 
separately due to their structural differences from other species represented by RACM2. For 
example, propylene glycol could be lumped to ethylene glycol; however, ethylene glycol is a diol 
where both hydroxyl groups are linked to primary carbons, whereas propylene glycol contains 
one primary hydroxyl group, and one secondary hydroxyl group. The resulting chemistry is 
different between these two species: ethylene glycol will react with OH to predominantly form an 
aldehyde, whereas propylene glycol will form a mixture of aldehydes and ketones(48). Similar 
differences exist between isopropanol (a secondary alcohol) and ethanol (a primary alcohol). 

 
Propylene glycol (PROG) is represented in explicit mechanisms, such as the Master 

Chemical Mechanism (MCM, http://mcm.leeds.ac.uk/MCM/). In the MCM, propylene glycol reacts 
with the OH radical to form hydroxyacetone (61%) and 2-hydroxypropanal (39%). In this study, 
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we incorporate the OH chemistry of propylene glycol represented in the MCM assuming the same 
OH rate constant and product branching ratios. Hydroxyacetone is represented as HACE in 
RACM_ESRL. We treat 2-hydroxypropanal as an aldehyde (ALD). 

 
Isopropanol (IPOH) is also represented in the MCM, and predominantly forms acetone 

(~86%) and a smaller yield of a hydroxy RO2 radical (~14%). To account for this oxygenated 
radical, we lump the RO2 to the peroxy radical formed from reaction of OH with acetone (ACTP). 
Under high-NOx conditions, the ACTP radical predominantly forms formaldehyde and the acetyl 
peroxy radical (ACO3). In the MCM, the hydroxy RO2 reacts with NO to form formaldehyde and 
acetaldehyde. 

 
Glycerol (GLYC) is not represented in the MCM; however, its reaction with OH is expected 

to be similar to propylene glycol(48). We treat glycerol separately due to its high abundance in 
personal care products and higher reactivity resulting from the additional primary hydroxyl group. 
We estimate the reaction rate coefficient and branching ratios of aldehyde and ketone formation 
using GECKO-A (51). The resulting ketone is lumped to the hydroxyketone surrogate (HKET), 
while the aldehyde is lumped to ALD. 

 
Table S6. Reactions of key VCP emissions included in RACM-ESRL-VCP. 

Species Reaction  Rate Constant Refsa 
Methanol MOH + OH = HCHO + HO2 2.9e-12 exp(-345/T) (49, 50) 

Ethanol EOH + OH = ALD + HO2 3.35E-12 (49, 50) 

Isopropanol IPOH + OH = 0.861 ACT + 0.139 ACTP + 0.861 HO2 2.1e-12 exp(270/T) (50, 52) 

Ethylene glycol ETEG + OH = ALD + HO2 1.47E-11 (49) 

Propylene glycol PROG + OH = 0.387 ALD + 0.614 HACE + HO2 2.15E-11 (52) 

Glycerol GLYC + OH = 0.45 ALD + 0.55 HKET + HO2 5.45E-11 (51) 

Acetone ACT + OH = ACTP + H2O 1.33e-13+3.82e-11 exp(-2000/T) (49, 50) 
 

ACTP + NO = ACO3 + NO2 + HCHO 2.9e-12 exp(300/T) (49) 
 

ACTP + HO2 = 0.15 OH + 0.15 ACO3 + 0.15 HCHO + 

0.85 OP2 

8.6e-13 exp(700/T) (49) 

 
ACTP + NO3 = ACO3 + NO2 + HCHO 2.30E-12 (49) 

 
ACTP + ACO3 = ACO3 + HCHO + CO2 + MO2 2e-12 exp(500/T) (49) 

 
ACTP + MO2 = 0.5 MOH + 0.8 HCHO + 0.3 HO2 + 

0.3 ACO3 + 0.5 MGLY + 0.2 HACE 

7.5e-13 exp(500/T) (49) 

 ACT + hv = MO2 + ACO JPL Recommendations (49, 50) 

 HACE + hv = HCHO + HO2 + ACO3 jACT  

   
a Reactions for methanol, ethanol, and acetone are adapted from RACM2 (49), with updates to the rate constants 
based on the 2019 JPL kinetic evaluation (50). The reaction and rate constant for ethylene glycol are from RACM2 
(49). The reactions for propylene glycol and isopropanol are adapted from the MCM (52), with updates to the rate 
coefficient for isopropanol (50). The reaction and rate coefficient for glycerol is adapted from GECKO-A (51). 
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WRF-Chem and box model simulations employ both RACM-ESRL and RACM-ESRL-VCP. 
For simulations using RACM_ESRL, we lump oxygenated VCP emissions to traditional alkane 
surrogates. For simulations using RACM-ESRL-VCP, we model the key VOCs described in Table 
S6, and lump lesser-abundant species to the oxygenated surrogates based on structural 
similarities. Glycols and glycol ethers containing two primary hydroxy groups are lumped to ETEG. 
Glycols and glycol ethers with a single primary hydroxyl and one or more secondary hydroxyl 
groups are lumped to PROG. Secondary alcohols are lumped to IPOH, whereas primary alcohols 
are lumped to EOH.  

 
Siloxanes are not included in the current RACM-ESRL or RACM-ESRL-VCP mechanisms, 

and limited studies have characterized their gas-phase oxidation chemistry. In this study, we map 
siloxane emissions to benzene given their similar reactivity with the hydroxyl radical (53, 54). 
Lastly, we speciate “fragrances” as terpenes (50% limonene and 50% a-pinene based on mobile 
laboratory measurements) and the balance as propylene glycol (which is then mapped to the HC8 
alkane bin for RACM_ESRL, and PROG for RACM-ESRL-VCP). As described in Section 3.1, 
fragrances are a mixture of terpenes, esters, and glycols. 

 
4.3 WRF-Chem model evaluation 

 
We evaluate the WRF-Chem model for meteorology and key precursors contributing to high 

ozone during the early July, 2018 heatwave, including assessing anthropogenic NOx emissions, 
biogenic isoprene emissions, and anthropogenic terpene emissions. Many of the measurements 
described below were made as part of the LISTOS 2018 study and data available at the NASA 
Langley Research Center data archive: https://www-air.larc.nasa.gov/missions/listos/index.html. 

 
4.3.1 Comparison to urban meteorology measurements 

 
Figure S13 shows comparisons of the WRF-Chem model with the CCNY Leosphere 200S 

Windcube Doppler Wind lidar, which measures three-dimensional wind profiles. The wind profiles 
are retrieved from the lidar using a technique referred to as Doppler Bean Steering (DBS).  The 
lidar operates at 20 kHz repetition rate.  The scan pattern includes one zenith measurement 
(averaged over approximately 2 sec) and four measurements at 25 degree zenith angle and 0, 
90, 180, and 270 Deg azimuth angle (averaged over ~4 seconds each).  Wind speed profiles 
along the line-of-sight are obtained from each of these observations, and then used to retrieve 
reconstructed wind vector profiles assuming homogeneity for each range over the measurement 
volume. 

 
During the early July ozone episode (denoted by the black boxes), stagnant wind conditions 

(<5 m/s) are observed by the wind lidar (panel A) and simulated by the model (panel B). The 
stagnant winds are also accompanied by a consistent land-sea breeze where offshore winds blow 
from the north at night (red/purple shading in panel C) and switch around noon to on-shore winds 
from the south (yellow/green shading in panel C). The model also captures this general wind 
pattern (panel D), which along with stagnant winds allows for multi-day aging of the New York 
City plume. After the episode, the winds are consistently from the south and blowing the urban 
plume further afield. 
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Fig. S13. Top row shows comparison of horizontal wind speeds within the planetary boundary layer for (a) Doppler 
Wind lidar data collected at CCNY with (b) WRF-Chem model. Bottom row shows the same, except for wind direction 
for (c) wind lidar and (d) WRF-Chem model. Normalized mean bias of the model and Pierson correlation coefficient 
shown. 

 
 
Fig. S14. Time series of planetary boundary layer height as measured by the CCNY ceilometer lidar (black dots) and 
as simulated by the WRF-Chem model (blue line). Normalized mean bias of the model and Pierson correlation 
coefficient are shown. 

 
Figure S14 shows the comparisons of the WRF-Chem model with the CCNY Vaisala CL51 
ceilometer lidar when data is available, which provides planetary boundary layer (PBL) height 
(55). PBL height is retrieved from attenuated backscatter profiles obtained from the ceilometer.  
For data from January to March, the retrieval method was through application of a covariance 
wavelet transform to the ceilometer profiles (55, 56). For the data in June and July, we used the 
propriety Vaisala Boundary Layer View software package (BL-VIEW, https://www.vaisala.com 
/en/products/software/bl-view). We had tested BL-VIEW and find the results to be consistent 
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to the wavelet method. In general, the model appears to capture the PBL height on average with 
typical values of 1.5 to 3 km in the summertime. 
 

4.3.2 Comparison to urban NOx measurements 
 

During the LISTOS 2018 study, there were 8 Pandora spectrometers measuring total 
nitrogen dioxide (NO2) columns and located around the Long Island Sound region. Here we use 
data for the following sites: Branford (CT), Bronx (NY), Madison (CT), New Brunswick (NJ), New 
Haven (CT), New York City (NY), Old Field (NY), and Westport (CT). Together these 8 sites span 
both upwind, urban core, and downwind areas of New York City. The Pandora data are available 
at: http://lb3.pandonia.net/. Pandora spectrometers are direct sun measurements that report total 
column NO2 (i.e., stratosphere + troposphere), as well as other species (57). During the day, the 
spectrometer tracks the sun and an algorithm converts the slant columns into vertical columns 
with a clear-sky precision of 2.7 x 1014 molecules/cm2. Previously, Pandora spectrometers have 
been used to validate satellite and aircraft-based retrievals of NO2 (58-60). 

 
Since our WRF-Chem model does not fully resolve the stratosphere, we add 3 x 1015 

molecules/cm2 of stratospheric NO2 for Northern mid-latitudes, based on global stratospheric 
modeling (61). Figure S15 shows the comparison of WRF-Chem with the Pandora NO2 data. For 
each hour of observations, which are limited to daytime values, we take an average across all 
sites (up to 8) in the model and for the Pandora spectrometers. To first order, the model predicts 
the total NO2 column within ~10% of the Pandora observations, and within the emissions 
uncertainty of the bottom-up fuel-based inventory of NOx (6, 39). 
 

 
Fig. S15. Comparison of column Pandora measurements of NO2 (black dots) with WRF Chem (blue line). Values shown 
are averaged across all sites for each hour (up to 8 sites total). Normalized mean bias of the model and Pierson 
correlation coefficient are shown. 

