SUPPORTING INFORMATION

Exploration of long-chain vitamin E metabolites for the discovery of a highly potent, orally effective and metabolically stable 5-LOX inhibitor that limits inflammation

Konstantin Neukirch^{1,2 *}, Khaled Alsabil^{3 *}, Chau-Phi Dinh^{3 +}, Rossella Bilancia⁴, Martin Raasch⁵, Alexia Ville^{3 +}, Ida Cerqua⁴, Guillaume Viault³, Dimitri Bréard³, Simona Pace², Veronika Temml⁶, Elena Brunner², Paul M. Jordan², Marta C. Marques⁷, Konstantin Loeser², André Gollowitzer^{1,2}, Stephan Permann¹, Jana Gerstmeier², Stefan Lorkowski⁸, Hermann Stuppner⁹, Ulrike Garscha¹⁰, Tiago Rodrigues⁷, Gonçalo J. L. Bernardes^{7,11}, Daniela Schuster⁶, Denis Séraphin³, Pascal Richomme³, Antonietta Rossi⁴, Alexander S. Mosig⁵, Fiorentina Roviezzo⁴, Oliver Werz^{2*}, Jean-Jacques Helesbeux^{3*}, Andreas Koeberle^{1,2*}

¹Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria ²Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany ³Univ Angers, SONAS, SFR QUASAV, F-49000 Angers, France

⁴Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy

⁵Institute of Biochemistry II, Jena University Hospital, 07747 Jena, Germany

⁶Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria

⁷Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal

⁸Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science and Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Friedrich Schiller University Jena, 07743 Jena, Germany

⁹Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria

¹⁰Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
¹¹Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK

* Andreas Koeberle – Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria; orcid.org/0000-0001-6269-5088; Tel.: +43 512 507-57903; E-mail: <u>andreas.koeberle@uibk.ac.at</u>

Jean-Jacques Helesbeux – SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 49045 Angers Cedex 01, France; orcid.org/0000-0002-1894-8911; Tel.: +33 249 180 441; E-mail: <u>jean-jacques.helesbeux@univ-angers.fr</u>

Oliver Werz – Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany; orcid.org/0000-0002-5064-4379; Tel.: +49 3641 9-49801; Fax: +49 3641 9-49802; E-mail: <u>oliver.werz@uni-jena.de</u>

SUPPORTING INFORMATION

Table of Contents

SI	TABLES
	Table S1. Inhibition of human isolated 5-LOX and 5-LOX product formation in activated PMNL by natural vitamin E forms and derivatives (1a-11)
	Table S2. Nomenclature proposed to name natural vitamin E forms and ω -oxidized derivatives
	Table S3. Conditions for the quantification of 27a and its metabolites by UPLC-MS/MS
SI	SCHEMES
	Scheme S1. SARs on cell-free 5-LOX inhibition ^a
	Scheme S2. SARs on the inhibition of 5-LOX product formation in PMNL ^a
SI	FIGURES S10
	Figure S1. Correlation network of the compound library for inhibition of cell-free 5-LOXS10
	Figure S2. Molecular docking simulation of 5-LOXS11
	Figure S3. Fluorescence spectroscopic analysis of 5-LOX ligand interactions
	Figure S4. Effect of 27a on human monocyte and PBMC viability.
	Figure S5. Compound 27a selectively inhibits 5-LOX product formation in activated monocytes
	Figure S6. Compound 27a attenuates cytokine-triggered defects in reconstructed human epidermis (RHE)S15
	Figure S7. Effect of 27a on resolvin (Rv)E3 and systemic LTB ₄ levels in mice with acute peritonitisS16
	Figure S8. ¹ H and ¹³ C NMR spectra of 49 in acetone- d_6 S17
	Figure S9. ¹ H and ¹³ C NMR spectra of 50 in CDCl ₃ S18
	Figure S10. ¹ H and ¹³ C NMR spectra of 13e in CDCl ₃ S19
	Figure S11. ¹ H and ¹³ C NMR spectra of 51 in CDCl ₃ S20
	Figure S12. ¹ H and ¹³ C NMR spectra of 2 in acetone- d_6 S21
	Figure S13. ¹ H and ¹³ C NMR spectra of 4 in acetone- d_6 S22
	Figure S14. ¹ H and ¹³ C NMR spectra of 53 in CDCl ₃ S23
	Figure S15. $^1\!H$ and $^{13}\!C$ NMR spectra of $19b$ in CDCl_3S24
	Figure S16. ¹ H and ¹³ C NMR spectra of 19a in CDCl ₃ S25
	Figure S17. ¹ H and ¹³ C NMR spectra of 20 in CDCl ₃ S26
	Figure S18. $^1\!H$ and ^{13}C NMR spectra of $\textbf{21}$ in CDCl_3S27
	Figure S19. $^1\!H$ and ^{13}C NMR spectra of $\boldsymbol{22}$ in $CDCl_3$ S28
	Figure S20: ¹ H and ¹³ C NMR spectra of 55 in CDCl ₃ S29
	Figure S21. ¹ H and ¹³ C NMR spectra of 15b in CDCl ₃ S30
	Figure S22. ¹ H and ¹³ C NMR spectra of 15a in CDCl ₃ S31