4.3.3 Comparison to mobile laboratory measurements of biogenic emissions 
 

During the summertime, biogenic isoprene is the dominant VOC emitted in the Eastern 
US(62, 63). However, previous studies have identified factor of ~2 uncertainties in biogenic 
inventories (64, 65). Here we utilize the MEGAN model (version 2.1) for biogenic emissions as 
our starting point. We constrain the inventory with mobile laboratory measurements on the drive 
back from New York City to Boulder, Colorado (green dots in Fig. S12 on 7/24/18 to 7/26/18). To 
facilitate model-observation comparisons we consider a more conserved tracer of isoprene 
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emissions that includes its first generation oxidation products of methacrolein (MACR) and methyl 
vinyl ketone (MVK) (65). The mobile laboratory measurements are binned by longitude at 0.5 
degrees and the median value taken to reduce the effect of outlier observations on the 
comparison. We also perform a sensitivity test where we halve the isoprene emissions in WRF-
Chem. In general, the mobile laboratory measurements of our isoprene emissions tracer are in 
between the full isoprene and half isoprene model cases (Fig. S16). This is consistent with prior 
modeling of the Southeastern US by McDonald et al. (6), which found that isoprene emissions 
from the MEGAN inventory were high relative to NOAA P3 aircraft measurements but that the 
BEIS inventory was low, whose isoprene emissions are a factor of ~2 lower than MEGAN. 

 

 
Fig. S16. Comparison of mobile laboratory measurements (black line) of isoprene + first generation isoprene oxidation 
product (MACR + MVK) with WRF-Chem (blue lines). Dark blue line represents simulating unadjusted isoprene 
emissions from MEGAN, and light blue line represents simulating half of the isoprene emissions from MEGAN. The 
scaling factor of 1.7 is taken from Warneke et al. (65). The bands of the mobile laboratory measurements reflect 25th 
and 75th percentiles of the observations, and the black line the median. Normalized mean bias of the model and Pierson 
correlation coefficient are shown. 

We also perform an analysis of the biogenic inventory with local drives across the New York 
City region shown in Fig. S17. Here it is clear that both isoprene and its first-generation oxidation 
products (MACR + MVK) are 60-70% higher than the mobile laboratory measurements, 
suggesting that the biogenic isoprene emissions are high under the full isoprene case. When we 
halve isoprene emissions in MEGAN, the results for isoprene (Fig. S17A) and MACR + MVK (Fig. 
S17B) improve. Since the focus of our modeling is on the New York City region, we utilize the half 
isoprene case more consistent with the observations in our base simulation of ozone. Unlike 
isoprene and methacrolein + MVK, monoterpene concentrations exhibit a local maximum in the 
mobile laboratory measurements in Manhattan. This local peak can only be accounted for when 
including anthropogenic terpene emissions equivalent to 860 mg person-1 d-1. Even if there are 
biogenic terpenes emitted outside the city, they react away before reaching the city center, as 
shown by the model simulation where no anthropogenic terpenes were included (Fig. S17C). 
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Fig. S17. (A) Comparison of mobile laboratory measurements (black line) of isoprene with WRF-Chem (blue lines). 
Dark blue line represents simulating unadjusted isoprene emissions from MEGAN, and light blue line represents 
simulating half of the isoprene emissions from MEGAN. The bands of the mobile laboratory measurements reflect 25th 
and 75th percentiles of the observations, and the black line the median. Normalized mean bias of the model are shown. 
(B) Same as panel A, but for MACR + MVK. (C) Same as panel A, but for monoterpenes. Here the dark blue line reflects 
simulating MEGAN biogenic emissions without anthropogenic terpene emissions. The light blue line reflects WRF-
Chem simulations with MEGAN + anthropogenic terpene emissions. 

 
4.3.4 Comparison to ozone measurements 

 
During the LISTOS 2018 campaign, the NASA Langley mobile ozone lidar (LMOL) was 

deployed at Westport, CT which is located on the coast of the Long Island Sound. The LMOL is 
a ground-based tropospheric profiling ozone lidar system housed in a mobile trailer (66, 67). 
LMOL relies on ultraviolet (UV) pulsed laser source that produces two wavelengths allowing for 
calculation of O3 concentration profiles from atmospheric differential absorption (DA). The laser 
transmitter consists of a custom-built Ce:LiCAF tunable UV oscillator that is pumped by a 
frequency-doubled (527 nm) commercially available Nd:YLF laser operating at a 1 kHz repetition 
rate.  Pulsed laser light was transmitted in a fixed zenith orientation into the atmosphere from a 
window opening on the trailer roof, alternating pulse to pulse between the on- and offline 
wavelengths (500 Hz each). 

Backscattered light from the atmosphere was collected by two co-aligned fiber-optic coupled 
telescopes, one designed for 1-8 km atmospheric backscatter and a second designed for near-
range .1 to1 km atmospheric signals (68). The fiber outputs from the telescopes were connected 
to a light-tight enclosure containing UV band-pass filters integrated with photo-multiplier tube 
(PMT) detectors. A Licel data system provided simultaneous analog and photon-counting outputs 
that were synchronously gated with the alternating wavelength pulses, to separate on and offline 
data, and subsequently recorded by the instrument computer system for processing of raw signals 
into calibrated ozone profiles. 
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The processing of profiles was implemented following the standard DA lidar technique (69). 
Analog and photon-counting from the multiple telescopes are merged together to provide a single 
optimized profile for range and signal-to-noise performance. Ozone cross sections along with 
pressure and temperature information are used as part of the process to extract ozone mixing 
ratio as a function of altitude. The process is repeated for each new profile on a 5–10 min 
temporally averaged basis, to provide a continuous curtain display on the evolution of ozone 
vertical distribution during the course of a day. A real-time data display was also available, 
allowing for display of the system-generated ozone curtain profiles as they are collected, for 
immediate feedback on atmospheric observations. Uncertainty estimates for LMOL follow the 
procedure described in Leblanc et al (70). The optimization of vertical resolution with altitude 
follows Gronoff et al. (67). The LMOL is part of NASA’s Tropospheric Ozone Lidar Network 
(TOLNet), and has been validated against other TOLNET lidar and ozonesondes (71). Validation 
against ozonesondes were performed during the LISTOS campaign. 
 

The lidar was operated to target high air pollution episodes, with ozone concentrations 
exceeding 70 ppb at the surface for several days in July (Fig. S18A). In panel B, we show vertical 
ozone profiles simulated by the WRF-Chem model. The model captures the temporal evolution 
and vertical structure of the ozone plume (r = 0.79), on both polluted and clean days. The model 
performance is better when limited to the surface (height < 2500 m, r = 0.84). The model tends to 
under-predict ozone in the upper troposphere, but strong mixing down to the surface is not 
evident. Overall, the model exhibits a slight under-calculation in ozone. 

 

 
 
Fig. S18. (A) Hourly time series of ozone lidar measuring vertically-resolved ozone. Lidar data has been averaged to 
the vertical resolution of the WRF-Chem model. (B) Same as panel A, except with results from the WRF-Chem model 
base simulation. Normalized mean bias of the model and Pearson correlation coefficient are shown for all data shown 
and values less than 2500 m, which approximates the daytime PBL max. 
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We also evaluate the WRF-Chem model with routine air quality stations located in the NYC 
region (dark pink area shown in Fig. S12). Across this region are ~40 monitoring locations, which 
are able to provide an observational constraint on the spatial extent of the ozone plume. Figure 
S19 shows the hourly mean ozone value across the NYC region in the WRF-Chem model and 
observations. On average, the model tends to over-predict ozone by -3 ppb, though captures the 
spatial extent and evolution of the ozone plume well (r = 0.91). Much of the high bias in the model 
occurs at night, when the meteorological performance is expected to be poorer relative to daytime 
hours. When we limit the comparison to daytime hours (8 AM to 8 PM local time), the high model 
bias reduces to ~0.5 ppb of ozone. Based on the model evaluations with the ozone lidar and 
surface monitors, the WRF-Chem simulation is capturing the spatial, temporal, and vertical 
evolution of ozone pollution in the NYC region well. 

 
 

 
Fig S19. Hourly time series of surface ozone (black dots) and corresponding WRF-Chem simulations (blue trace) at 
ground sites located in New York City region (see dark pink area in Fig. S12). Values shown have been averaged 
across all sites for a given hour (28-40 sites across the region). Normalized mean bias of the model and Pearson 
correlation coefficient are shown for all data shown and daytime values (8 AM to 8 PM local time). 

 
4.3.5 Comparison to measurements of other secondary products 

 
In addition to ozone, we evaluate WRF-Chem simulations of other secondary products, such 

as formaldehyde. Formaldehyde is produced by the reaction of biogenic and anthropogenic VOC 
precursors and is an important secondary VOC that can contribute to OH production through 
photolysis. In NYC, formaldehyde is predominantly formed by secondary processes, and may 
contribute upwards of 20% to the OH + HO2 budget during summertime oxidation (72). Lin et al. 
(72) found that isoprene is the dominant formaldehyde precursor in the NYC area (~50%), 
followed by anthropogenic sources of methane and propene. 

 
During the LISTOS campaign, formaldehyde was measured downwind of NYC in Westport, 

CT using an Aerodyne Mini Quantum Cascade Laser (QCL) trace gas monitor. The instrument 
measures formaldehyde, formic acid, and water vapor at 1765 cm-1 using a room temperature 
continuous wave QCL, and is based on the earlier pulsed QCL system described by Herndon et 
al. (73). Sample gas is pulled through a heated (30 ℃) glass inertial impactor inlet that removes 
particles above 100 nm and contains a critical orifice to control sample flow into the sample cell.  
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A 1 meter heated Teflon transfer line transfers gas from the inlet to the cell, a 76 m pathlength, 
0.5 L multipass absorption cell. An Agilent Triscroll 600 vacuum pump is used to control cell 
pressure, which is around 35 to 45 torr during normal operating conditions. 

 
Frequent background spectra of formaldehyde-free zero air, measured through the same 

inlet as the sample, are taken every for 30 seconds every 5 minutes.  A Teledyne API T701H 
High Performance Zero Air Generator with a heated catalytic hydrocarbon scrubber is used to 
produce the formaldehyde-free zero air on demand, and produces a formaldehyde blank as good 
or better than Ultra Grade zero air cylinders.  Sample spectra are normalized to the background 
spectra and the resulting differential spectra are fit using a non-linear least squares fitting 
algorithm assuming a Voigt absorption profile.  Fitting parameters are taken from the HITRAN 
database (74), and three species (water vapor, formaldehyde, and formic acid) are fit 
simultaneously to account for minor spectral overlap of these species in this spectral region 
(discussed in detail in Herndon et al., 2007).  The accuracy of the measurements is anchored to 
the spectroscopic line parameters in the HITRAN database (74) and is estimated to be on the 
order of 5%.  Comparison with certified formaldehyde reference gas cylinders or permeation tubes 
on multiple occasions were within the combined uncertainties of the Aerodyne instrument (5%) 
and the gas cylinder certification (generally also 5%). The precision of the measurements, 
computed as the Allan-Werle deviation (75) for a 5-minute measurement cycle, is better than 20 
pptv. 

 
Figure S20 shows the model comparison to measured formaldehyde mixing ratios. The 

model generally captures the temporal evolution and magnitude of formaldehyde downwind of 
NYC. Over the entire simulation, the model under-predicts formaldehyde by ~ 18%. When 
comparing to daytime measurements, we find that the model over-predicts by ~16%. The 
correlation between modeled and measured formaldehyde is lower than for ozone, but 
comparable to the correlation for Pandora NO2 measurements. This lower correlation could be 
associated with a model comparison to a single site, as well as the uncertainties associated with 
the model’s ability to resolve coastal boundary layer dynamics on any given day.  

 

 
Fig. S20. Hourly time series of surface formaldehyde (black dots) and corresponding WRF-Chem simulations (blue 
trace) at a ground site located in Westport, CT. Normalized mean bias of the model and Pearson correlation coefficient 
are shown for all data shown and daytime values (8 AM to 8 PM local time). 
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4.3.6 Comparison of WRF-Chem model to aircraft data collected during the July 1 – 3 heat 
wave. 

 
Finally, we evaluate WRF-Chem output against aircraft data collected during the heat wave 

event described in the main text. On July 1-2, the University of Maryland (UMD) Cessna 402B 
flew over NYC to sample trace gasses as part of the LISTOS campaign. The aircraft conducted 
four 3-hr flights – two on July 1 (9:00 AM – 12:30 PM and 4:40 PM – 7:30 PM EDT) and two on 
July 2 (9:00 AM – 12:30 PM, 3:00 PM – 6:30 PM, EDT). We report measurements of CO, O3, and 
NO2. CO was measured by a Picarro Model G2401-m cavity ringdown spectrometer. Ozone was 
measured by a Thermo Electron Model 49 UV absorption O3 analyzer.  NO2 was measured by a 
Los Gatos Research Model RMT-200 NO2 analyzer based on cavity enhanced absorption 
spectroscopy. The Picarro analyzer and NO2 analyzer were calibrated with NIST-traceable 
standards. The O3 analyzer was calibrated with a primary O3 calibrator that was calibrated with a 
standard reference photometer at NIST (76).  

 
Figure S21 summarizes the UMD Cessna 402B flight tracks. On July 1, the winds 

predominantly pushed the NYC plume offshore towards Long Island, and ozone in the plume 
reached mixing ratios > 120 ppb downwind of Manhattan. On July 2, the plume was transported 
over land to the north of the city and reached mixing ratios > 130 ppb.  On both days, the aircraft 
predominantly sampled at altitudes < 1.5 km. Over land, measurements were predominantly 
sampled within the boundary layer, while measurements over water were influenced by marine 
boundary layer dynamics. Here, we compare model output to all measurements, but focus on 
comparisons during the afternoon during peak ozone production. 
 

 
Fig. S21. UMD Cessna 402B flight tracks over the NYC region during the July 1-2, 2018 heat wave event. Flight 
tracks are colored by ozone mixing ratios. 

D) July 2nd (3-6 PM)C) July 2nd (9 AM-noon)

B) July 1st (5-8 PM)A) July 1st (10 AM-1 PM)
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Figure S22 compares WRF-Chem output to CO and NO2. Overall, WRF-Chem describes 
these measurements to within 20%. During peak ozone production on the highest ozone 
exceedance (column D, July 2, 3:00 PM – 6:00 PM), both CO and NO2 are described to within 
10%. The agreement for CO illustrates that the CO emission inventory used in this study generally 
captures anthropogenic emissions, and further supports that the anthropogenic VOC inventory, 
constrained by VOC/CO ratios measured from CCNY (Fig. S10), is well represented by WRF-
Chem. 

 
Over the entire event, WRF-Chem under-predicts ozone by ~11 ppb. This difference is 

largely driven by the underprediction in morning ozone mixing ratios on July 2 (column C, 9:00 
AM – 12:00 PM), which is also the period where CO and NO2 mixing ratios are also most 
underpredicted. This underprediction is most likely related to difficulties for WRF-Chem in 
simulating urban and coastal meteorological dynamics during early morning hours when the PBL 
rapidly develops between 9:00 AM – 11:00 AM (Fig. S27A). WRF-Chem model output are better 
simulated in the afternoon sampling period (column D, 3:00 PM – 6:00 PM, bias < 2%), after the 
PBL has fully developed. During the afternoon of July 2, 2018, which is the period analyzed by 
3D and box models (Figures 3, 4, and 5, main text), WRF-Chem simulations reasonably capture 
the emissions and resulting chemistry of the NYC region. 
 

 
Fig. S22. Comparison between the UMD Cessna 402B observations of CO, NO2, and ozone and WRF-Chem 
simulations during (A) July 1, 10:00 AM – 1:00 PM, (B) July 1, 5:00 PM – 8:00 PM, (C) July 2, 9:00 AM – 12:00 PM, 
and (D) July 2, 3:00 PM – 6:00 PM.  
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4.3.7 MDA8 ozone simulations over the entire July 2 heat wave. 
 

Figure 3 in the main text shows WRF-Chem simulations for July 2, 2018, which was the 
highest ozone exceedance observed over a 3-day heat wave (July 1 -3, 2018). Figure S23 shows 
the same sensitivity analyses, but for MDA8 ozone averaged over the entire heat wave. Panel (A) 
shows ozone produced from the reactions of biogenic VOCs (BVOCs) along with NOx, panel (B) 
shows the results from (A), but with fossil fuel VOCs include, and panel (C) shows the results 
from (B), but with VCP VOCs included. Panels (A-B) show WRF-Chem simulations using RACM-
ESRL (hydrocarbon chemistry), while panel (D) shows simulations using RACM-ESRL-VCP 
(oVCP chemistry). 

 
On July 2, peak ozone was formed downwind of NYC; however, over a 3-day average, 

ozone is distributed more broadly across the metropolitan area. The MDA8 ozone calculated from 
surface monitors show that all 5 boroughs of NYC and parts of northern New Jersey exceeded 
the 70 ppb NAAQS over the 3-day period. As was shown in Fig. 3, most of the ozone is attributed 
to BVOCs reacting alongside NOx. Panel (A) shows that BVOCs were responsible for 66 ppb of 
the ozone simulated over NYC, and 73 ppb of the maximum ozone simulated within the modeling 
domain. Panel (B) shows that fossil fuel VOCs enhance ozone to 69 ppb in NYC (an increase of 
3 ppb) and 75 ppb at the ozone maximum (an increase of 2 ppb). Inclusion of VCP emissions 
(panel C) pushes ozone to 73 ppb in NYC (an increase of 4 ppb) and 80 ppb at the ozone 
maximum (an increase of 5 ppb).  

 
Fig. S23 shows that anthropogenic VOCs contribute 7 ppb of ozone to NYC and the domain 

maximum. The contribution of VCPs to ozone derived from anthropogenic sources is ~60%, which 
is consistent with the amount estimated for the July 2 exceedance (60%, Fig. 3). These results 
show that the ozone attribution estimated for July 2 generally applies for the broader heat wave 
event. Finally, panel (D) shows the impact of oVCP chemistry on ozone simulations. The increase 
in ozone is modest (~1 ppb), which is consistent with the results shown in Fig 3. 
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Fig. S23. WRF-Chem simulations of maximum MDA8 ozone averaged over the 3-day heat wave from July 1 - 3, 2018. 
Shown are simulations for (A) global background + NOx and BVOCs, (B) results from (A) with mobile source VOCs 
added, and (C) results from (B) with VOCs from VCPs added. Panels A-C show ozone produced under the assumption 
of hydrocarbon chemistry. Panel (D) shows the simulation using full emissions, but under the assumption of oVCP 
chemistry. Circles show ozone mixing ratios measured at monitoring stations in the NYC area; those bolded in white 
exceeded US NAAQS. The numbers above each panel show surface ozone simulated in NYC and at the location of 
the MDA8 ozone maximum downwind of NYC (max). 
 

4.3.8 MDA8 ozone simulations during the July 16 exceedance 
 

The exceedance on July 2, 2018 reflects a case study where onshore winds transported the 
NYC plume to the northwest (77). Previous studies have shown that pollution from NYC and 
upwind sources is often transported over coastal New England, which may result in ozone 
exceedances in Long Island, coastal Connecticut, and other states in the Northeast (78, 79). Such 
events were observed during LISTOS and serve as a contrast to the July 2, 2018 case study (77, 
80). 

 
Figure S24 shows WRF-Chem simulations for the ozone exceedance observed on July 16, 

2018, which was characterized by transport along coastal New England. Surface monitors 
showed that MDA8 ozone reached 65-70 ppb in NYC, and as high as 85 ppb downwind at sites 
along the Long Island Sound. Downwind of NYC, MDA8 ozone peaked near Westport, CT (max 
in Fig. S24), which was coincidentally within a few kilometers of the LMOL measurements (see 
Section 4.3.4).  

 
 WRF-Chem generally reproduces the spatial pattern of ozone downwind of NYC. WRF-

Chem underpredicts upwind ozone produced from the outflow of Philadelphia and other upwind 
urban centers, which is likely the result of an overprediction in the PBL in the Philadelphia region. 
Despite these challenges, the meteorology in the NYC region is reasonably captured by the 

(A) NOx and BVOC only
NYC = 66 ppb, max = 73 ppb

(B) + Fossil Fuel VOC
NYC = 69 ppb, max = 75 ppb

(C) + VCP VOC
NYC = 73 ppb, max = 80 ppb

(D) + oVCP Chemistry
NYC = 74 ppb, max = 81 ppb

NYC NYC

MDA8 Ozone (ppb)
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model. In WRF-Chem, the simulated PBL over NYC is within ~10% of the ceilometer 
measurements at CCNY (Fig S14). Ozone mixing ratios within the NYC plume are also well 
represented. At Westport, CT (the location of “max” within the modeling domain), the LMOL 
reported average ozone of ~84 ppb within 2.5 km of the surface during peak photochemistry 
(12:00 - 16:00 EST). WRF-chem ozone averaged over the same vertical extent was ~86 ppb.  

 
We analyze the ozone produced within the NYC plume on July 16 in order to compare to 

the trends observed on July 2. On July 16, BVOCs + NOx was the largest contributor to ozone 
produced within our modeling domain (Fig. S24, panel A), which is similar to the results presented 
for July 2. Between NYC and the MDA8 ozone maximum over Connecticut, biogenic VOCs 
reacted alongside NOx to enhance ozone by 14 ppb. Panel (B) shows simulations when fossil fuel 
VOCs are included. In this case, ozone in NYC increases to 61 ppb in NYC (an increase of 3 ppb) 
and 75 ppb at the ozone maximum (an increase of 4 ppb). The addition of VCPs (panel C) 
increases ozone further to 63 ppb in NYC (an increase of 2 ppb) and 82 ppb at the ozone 
maximum (an increase of 6 ppb). In total, AVOCs contributed ~ 5 ppb to ozone produced in NYC, 
and ~10 ppb to ozone produced at the MDA8 ozone maximum over Connecticut. Of this 
anthropogenic fraction, VCPs were responsible for ~40% of the ozone produced in NYC, and 
~60% of the ozone produced at the MDA8 ozone maximum. 

 
The ozone attribution estimated for July 16 is similar to the modeled ozone distributions 

described for July 2. These results demonstrate that VCPs are likely to play an important role in 
ozone exceedances observed during outflow events that typically affect the air quality in coastal 
communities along the Northeast US. 

 

 
Fig. S24. WRF-Chem simulations of MDA8 ozone for the ozone exceedance on July 16, 2018. Shown are simulations 
for (A) global background + NOx and BVOCs, (B) results from (A) with mobile source VOCs added, and (C) results from 
(B) with VOCs from VCPs added. Panels A-C show ozone produced under the assumption of hydrocarbon chemistry. 
Panel (D) shows the simulation using full emissions, but under the assumption of oVCP chemistry. Circles show ozone 
mixing ratios measured at monitoring stations in the NYC area; those bolded in white exceeded US NAAQS. The 
numbers above each panel show surface ozone simulated in NYC and at the location of the MDA8 ozone maximum 
downwind of NYC (max). 

NYC

(A) NOx and BVOC only
NYC = 58 ppb, max = 72 ppb

(B) + Fossil Fuel VOC
NYC = 61 ppb, max = 76 ppb

(C) + VCP VOC
NYC = 63 ppb, max = 82 ppb

(D) + oVCP Chemistry
NYC = 64 ppb, max = 82ppb

July 16

max

MDA8 Ozone (ppb)
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5. Description of Lagrangian box model 

 
A 0-D box model, built and executed using the Framework for 0-D Atmospheric Modeling 

(F0AM, 81), is employed to complement the WF-Chem simulations. Box models require fewer 
computational resources and can provide insights into important chemical processes. Here, we 
develop a box model in order to estimate the contributions of VCPs and mobile source emissions 
to the anthropogenic ozone enhancements observed downwind of NYC. We also evaluate 
isopleths in order to assess ozone responses to changes in NOx and total VOC emissions. In the 
following sections, we describe the box model, evaluate model performance against WRF-Chem, 
and describe simulations aimed at evaluating ozone sensitivities. 
 

5.1 Box model setup 
 

We construct the box model to represent NYC pollution as a Lagrangian plume, which 
generally agrees with the representation inferred from WRF-Chem simulations. Figure S25 shows 
WRF-Chem trajectories and demonstrates that air over Manhattan during the July 2, 2018 ozone 
episode was transported northward to the region of high ozone near Spring Valley, NY (hatched 
circle). A schematic of the box model framework is shown in Fig. S26. The box volume is assumed 
to be equivalent to the area of Manhattan (12 km x 5 km) with a height equivalent to the planetary 
boundary layer (PBL) measured by LIDAR over CCNY during the 2018 LISTOS campaign (Fig. 
S27). To simplify the model, the chemistry is evaluated during midday when the boundary layer 
is fully developed and dilution effects due to boundary layer expansion can be neglected. Here, 
the model is initialized at 11:00 AM when the boundary layer is expected to have grown to ~ 1.2 
km. It is assumed that the box volume remains stable over the course of a 6-hour simulation, 
which is consistent with the lidar measurements conducted during LISTOS (Fig. S27). 

 
 It is assumed that the only processes contributing to the transformation of chemical species 

are by chemical reaction and dilution with background air, as described by Equation 2.  
 
!"
!#
= r$%&'(#)%* − r+%*,-'.#)%* − k!)/(C − C0)                         (2) 

 
Where C is the concentration of given species, r is the set of reactions that describe chemical 

transformation, kdil is the plume dilution rate, and Cb is a regional background concentration. The 
plume dilution rate is estimated based on the evolution of CO observed in WRF-Chem trajectories 
5 and 6 (Fig. S25). For base case simulations, the dilution rate is estimated to be 0.02 - 0.03 hr-1, 
which is lower than dilution rates observed in other cities 0.1 - 0.2 hr-1, (82) and likely reflects the 
stagnant conditions observed during the July 2 ozone event. 
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Fig. S25. WRF-Chem trajectories initialized at grid cells located over Manhattan. The trajectories begin at 11:00 AM 
on July 2, 2018 and project forward over 8 hours. The hatched circle shows the region of peak ozone production 
simulated by WRF-Chem (Fig. 3, main text). Shown are the trajectories that are compared to box model results 
(originating from the yellow circles). 
 

 
Fig. S26. Schematic showing the basic setup of the Lagrangian box model analysis.  The chemical mechanism for this 
analysis is assumed to be RACM-ESRL (46), and the emissions are based on the inventory described in Section 3. 

 
Reaction rates are determined based on the chemical mechanisms used in WRF-Chem 

simulations (i.e., RACM-ESRL and RACM-ESRL-VCP). The photolysis rate constants, 
temperature, pressure, and relatively humidity are constrained based on hourly WRF-Chem 
output at 750 m over the CCNY ground site. Initial mixing ratios of VOCs, NOx, and CO are 
calculated using the emissions inventory described in Section 3. It is assumed that the emissions 
are injected into the box, then fully mixed within the volume over Manhattan. In order to represent 

u …
Emissions dC

dt = Formation − Consumption −

kdil(C − Cb)

Volume = Area ∙ PBL

12 km

5 kmtime = 11:00 AM time = t
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the urban VOC and NOx mixture at 11:00 AM, the emissions are scaled by the diurnal patterns 
employed in WRF-Chem and presented in Fig. S27. For most source categories, it is assumed 
that VOC emissions follow a weekday diurnal pattern that peaks during working hours. In contrast, 
weekday emissions of personal care products have been shown to peak in the morning (6:00 - 
7:00 AM) and decrease exponentially over the course of a day (30). The same assumptions are 
applied to the personal care product emissions used for NYC simulations.  
 
 

 
 
Fig. S27. (A) LIDAR measurements of planetary boundary layer height during the 2018 LISTOS campaign. (B) Diurnal 
emission profiles applied to the box model for fossil fuels (gasoline exhaust, gasoline evaporation, diesel exhaust, and 
other fossil fuels), personal care products, and other VCP categories (cleaning, pesticides, and coatings). The black 
line shows the time when the Lagrangian box model is initialized (11:00 AM).  

NOx emissions are injected into the box then partitioned to NO and NO2 assuming that both 
species are at pseudo-steady state with ozone. The initial NOx mixture is 80% NO2 and 20% NO. 
Initial ozone concentrations are prescribed based on July 2, 2018 observations at 11:00 AM (70 
ppb). OH concentrations are initialized to 6 x 106 molecules cm-3, which is the approximate 
concentration produced shortly after initializing the simulation. 
 

Biogenic emissions have an important impact on ozone production downwind of NYC and 
other eastern U.S. cities (83). Mobile drives across the NYC metropolitan area show that isoprene 
is relatively constant at ~ 0.75 – 1 ppb (Fig. S17A). To account for biogenic contributions to ozone 
production and plume reactivity, we constrain isoprene mixing ratios to 750 ppt for the entire box 
model simulation. This differs from WRF-Chem simulations which spatially distribute isoprene 
emissions based on biogenic emission inventories. Despite this simplification, the box model 
constraint reasonably accounts for ozone produced from biogenic sources. Panel F in Fig. S28 
shows WRF-Chem and box model output when anthropogenic VOCs are turned off and isoprene 
is constrained to 750 ppt ± 10% (“No Anthro.”). Between both models, ozone formed from 
isoprene + NOx chemistry agrees to within 20%. We note that biogenic monoterpene emissions 
are also present downwind of NYC; however, we ignore these emissions since they represent a 
small fraction of total biogenic emissions (< 10%). 
 

 The box model is diluted with background air as described by Equation 2. For most 
species, it is assumed that regional background mixing ratios are negligible compared to the NYC 
plume. Exceptions include CO, formaldehyde, and small hydrocarbons (e.g., ethanol, methanol, 
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propane). For these species, we estimate background mixing ratios based on WRF-Chem output 
outside the NYC plume.  

 
5.2 Box model comparisons to WRF-Chem trajectories 

 
Figure S28 shows a comparison between the box model and WRF-Chem output along the 

trajectories presented in Fig. S25. Here, we compare simulations employing RACM-ESRL-VCP. 
Shown are the four WRF-Chem trajectories that passed through the region of maximum ozone 
downwind of the NYC. The WRF-Chem trajectories were initialized at 11:00 AM in order to 
compare with the box model results. 

 
The two models agree to within 10% for ozone and NOx. Initial CO and NOx mixing ratios 

differ among the various trajectories, in part because WRF-Chem emissions are distributed 
throughout Manhattan based on traffic and population density. For some WRF-Chem trajectories, 
CO, VOCs, and NOx increase shortly following initialization. For example, CO mixing ratios 
increase in trajectories 3 and 4, likely due to the accumulation of combustion emissions while 
moving northward. We note that trajectories 5 and 6 generally pass through regions of relatively 
low population density downwind of Manhattan. As mentioned previously, the model dilution rate 
was adjusted to match these profiles. 

 
Also shown are the profiles for several hydrocarbon categories - HC3, HC8, TOL, EOH, 

and PROG. HC3 is predominantly influenced by mobile source alkanes, HC8 includes a wide 
range of hydrocarbon emissions from both mobile and VCP sectors, TOL predominantly reflects 
fossil fuel aromatics, and EOH and PROG describe ethanol and glycols. In general, the two 
models agree to within 30% for HC8, HC3, TOL, and PROG, and within 40% for EOH. Similar to 
CO and NOx, VOC mixing ratios increase along WRF-Chem trajectories 3 and 4, which may reflect 
accumulation of VCP or mobile emissions while moving northward. 
 

 
 

Fig. S28. Comparison of box model simulations to the WRF-Chem output along the trajectories presented in Fig. S25. 
Shown are comparisons for simulations conducted with biogenic and anthropogenic emissions. For ozone (panel F), 
simulations conducted with (“Full Emissions”) and without (“No Anthro.”) anthropogenic VOC emissions are shown. 
The “No Anthro.” box model simulation assumes a constant isoprene concentration of 1±0.1 ppb. 
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5.3 Box model evaluation of VOC contributions to anthropogenic ozone formation 

 
Fig. S28 demonstrates that box model and WRF-Chem are in good agreement. In the 

following discussion, we leverage the box model to evaluate ozone sensitivities to total VOC, NOx, 
and speciated VOC emissions.  

 
Simulations were conducted to assess the amount of ozone produced from each VOC in the 

emission inventory (total = 1600). For each simulation, emissions of a single species were set to 
zero, and the resulting change in ozone was compared to the base case simulation. The impacts 
of VOC emissions from a single source category were assessed by decoupling VOC contributions 
from multiple sources. For example, ethanol associated with VCPs was turned off independently 
from ethanol resulting from gasoline exhaust, gasoline evaporation, and diesel exhaust. The total 
sum of ozone changes is defined as “anthropogenic ozone”, as described by Equation 3. 
 
Anthropogenic	Ozone = 	∑ Ozone!"#$	&"#$ − Ozone'($)*$#!+,

-.,,
/              Equation 3 

 
In this study, we evaluate the yield of anthropogenic ozone and other secondary pollutants 

(e.g., formaldehyde, PAN, and organic nitrates) from fossil fuels, VCP emissions, and sub-
categories within VCPs (Fig. 4, main text). The yield of a secondary pollutant (X) is calculated 
following Equation 4. 

 
Yield = 	 01

023&
				or				

∑ 01! !
∑ 023&!!

                                                                                      Equation 4 
 

Where the first equation represents the yield for a single ozone precursor, and the second 
represents the yield associated with an entire emission category. The change in mass of species 
X is calculated as the amount produced when the NYC plume reaches the location of the MDA8 
ozone maximum highlighted in Fig. S25. The change in VOC is calculated as the mass that was 
reacted away once the plume reaches the MDA8 ozone maximum.  

 
Several sensitivity studies were conducted to assess the extent to which meteorology, 

dilution, biogenic emissions, and NOx/VOC ratios impact the relative distribution of anthropogenic 
ozone production (Table S7). Broadly, the contribution of emission sectors to anthropogenic 
ozone formation varied by less than 5%.  
 
Table S7. Summary of analyses conducted to evaluate box model sensitivity to meteorology, 
dilution, biogenic emissions, NOX/VOC ratios, and fragrance emissions. 

Sensitivity Case Range of values tested 

kdil 0.025 s-1 (base), 0.1 s-1 
PBL 1200 m (base), 1800 m, 900 m 
NOx Emissions base, base/2 
VOC Emissions base, base/2 
Isoprene Constraint 0.75 ppb (base), ±10%, ±50% 

 
 

5.4 Box model evaluation of ozone sensitivities towards NOx and VOC emissions 
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WRF-Chem sensitivity analyses shown in Fig. 3 (main text) suggest that ozone production 
downwind of NYC was, in part, sensitive to the concentration of anthropogenic VOCs. Ozone 
production is strongly dependent on NOx emissions, but the relative balance between 
anthropogenic VOCs, biogenic VOCs, and NOx can lead to differences in NOx and VOC-
sensitivity. Here, we leverage the box model to calculate changes in ozone downwind of NYC 
assuming a 50% decrease in NOx or VOC emissions. This analysis is intended to assess the 
extent to which photochemical ozone production downwind of NYC was NOx or VOC-limited. 

 
The ozone sensitivity analysis for the July 2 ozone episode is shown in Fig. 5 (main text). 

The background colors show when ozone production transitions from NOx-saturated and VOC-
limited ( "#!

"$#"
< 0 ) to NOx-limited ( "#!

"$#"
> 0 ). Shown is the base case assuming a constant isoprene 

mixing ratio of 750 ppt. Additional calculations were performed assuming 10% and 50% changes 
to the isoprene constraint. in Fig. 5. All calculations were performed for a box model time of 2.5 
hr, which corresponds to the time that the NYC plumes passed over the WRF-Chem MDA8 
maximum.  
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Supplemental Discussion 
 

6. Evaluation of anthropogenic monoterpene emissions 
 

In the main text, we show that monoterpenes measured in Manhattan during winter and 
summer were emitted from anthropogenic sources (Fig. 2). Anthropogenic monoterpenes are a 
significant source of reactive carbon in urban environments and are shown to be emitted at 
significant rates. Below, we show that the monoterpene distributions measured in Manhattan most 
resemble those from fragranced consumer products and indoor air, and that the anthropogenic 
monoterpene budget is best described by emissions from fragranced VCPs, pine oils, and 
emissions from building materials. 

 
 

6.1 Comparison of urban monoterpene distributions to VCP headspaces, indoor air, and 
biogenic monoterpene measurements 

 
Figure S29 shows the speciation of monoterpenes in major classes of fragranced consumer 

products, including personal care products, laundry detergents, cleaning agents, and air 
fresheners. A key feature of VCPs is that limonene is the dominant monoterpene (~55%), followed 
by other terpenes/terpenoids (~30%) and pinenes (~15%).  

 
 

 
 

Fig. S29. Head space monoterpene distributions reported by Steinemann et al. (84, 85) for personal care products, 
laundry products, cleaning products, and air fresheners. 

The monoterpene distribution measured in Manhattan (Fig 2) is similar to those shown in Fig. 
S29. Likewise, the Manhattan distribution also resembles those observed in indoor air (Fig. S30) 
(86-88). Indoor mixing ratios of monoterpenes largely result from emissions from VCPs and 
building material off-gassing (e.g., wood structures) (86-88).  VCPs emitted indoors will exchange 
with outdoor air and contribute to ambient VOC mixing ratios(28, 30). The high proportion of 
limonene in Manhattan suggests that the emissions primarily result from anthropogenic sources. 
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Fig. S30. Monoterpene distribution measured in NYC during winter (top left) compared to the monoterpene distributions 
measured from indoor air of a variety of building types (86-88). Limonene is enriched in NYC, which is consistent with 
the monoterpene distributions measured in indoor air.  

In contrast to the VCP distributions, biogenic sources of monoterpenes are dominated by 
pinenes. Figure S31 shows the speciation of terpenes measured by the mobile laboratory in 
northern New Jersey, as well as the distribution expected from pitch pine, a common 
monoterpene-emitting tree found in the Eastern US. The dominance of pinenes is confirmed by 
our mobile laboratory measurements in outlying suburbs located in New Jersey. The contrast 
between the biogenic distribution measured outside of NYC with those measured in Manhattan 
again point to the significant influence of anthropogenic emissions on urban monoterpene mixing 
ratios. 
 

 
 

Fig. S31. Monoterpene distribution measured in New Jersey during winter compared to the monoterpene speciation 
reported for the dominant tree species in northern New Jersey (89). In forested regions, limonene is only a small fraction 
of the total monoterpene emissions. 

 
6.2 Estimation of total anthropogenic monoterpene emissions in Manhattan 

 
Anthropogenic monoterpene emission rates are not readily reported in the literature. To 

estimate monoterpene emissions in Manhattan, we apply two methodologies. First, we use FIVE-
VCP inventory estimates of CO and multiply these emissions against the monoterpene/CO ratios 
measured in Manhattan during winter. Second, we scale monoterpene emissions represented in 
WRF-Chem to match the mobile laboratory measurements of monoterpenes sampled across 
NYC during summer. These two methods provide an estimate in the range of emissions that can 
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be compared against speciated FIVE-VCP estimates of fragrances (described further in Section 
6.3).  
 

During a wintertime stagnation event, monoterpenes and CO were highly correlated (Fig. 
S5), and we calculate a monoterpene/CO enhancement ratio of 4.2 g/kg (Table S2).  This ratio 
accounts for the differences in reactivity between monoterpenes and CO under modeled 
wintertime oxidation conditions (see Section 3.1). In Section 3, we validated the FIVE-VCP 
inventory against CO fluxes measured by aircraft during winter (Fig. S9) and VOC/CO ratios 
measured at the CCNY ground site by PTR-ToF-MS and GC-MS (Fig. S10). We multiply the CO 
emissions calculated over Manhattan (212 t d-1) by the monoterpene/CO enhancement ratio (4.2 
g/kg) and normalize this to the population of Manhattan (~1.7 million people) to estimate a total 
monoterpene flux of 520 mg person-1 d-1. 

 
This estimate applies to anthropogenic monoterpene emissions during winter when biogenic 

emissions are at a minimum. To estimate monoterpenes during summer, we leverage our WRF-
Chem simulations, which accounts for greater biogenic emissions during summer and greater 
losses of monoterpenes to atmospheric oxidation. We tune WRF-Chem simulations to include 
anthropogenic monoterpene emissions and compare model results to mobile laboratory transects 
across the NYC region. Figure S17C shows model sensitivity analyses in the presence and 
absence of anthropogenic monoterpenes. Even during summertime, biogenic sources cannot 
explain the peak monoterpene emissions observed in the densely populated regions of NYC. The 
observations are reproduced in simulations that include anthropogenic monoterpene emissions 
equivalent to 860 mg person-1 d-1.  

 
While this emission rate is higher than that estimated for winter, these differences may reflect 

seasonality in the emissions of fragranced VCPs, or uncertainties due to the losses of 
monoterpenes to OH and ozone. Gkatzelis et al. (90) investigated the seasonality of VCP tracers 
in Manhattan, including D5-siloxane and monoterpenes. D5-siloxane enhancement ratios were 
higher in summer than in winter, suggesting greater use of personal care products during warmer 
months. D5-siloxane is predominantly removed from the atmosphere by reaction with OH and has 
an atmospheric lifetime that is significantly longer than the ventilation rate in NYC (atmospheric 
lifetime ~4 days under typical OH concentrations (30, 91, 92)). Consequently, the differences 
observed in Manhattan reflect changes in emissions rather than seasonality in OH oxidation. 
Gkatzelis et al. (90) reported higher monoterpene enhancement ratios in winter than in summer, 
but attributed this to differences in chemical lifetime. Our box modeling results described in 
Section 3.1 show that monoterpene losses are significant during winter (~50% loss) and greatest 
during summer (70-90% loss) under typical air exchange rates in NYC (Fig. S6). These results 
agree with the conclusions drawn by Gkatzelis et al. (90), and demonstrate that oxidation 
processes can significantly alter emission rate estimates for highly reactive VCP emissions. 

 
Here, we bound our estimates of anthropogenic monoterpenes emissions to 520 - 860 mg 

person-1 d-1 based on our winter and summertime estimates.  
 
 

6.3 Inventory estimates of monoterpene emissions from fragranced VCPs 
 
Monoterpenes from VCPs are commonly associated with fragrance mixtures (84, 85), air 

fresheners (93), and pine oils (93) in personal care products and cleaning agents. Here, we refer 
to monoterpenes found in consumer products collectively as “fragrances”. Minimal fragrances are 
found in coatings, inks, adhesives, and pesticides. McDonald et al. (28) estimated that per capita 
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use of fragrances in the US is ~1.4 g/d. Here, we perform a more detailed accounting of the 
amount and distribution of monoterpenes in fragrances.  

 
In emissions inventories, VCP sources of monoterpenes are listed explicitly as d-limonene 

and α-pinene (~30 mg/person/d), as “pine oil” (~60 mg/person/d), or mainly as “fragrances” 
(~1300 mg/person/d). For an emissions inventory of Los Angeles, McDonald et al. (28) treated 
fragrances as predominantly composed of monoterpenes. However, the California Air Resources 
Board (CARB) recently conducted an industry survey of fragrance mixtures (94). Of the speciated 
mass, lower vapor pressure VOCs (e.g., glycols) were the largest fraction (~55%), followed by 
monoterpenes (~15%), esters (~15%), and other aldehydes and ketones. However, a significant 
fraction of the mass remains unresolved. To augment the CARB survey, we have performed gas 
chromatographic analyses of five commercially available fragrance mixtures (VOC composition 
summarized in Table S8).  

 
For identification of fragrance components, 1 μL aliquots of 50,000x diluted fragrances (~20 

ng/μL in dichloromethane) were injected manually into the into the heated inlet of a GC-MS. 
Analytes were separated on a non-polar column (DB-5, 30m x 0.25 mm x 0.25 μm) and detected 
using a unit-mass resolution electron ionization quadrupole mass spectrometer. All listed analytes 
had mass spectra that agreed with the NIST mass spectral library with a match value greater than 
850 indicating a high probability of accurate identification. In addition, an n-alkane standard was 
run to corroborate identifications based on retention indices. The density of each fragrance was 
also determined gravimetrically, with an average of 1030 g/L for these five fragrances. Any 
siloxanes observed were attributed to column bleed and were not documented or quantified. 

 
Identified components were quantified by separate analysis using a GC with a flame 

ionization detector (FID), with which detector response can be accurately (within ~10%) estimated 
for any component with a known structure. For quantification, each fragrance was diluted in 
dichloromethane separately (i.e., not serially) to three concentrations (nominally 10, 25, and 50 
ng/μL), each of which was analyzed in triplicate by GC-FID using an autosampler for injection of 
1 μL aliquots (i.e., 9 samples per fragrance, representing three different concentrations). GC 
operating parameters were the same as those used for identification, allowing analytes to be 
robustly identified by their retention times. Detector response was calibrated using an  n-alkane 
standard, with each identified analyte quantified based on the nearest eluting alkane, then 
corrected  based on its expected FID detector response calculated by the structure-activity 
relationship of Scanlon and Willis (95). To test the validity of this quantification method, a tracking 
mixture with known amounts of analytes (e.g., limonene, toluene, diethyl phthalate, etc.) was 
injected and the experimental quantification matched injected amounts to within 10%, except for 
high-volatility oxygenates such as hydroxyacetone (for which uncertainty is around 30%). All data 
analysis was performed using the freely available TERN chromatographic software package (96) 
in the Igor Pro programming environment (Wavemetrics, Inc.) Mixing ratios for the observed 
compounds are expected to be accurate to within 15% based on propagated error from 
calibrations, uncertainty in FID response factors, and uncertainty in dilution ratios. 
 

On average, ~10% of the fragrance mixture mass is classified as monoterpenes or terpenoids 
with the largest species being limonene. These results are generally consistent with the CARB 
fragrance survey (94). Assuming fragrance mixtures are ~10% monoterpenes, and adding 
inventory contributions from limonene, α-pinene, and pine oil, we estimate overall terpene 
emissions from VCPs at 220 mg/person/d. 
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Table S8. Summary of five fragrance mixtures analyzed by GC-MS. 

 
Compound 

Mix 1 
(g/L) 

Mix 2 
(g/L) 

Mix 3 
(g/L) 

Mix 4 
(g/L) 

Mix 5 
(g/L) 

Avg 
(g/L) 

 
diethyl phthalate 
triethyl citrate 
benzyl benzoate 
hedione 
d-limonene 
galaxolide  
linalool 
peach lactone 
linalyl acetate 
hexyl acetate 
benzyl salicylate 
vertenex 
dihydromyrcenol 
β -pinene 
 
∑(terpenes) =  
 

 
-- 
-- 
-- 
83 
65 
22 
61 
-- 
73 
-- 
-- 
-- 
-- 
-- 
 
126 

 
316 
-- 
-- 
244 
-- 
159 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
 
0 

 
-- 
625 
-- 
-- 
105 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
 
105 

 
47 
-- 
385 
32 
85 
14 
-- 
84 
-- 
42 
40 
-- 
-- 
-- 
 
85 

 
667 
-- 
-- 
-- 
50 
-- 
27 
-- 
-- 
-- 
-- 
18 
16 
-- 
 
77 

 
206 
125 
77 
72 
61 
39 
18 
17 
15 
8 
8 
4 
3 
1 
 
95 

Note: Underlined and bolded compounds are classified as monoterpenes or terpenoids. 
 
The estimated flux of monoterpenes from fragranced VCPs is lower than the total emissions 

of anthropogenic monoterpenes estimated for Manhattan (520–860 mg person-1 d-1). The 
remaining mass is likely associated with other anthropogenic sources, including food consumption 
(cooking + citrus use) or off-gassing of building materials. Wood combustion could contribute to 
monoterpene emissions, especially during winter. However, monoterpene emission factors from 
wood combustion are small (97) and monoterpenes measured in NYC do not exhibit a strong 
correlation with compounds largely associated with residential wood burning (e.g., furfural, R2 ~ 
0.3, 98). In NYC, most heating of residential/commercial buildings is by natural gas. Therefore, 
monoterpene emissions from wood burning are likely negligible. 

 
 Building materials can be a significant source of a- and b-pinene (99) and indoor 

concentrations of monoterpenes in occupied or unoccupied homes can range between 15 - 40 
μg/m3 (88). If we treat lower bound observations as representative of monoterpene concentrations 
of unoccupied homes, and use the Manhattan building volume (1.1 x 107 m3, found at: 
https://www1.nyc.gov/site/doitt/residents/gis-3d-data.page), a typical air exchange rate of ~1 per 
hour (or ~24 per day) (100), and a population of ~1.7 million people, we estimate a 1st-order 
monoterpene emission rate of ~240 mg person-1 d-1 from building materials. While further work is 
needed to evaluate the exchange between indoor and outdoor air, this emission rate could be 
comparable to monoterpene emissions from fragranced VCPs.  
 

7. Spatial distribution of ethanol in NYC and across the US 
 

Ethanol was one of the most abundant VOCs measured in NYC and other cities across the 
US (> 10 ppb in NYC). In the US, gasoline is enriched with ethanol to 10% by volume, resulting 
in large fossil fuel emission factors (25, 34). The large burden of ethanol in the US has been 
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traditionally linked to emissions from fossil fuels (101). Recently, it has been shown that VCP 
emissions significantly contribute to ethanol mixing ratios in Los Angeles(28). In this study, the 
FIVE-VCP shows that 70% of the ethanol emitted in NYC is due to VCP emissions, while 30% 
comes from fossil fuels (Fig. S10). 

 
The spatial distribution of ethanol across the NYC metropolitan area also points to the 

significant influence of VCP emissions on urban ethanol mixing ratios. Figure 31A shows NOAA 
mobile laboratory measurements throughout the NYC region. The drive tracks are colored by 
ethanol, and the bars show median mixing ratios measured in binned longitudinal segments. Also 
shown is the average population density in census tracts located along the mobile laboratory path. 
The population density data are available at: https://www.census.gov/geographies/mapping-
files/time-series/geo/tiger-data.2010.html (last accessed September 2019).  

 
Ethanol is generally enhanced by > 5 ppb in the densely populated regions of NYC compared 

to lesser populated areas of New Jersey and Long Island. Furthermore, ethanol is well-correlated 
with the local population density in regions sampled by the mobile laboratory (R2  = 0.72). The 
correlation of ethanol with population density is similar to the correlation observed for D5-siloxane 
(Fig. 2, main text), and significantly higher than for mobile source emissions (Fig. S32, R2 < 0.05). 

 
As described in the main text, we calculate VOC enhancement ratios to benzene to evaluate 

the relationship between VCPs, traffic emissions, and urban population density. Figure S32B 
demonstrates that ethanol enhancement ratios are well-correlated with urban population density 
for cities across the US. In Section 8, we show that enhancement ratios of mobile source VOCs, 
such as toluene and C8-aromatics, do not correlate with urban population density. The difference 
between these relationships further illustrates the significant impact of VCPs on urban emissions 
of ethanol. 
 

 
Fig. S32. (A) Drive track through NYC colored by ethanol in winter 2018 on top of a population density map. The bars 
above the map show the median concentrations of ethanol longitudinal bins, together with the average population 
density (blue trace). (B) Ethanol/benzene enhancement ratios measured in cities across the US.  

 
8. Spatial distributions of mobile source VOCs in NYC and across the US 
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Benzene is a known marker for traffic emissions (102). Unlike monoterpenes, D5-siloxane, 
and ethanol, benzene and other traffic markers, such as CO, did not exhibit a strong correlation 
with population density in NYC. Figure S33 shows the spatial distribution of benzene and CO 
measured by the NOAA mobile laboratory across the NYC metropolitan area. The drive tracks 
are colored by benzene and CO mixing ratios, and the bars at the top of each panel show median 
mixing ratios measured in binned longitudinal segments. The blue trace shows the population 
density in the regions sampled by the mobile laboratory, also binned into longitudinal segments.  
 

While mobile and combustion sources are ubiquitous across the NYC metropolitan area, 
there is not a strong correlation between population density and median mixing ratios of benzene 
and CO (R2 < 0.05). This is in contrast with the spatial distribution observed for D5-siloxane, 
anthropogenic monoterpenes, and ethanol (Figures 2 and S32), which were strongly correlated 
to population density during winter (R2 	> 0.6). As described in the main text, these observations 
are consistent with the expectation that VCP usage should scale with the population, whereas 
mobile emissions will be limited by road volume capacity (103-105). 
 

 
 

Fig. S33. Drive track through NYC colored by benzene (mobile source tracer) and CO (combustion marker) in winter 
2018 on top of a population density map. The bars above each map show the median concentrations of benzene and 
CO over longitudinal bins, together with the average population density (blue trace). 

 
In contrast to the VCP tracers described in the main text, urban enhancement ratios for 

aromatic compounds were poorly correlated with population density (R2 < 0.11, Fig. S34). Toluene 
and C8-aromatics (mostly m,p,o-xylene) are primarily emitted from mobile sources; thus, ratios to 
benzene are expected to be similar across US cities. C9-aromatics have a relatively larger 
influence from VCPs and exhibit a weak, but positive, relationship with population density. The 
contrast between aromatic ERs and those of VCP tracers demonstrate that VOCs emitted from 
VCPs could be identified in other cities by the relationship with population density. 
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Fig. S34. Population density dependence of aromatic compounds that are co-emitted with benzene from traffic. 
 
 
 

9. Evaluation of RACM-ESRL-VCP representation of oVCP emissions and OH reactivity 
 

As described in Section 4.2, oVCP chemistry was added to RACM-ESRL to account for the 
chemical oxidation of key alcohols and glycols. The resulting mechanism, RACM-ESRL-VCP, 
explicitly represents the majority of the OH reactivity attributable to oVCP emissions. Figure S35 
shows a breakdown of VCP OH reactivity by functional group. Here, we evaluate VCP 
contributions to OH reactivity following Equation 1. 

 
Fraction	of	VCP	OH	Reactivity = 4!"∙6#$%

∑4!"∙6#$%
                        (1) 

 
Where kOH is the reaction rate constant for a given VCP component and EVCP are the daily 

molar emissions estimated from FIVE-VCP. We evaluate all VCP emissions, but focus on the 
relative contribution from oVCPs. When available, we utilize published OH rate constants listed 
in the NIST Chemical Webbook (https://webbook.nist.gov/chemistry/). For oVCPs without 
published rate constants, we estimate kOH using GECKO-A (http://geckoa.lisa.u-pec.fr/). For non-
oxygenated VOCs (e.g., alkanes, alkenes, and aromatics), we use kOH values represented by 
corresponding surrogates in RACM_ESRL.  
 

Fig. S35 shows that the key species identified in this study (specifically, ethanol, glycerol, 
propylene glycol, ethylene glycol, and isopropanol) represent ~45% of the molar emissions and 
> 50% of the OH reactivity attributable to all VCP emission. Of the oxygenated fraction (dark line), 
which includes fragrances due to the high proportion of glycol solvents, the identified species 
represent ~70% of the emissions and ~75% of the reactivity. 

 
The glycols represent a large fraction of the VCP emissions (>10%) and OH reactivity 

(>30%). The CARB 2015 consumer product survey shows that glycerol and propylene glycol are 
the second and third most commonly used solvents in current consumer product formulations 
(35). These ingredients are used in personal care products as moisturizers and formulation 
stabilizers (35), and are also present in many cleaning products. These species are treated as 
low vapor pressure (LVP) VOCs by CARB (compounds or mixtures with vapor pressure less than 
0.1 millimeter of mercury at 20°C), which exempts these compounds from regulatory VOC limits.   

Aromatics expected from mobile sources
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Fig. S35. Breakdown of molar emissions and OH reactivity associated with VCPs in the FIVE-VCP inventory. The 
dark line highlights the oxygenated emissions from VCPs. 
 

While the atmospheric chemistry of glycols and glycol ethers have been assessed in 
laboratory chamber experiments (106-109), measurements constraining their emissions are 
limited. Glycols and glycol ethers are prevalent in indoor air due to the use of cleaning and 
personal care products (93, 110) and the persistent evaporation from water-based coatings (111, 
112). Glycols and glycol ethers have been measured in indoor air at average mixing ratios > 1 
ppb  (87, 93, 110), which demonstrates that these compounds are volatile and may exchange 
with outdoor air to contribute to ambient VOC mixing ratios. Given the degree to which glycols 
contribute to the emissions and reactivity of VCPs, more work is needed to constrain these 
emissions in ambient air. 
 

10. Comparing hydrocarbon and oVCP OH oxidation mechanisms 
 

In the following discussion, we evaluate the extent to which the chemistry updated in RACM-
ESRL-VCP impacts the modeled oxidation of key oVCPs. As discussed in Section 4.2, 
oxygenates, such as glycols, react differently from their alkane surrogate and can lead to different 
yields of ozone, as well as other important secondary pollutants, such as PAN, formaldehyde, 
and organic nitrates. Formaldehyde is observed by satellite remote sensing instruments and is 
often used as a tool to evaluate OH production and ozone formation processes in remote and 
urban regions (113, 114), while PAN and organic nitrates are important NOx reservoirs that can 
influence ozone sensitivity to changes in chemical regimes (e.g., Fig. 5, main text).  

 
Table S9 summarizes yields (ppb/ppb) of ozone, PAN, formaldehyde, and organic nitrates 

from the oxidation of ethanol, isopropanol, propylene glycol, and glycerol calculated from box 
model simulations. These yields are calculated at the MDA8 ozone maximum during the July 2, 
2018 ozone episode following Equation 4. Those reported for RACM-ESRL correspond to 
simulations where the oVCP is treated as its alkane surrogate, while those for RACM-ESRL-VCP 
correspond to simulations where the oVCP reacts through more complex chemistry that accounts 
for the reactivity and mechanistic details of the OVOC. We focus on ethanol (EOH), isopropanol 
(IPOH), propylene glycol (PROG), and glycerol (GLYC) due to the structural differences in the 
alcohol groups. 
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Table S9. Yields (ppb/ppb) of ozone, PAN, and formaldehyde calculated at the MDA8 ozone 
maximum downwind of NYC from box model simulations employing RACM-ESRL and RACM-
ESRL-VCP. The ratio of yields (VCP/RACM) are shown to compare yields assuming VCP 
chemistry (RACM-ESRL-VCP) and hydrocarbon chemistry (RACM_ESRL). 
 

  Ethanol   Isopropanol 

  Ozone PAN HCHO ONIT  Ozone PAN HCHO ONIT 

RACM-ESRL    1.10 0.05 0.08 0.022   1.22 0.04 0.023 0.05 

RACM-ESRL-VCP 1.22 0.12 0.15 <0.001   0.8 0.04 0.12 <0.001 

Ratio (VCP/RACM) 1.1 2.5 1.9 --- 
  

0.65 1 14.7 --- 

               

  Propylene Glycol   Glycerol 

  Ozone PAN HCHO ONIT  Ozone PAN HCHO ONIT 

RACM-ESRL     1.2 0.03 <0.001 0.18   1.2 0.03 <0.001 0.18 

RACM-ESRL-VCP  1.4 0.07 0.1 <0.001   1.76 0.09 0.13 <0.001 

Ratio (VCP/RACM) 1.16 3.5 --- --- 
  

1.46 4.3 --- --- 
 
 
Ozone yields between the two mechanisms differ, at most, by 50%. These modest changes 

reflect that ozone production is buffered by a suite of reactions that depend on the rate of RO2 
and HO2 formation, the reaction of radicals with NO, and NOy partitioning. The differences are 
mostly reflected in the rate constants assumed for each species. For example, at 298 K, 
isopropanol is represented as HC5 in RACM-ESRL with an OH rate constant of 7.7x10-12 cm3 
molec-1 s-1. However, in RACM-ESRL-VCP, isopropanol is represented by an OH rate constant 
of 5.2e-12 cm3 molec-1 s-1. This difference in reaction rate results in a ~30% decrease in the rate 
of peroxy radical production from isopropanol, which is proportional to the decrease in ozone yield 
between RACM-ESRL and RACM-ESRL-VCP. Other variations in ozone yield are likely due to 
differences in NOy partitioning, as described below. 
 

The largest differences between the two mechanisms are reflected by the yields of PAN, 
formaldehyde (HCHO), and organic nitrates (ONIT). For ethanol, propylene glycol, and glycerol, 
PAN formation increases by a factor >2 between RACM-ESRL and RACM-ESRL-VCP. HCHO 
yields are also higher in RACM-ESRL-VCP and vary depending on the species. HCHO yields 
from glycols are negligible under the assumption of hydrocarbon chemistry (HC8), but are similar 
to other alcohols when glycol chemistry is represented directly. ONIT yields are highest when 
treating oVCPs as hydrocarbon surrogates, but are negligible when employing oVCP chemistry. 

 
The differences in formaldehyde between the two mechanisms is largely reflected by the 

differences in multi-generation chemistry. For example, the ethanol surrogate in RACM-ESRL 
(HC3) reacts with OH to form a mix of products (primarily ketones and aldehydes), which further 
oxidize to form formaldehyde at different yields. However, in RACM-ESRL-VCP, ethanol reacts 



 49 

with OH to form acetaldehyde (ALD), which primarily oxidizes under high-NOx conditions to yield 
formaldehyde and PAN. For ethanol, the fate of the first-generation product largely impacts the 
yield of formaldehyde. This is similar for the other oVCPs represented in RACM-ESRL-VCP. 

 
The differences in PAN and ONIT yields reflect fundamental differences in the OH oxidation 

of hydrocarbons and oVCPs. For alcohols with primary hydroxyl groups (e.g. ethanol, propylene 
glycol, and glycerol), reaction with the OH radical will result in the formation of aldehydes and 
hydroxy ketones(48). Aldehydes react with OH to form peroxyacyl radicals, which readily react 
with NO2 to form peroxyacyl nitrates (e.g., PAN). In contrast, OH oxidation of hydrocarbons will 
primarily result in the formation of ketones or secondary alcohols, which do not react along 
pathways that lead to the fast formation of PAN. Long-chain alkanes (represented by the HC8 
category) form alkyl nitrates (represented by ONIT) at significant yields owing to RO2 reactions 
with NO (115). When glycols are treated separately, ONIT yields are negligible since aldehydes 
and hydroxy ketones do not follow pathways that lead to ONIT formation. 

 
Isopropanol, a secondary alcohol, does not yield significant PAN or ONIT. Isopropanol reacts 

with OH to form acetone, which slowly oxidizes and does not result in fast PAN formation. These 
differences in yields highlight the importance of treating species with primary and secondary 
hydroxyl groups separately to account for differences in aldehyde and ketone formation  

 
11. Evaluation of oVCP chemistry on the modeled budget of formaldehyde, PAN, and organic 

nitrates 
 
Table S9 demonstrates that the OH chemistries represented by RACM-ESRL and RACM-

ESRL-VCP result in different secondary product distributions. In this section, we evaluate the 
extent to which these chemistries impact the budget of ozone, formaldehyde, PAN, and organic 
nitrate formation from VCP and mobile source emissions in WRF-Chem and box modeling 
analyses. 
 

11.1 Box model  
 

We first evaluate the impacts of oVCP chemistry on secondary product distributions using 
box model simulations. Figures S36 - S39 show ozone, HCHO, PAN, and ONIT yields (gm/gm) 
calculated at the MDA8 ozone maximum for each emission category represented in the FIVE-
VCP inventory. These yields are calculated as described in Equation 4. Solid bars indicate yields 
calculated using RACM-ESRL chemistry, while checkered bars show yields using 
RAMC_ESRL_VCP. The bars are colored to show the fraction of each compound produced from 
different VOC functionalities (e.g., oxygenates, ethanol, fragrances, alkanes, aromatics, and 
alkenes). The pie charts show the fraction of each compound that is attributable to different 
emission sectors. We note that this analysis focuses on secondary production of ozone, 
formaldehyde, PAN, and ONIT from anthropogenic VOCs (AVOCs). Isoprene chemistry 
significantly contributes to ozone and formaldehyde in the Eastern US (72), and mobile source 
emissions can be a significant source of primary formaldehyde in urban regions(116, 117). 

 
Figure S36 is analogous to Fig. 4 (main text) and summarizes ozone yields and distributions 

at the MDA8 ozone maximum. In general, gasoline exhaust is the emission sector that is most 
efficient at producing ozone, followed by other mobile sources and VCP emissions from inks. 
These sectors are characterized by VOC profiles with a high content of alkyl aromatics and 
alkenes. Reactivity scales, such as maximum incremental reactivity (i.e., the mass ozone formed 
under VOC-limited chemistry per mass of emitted VOC), routinely rank these molecules among 
the most important ozone precursors to impact urban air (118). In contrast, VCPs are 
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characterized by a high contribution from alcohol and glycol emissions, which typically rank lower 
on ozone reactivity scales (118). Despite these lower ozone yields, the mass of VCP emissions, 
particularly from personal care (18.6 t/d), cleaning (8 t/d), and coatings (12.9 t/d), lead to ozone 
production that is comparable to that from mobile source VOCs (Figures 3 and 4, main text). 

 
 

 
Fig. S36. Yield (bars) and total budget (pie charts) of ozone formed from mobile source and VCP emissions. Solid bars 
show modeled ozone yields calculated at the MDA8 ozone maximum using RACM-ESRL, while checkered bars show 
those using RACM-ESRL-VCP. Each bar is colored to show the fraction of ozone resulting from different chemical 
classes. The pie charts show the fraction of ozone modeled at the MDA8 ozone maximum that results from different 
emission sources. The numbers below each pie show the total ozone formed from RACM-ESRL (left) and RACM-
ESRL-VCP chemistry (right). 

 
 
Exchanging RACM-ESRL for RACM-ESRL-VCP does not significantly alter ozone yields or 

the budget of ozone produced at the MDA8 maximum. Total ozone increases by ~0.5 ppb, and 
the split between mobile sources and VCPs varies by < 2%. As discussed in Section 10, the 
production of ozone from key oVCPs is largely insensitive to the assumed chemical mechanism 
(i.e., RACM-ESRL or RACM-ESRL-VCP), in part because the primary OH reactivity is reasonably 
represented by both mechanisms. This modest difference between the two mechanisms is also 
reflected in WRF-Chem simulations shown in the main text (Fig. 4).  
 

Figure S37 summarizes the yields and distribution of formaldehyde. Formaldehyde yields are 
highest for mobile source emissions, such as gasoline and diesel exhaust. Formaldehyde 
produced from these sectors largely results from the chemistry of light alkenes. VCP emissions 
with high alkene content (e.g., Inks) also exhibit high formaldehyde yields. In general, emissions 
sectors with significant oVCP content (e.g., personal care and cleaning) or alkane emissions (e.g., 
coatings) are among the least efficient at producing formaldehyde.  
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Fig. S37. Yield (bars) and total budget (pie charts) of formaldehyde formed from mobile source and VCP emissions. 
Solid bars show modeled formaldehyde yields calculated at the MDA8 ozone maximum using RACM-ESRL, while 
checkered bars show those using RACM-ESRL-VCP. Each bar is colored to show the fraction of formaldehyde resulting 
from different chemical classes. The pie charts show the fraction of formaldehyde modeled at the MDA8 ozone 
maximum that results from different emission sources. The numbers below each pie show the total formaldehyde 
formed from RACM-ESRL (left) and RACM-ESRL-VCP chemistry (right). 
 

The change in chemistry between RACM-ESRL and RACM-ESRL-VCP has the biggest 
effect on formaldehyde yields from personal care and cleaning products. Both sectors are 
characterized by significant emissions of glycols and ethanol. When treated as alkanes in 
RACM_ESRL, these species do not yield significant formaldehyde (Table S9). When these 
species are represented in RACM-ESRL-VCP, formaldehyde yields from personal care and 
cleaning products increase by a factor > 2. 

 
In RACM_ESRL, mobile sources dominate the budget of formaldehyde formed from AVOCs 

(~80%). When we employ RACM-ESRL-VCP, the distribution shifts to a higher contribution from 
VCPs, with the largest change associated with personal care and cleaning products. Total 
formaldehyde increases by ~15% (1.5 to 1.68 ppb) when shifting from RACM-ESRL to RACM-
ESRL-VCP. 

 
PAN yields from oxygenated VCPs increase by a factor > 2 when implementing RACM-

ESRL-VCP (Fig S38). This increase is almost entirely due to the representation of alcohols with 
primary hydroxyl groups, such as ethanol, glycerol, propylene glycol, and ethylene glycol (Table 
S9). Mobile source VOCs have the largest yield owing to high alkene and alkyl aromatic content; 
however, when oVCPs are represented in RACM-ESRL-VCP, PAN yields from highly oxygenated 
sectors (e.g., personal care products) become as important as mobile sources. 
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Fig.  S38. Yield (bars) and total budget (pie charts) of PAN formed from mobile source and VCP emissions. Solid bars 
show modeled PAN yields calculated at the MDA8 ozone maximum using RACM-ESRL, while checkered bars show 
those using RACM-ESRL-VCP. Each bar is colored to show the fraction of PAN resulting from different chemical 
classes. The pie charts show the fraction of PAN modeled at the MDA8 ozone maximum that results from different 
emission sources. The numbers below each pie show the total PAN formed from RACM-ESRL (left) and RACM-ESRL-
VCP chemistry (right). 
 

 
With RACM_ESRL, total PAN production at the MDA8 ozone maximum is dominated by 

mobile sources (66%). In RACM-ESRL-VCP, total PAN is more evenly distributed between VCPs 
and mobile sources. At the MDA8 ozone maximum, PAN formed downwind of NYC increases by 
~20% from 0.52 ppb in RACM-ESRL to 0.62 ppb in RACM-ESRL-VCP. 

 
In contrast to formaldehyde and PAN, organic nitrates (ONIT) decrease by 40% when 

switching from RACM-ESRL to RACM-ESRL-VCP (Fig. S39). Glycol and glycol ethers are lumped 
to HC8, which mirrors the chemistry of octane and higher carbon alkanes. Upon OH oxidation in 
the presence of high NOx mixing ratios, HC8 reacts to form ONIT at yields of ~30%.  When 
represented in RACM-ESRL-VCP, oVCPs do not form organic nitrates, but instead follow 
pathways that lead to PAN formation. 
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Fig.  S39. Yield (bars) and total budget (pie charts) of organic nitrates (ONIT) formed from mobile source and VCP 
emissions. Solid bars show modeled ONIT yields calculated at the MDA8 ozone maximum using RACM-ESRL, while 
checkered bars show those using RACM-ESRL-VCP. Each bar is colored to show the fraction of ONIT resulting from 
different chemical classes. The pie charts show the fraction of ONIT modeled at the MDA8 ozone maximum that results 
from different emission sources. The numbers below each pie show the total ONIT formed from RACM-ESRL (left) and 
RACM-ESRL-VCP chemistry (right). 

 
 

11.2 WRF-Chem 
 

The box model results described in Section 11.1 show how the changes from RACM-ESRL to 
RACM-ESRL-VCP effect secondary product yields from AVOC emission sectors. In the following 
discussion, we show how AVOC emissions and oVCP chemistry impact the spatial distribution of 
ozone, formaldehyde and PAN modeled in WRF-Chem during the July 2, 2018 ozone event. 

 
The surface ozone budget simulated in WRF-Chem is discussed in the main text (Fig. 3, 

panels A-D). Briefly, AVOCs from fossil fuel source and VCP emissions enhance photochemical 
ozone production in the NYC area. While the budget of ozone is largely influenced by the 
contributions from biogenic VOCs (Panel A), AVOC emissions are needed to explain the MDA8 
ozone maximum observed downwind of Manhattan (Panels B and C). The production of ozone is 
largely insensitive to the chemical mechanism used to model urban ozone formation (i.e., RACM-
ESRL or RACM-ESRL-VCP, Panel D). This is consistent with the modest changes in ozone yields 
and ozone distribution simulated using the box model (Fig S36). 

 
Fig.3 shows analogous sensitivity cases for PAN (Panels E-H). We present PAN columns to 

complement previous studies that have evaluated PAN formation from satellite (119). Unlike 
ozone, regional mixing ratios of PAN resulting from the reaction of BVOCs + NOx are low (panel 
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A). Furthermore, the emissions from VCPs (30% increase, panel C) tend to have a larger impact 
on PAN mixing ratios than from fossil fuels (20% increase, panel B), especially downwind of NYC.  

 
The change from RACM-ESRL to RACM-ESRL-VCP markedly increases maximum PAN 

formation by ~20% (panel D). The higher formation of PAN is reflected by the substantial increase 
in PAN yields from alcohols, such as ethanol, when oVCPs are modeled using RACM-ESRL-VCP 
(Fig. S38). As discussed in Sections 10, the OH chemistry of primary alcohols, which ultimately 
leads to PAN formation via aldehyde oxidation, is misrepresented by the hydrocarbon chemistry 
described by RACM_ESRL. Consequently, the shift from RACM-ESRL to RACM-ESRL-VCP 
results in apparent contrasts in modeled PAN mixing ratios. 

 
Figure S40 shows formaldehyde columns, which are important products from satellite remote 

sensing instruments that are used to infer VOC oxidation processes(116, 117). Each panel shows 
different sensitivity case, analogous to those presented in Fig. 3. Panels A-C show the impact of 
different VOC emission sectors on formaldehyde columns under the assumption of RACM-ESRL 
chemistry, while panel D shows the impact of exchanging chemical mechanisms from RACM-
ESRL to RACM-ESRL-VCP. 

 
Biogenic emissions dominate the formaldehyde budget on regional scales, and also result in 

a formaldehyde maximum downwind of NYC (panel A). This maximum is the approximate location 
of the ozone maximum shown in Fig. 3. When fossil fuel VOCs are included (panel B), 
formaldehyde columns increase by 7% over NYC, and 9% at the downwind maximum. The 
addition of VCP emissions increase formaldehyde over NYC and the downwind maximum by an 
additional 6 and 5%, respectively (panel C). When RACM-ESRL is exchanged for RACM-ESRL-
VCP (oVCP chemistry, panel D), the change in formaldehyde is modest (< 3%). 

 
Generally, fossil fuel emissions increase secondary formaldehyde to a greater extent than 

VCPs. This difference is largely attributed to the significantly higher yield of formaldehyde from 
tailpipe emissions of light alkenes, as shown in Fig. S37. The shift from RACM-ESRL to RACM-
ESRL-VCP results in higher formaldehyde columns due to the increase in yield from oxygenates, 
such as ethanol. Despite this change, formaldehyde produced from gasoline remain 3-4 times 
greater than from VCPs (Fig. S37), and therefore the increase associated with oVCP chemistry 
is modest. 

 



 55 

 
Fig. S40. WRF-Chem simulations of formaldehyde columns at 18:00 UTC. Shown are simulations for (A) regional 
background + formaldehyde produced from NOx + BVOCs, (B) results from (A) with mobile source VOCs added, and 
(C) results from (B) with VOCs from VCPs added. Panels (A)-(C) show formaldehyde produced under the assumption 
of hydrocarbon chemistry (RACM_ESRL). Panel (D) shows the simulation using full emissions, but under the 
assumption of oVCP chemistry (RACM-ESRL-VCP). 
 
 

12. Implications of oVCP chemistry on urban atmosphere chemistry 
 

The PAN, ONIT, and formaldehyde distributions highlight the implications of oVCP chemistry 
on interpretations of urban ozone formation. Formaldehyde, which is measured by satellite, is 
used to assess ozone sensitivities to changes in NOX and VOC chemical regimes(116, 117). 
However, as shown in Figures S37 and S40, secondary formaldehyde is dominated by the 
chemistry of isoprene, followed by light alkenes from gasoline. Consequently, interpretations of 
the ozone formation processes downwind of cities based on formaldehyde enhancements may 
be weighted towards hydrocarbon-rich sources, such as gasoline exhaust. This does not reflect 
the modeled distribution of ozone from AVOCs, which is more evenly distributed between mobile 
source and VCP emissions (Figures 3 and 4, main text). 

 
In contrast, the distribution of PAN formed from the chemistry of AVOCs more closely mirrors 

the distribution of ozone from AVOC sources (Figures S36 and S38). When oVCPs are treated 
as hydrocarbons, PAN is dominated by mobile sources, and key oVCPs follow chemical pathways 
that misrepresent the chemistry of primary alcohols. With oVCP chemistry, PAN yields from 
oVCPs increase and lead to a distribution that is more evenly split between mobile sources and 
VCPs. Furthermore, Fig. S40 shows that oVCP emissions and chemistry strongly impact the 
spatial distribution of PAN, suggesting that PAN could be a useful diagnostic to constrain oVCP 
impacts on urban ozone formation. Measurements of PAN from satellite-borne infrared sounding 

(A) NOx and BVOC only
NYC = 19.9, max = 42.8 

x1015 molec. cm-2

(B) + Fossil Fuel VOC
NYC = 21.3, max = 45.2 

x1015 molec. cm-2

(C) + VCP VOC
NYC = 22.7, max = 47.6

x1015 molec. cm-2

(D) + oVCP Chemistry
NYC = 23.5, max = 48.5

x1015 molec. cm-2

NYC

max
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instruments are feasible(119) and such measurements, along with formaldehyde, may provide 
better constraints on AVOC impacts on ozone in regions where VCPs and traffic significantly 
contribute to urban emissions. 

 
Figures S38 and S39 also demonstrate that when oVCP chemistry is prescribed, the modeled 
pool of reactive nitrogen (NOy) shifts away from organic nitrate formation, which may represent a 
permanent sink of NOx through deposition or aerosol partitioning(120), to PAN formation, which 
represents a transport mechanism of NOx that can impact ozone formation on greater spatial and 
temporal scales(121). Depending on the direction, PAN transport from the urban region to rural / 
biogenic rich areas with high VOC reactivity serves to release NOx in regions where it can 
efficiently form more ozone, effectively extending scale over which the urban emissions produce 
ozone. Modeling of this effect is beyond the scope of this paper, but would be an important 
direction for additional modeling studies. To do so, air quality models should consider the impacts 
on oVCP emissions and chemistry on NOy partitioning. 
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