Figure S23. ¹ H and ¹³ C NMR spectra of 25 in CDCl ₃ S32
Figure S24. ¹ H and ¹³ C NMR spectra of 58 in CDCl ₃ S33
Figure S25. $^1\!H$ and $^{13}\!C$ NMR spectra of 14 in $CDCl_3S34$
Figure S26. ¹ H and ¹³ C NMR spectra of 59 in CDCl ₃ S35
Figure S27. $^1\!H$ and $^{13}\!C$ NMR spectra of 16 in $CDCl_3S36$
Figure S28. ¹ H and ¹³ C NMR spectra of 60 in CDCl ₃ S37
Figure S29. $^1\!H$ and $^{13}\!C$ NMR spectra of 17 in $CDCl_3S38$
Figure S30. $^1\!H$ and $^{13}\!C$ NMR spectra of $\boldsymbol{61}$ in $CDCl_3$ S39
Figure S31. $^1\!H$ and $^{13}\!C$ NMR spectra of 18 in $CDCl_3S40$
Figure S32. $^1\!H$ and $^{13}\!C$ NMR spectra of $\boldsymbol{65}$ in $CDCl_3$ S41
Figure S33. $^1\!H$ and $^{13}\!C$ NMR spectra of ${\bf 66}$ in $CDCl_3$ S42
Figure S34. ¹ H and ¹³ C NMR spectra of 26 in CDCl ₃ S43
Figure S35. ¹ H and ¹³ C NMR spectra of 41 in acetone- d_6 S44
Figure S36. ¹ H and ¹³ C NMR spectra of 40 in methanol- d_{4} S45
Figure S37. 1 H and 13 C NMR spectra of 35 in acetone- d_{6} S46
Figure S38. ¹ H and ¹³ C NMR spectra of 36 in acetone- d_6 S47
Figure S39. ¹ H and ¹³ C NMR spectra of 37 in acetone- d_6 S48
Figure S40. ¹ H and ¹³ C NMR spectra of 38 in acetone- d_6 S49
Figure S41. ¹ H and ¹³ C NMR spectra of 39 in acetone- d_6 S50
Figure S42. ¹ H and ¹³ C NMR spectra of 42 in acetone- d_6 S51
Figure S43. ¹ H and ¹³ C NMR spectra of 43 in acetone- d_6 S52
Figure S44. ¹ H and ¹³ C NMR spectra of 67 in acetone- d_6 S53
Figure S45. ¹ H and ¹³ C NMR spectra of 31 in acetone- d_6 S54
Figure S46. ¹ H and ¹³ C NMR spectra of 70 in acetone- d_6 S55
Figure S47. ¹ H and ¹³ C NMR spectra of 48 in acetone- d_6 S56
Figure S48. ¹ H and ¹³ C NMR spectra of 46 in acetone- d_6 S57
Figure S49. ¹ H and ¹³ C NMR spectra of 68 in acetone- d_6 S58
Figure S50. ¹ H and ¹³ C NMR spectra of 31 in acetone- d_6 S59
Figure S51. ¹ H and ¹³ C NMR spectra of 69 in acetone- d_6 S60
Figure S52. ¹ H and ¹³ C NMR spectra of 32 in acetone- d_6 S61
Figure S53. ¹ H and ¹³ C NMR spectra of 62 in CDCl ₃ S62
Figure S54. ¹ H and ¹³ C NMR spectra of 28 in CDCl ₃ S63
Figure S55. ¹ H and ¹³ C NMR spectra of 63 in CDCl ₃ S64
Figure S56. ¹ H and ¹³ C NMR spectra of 29 in CDCl ₃ S65
Figure S57. HPLC-ELSD spectrum of 13a S66
Figure S58. HPLC-ELSD spectrum of 13dS66
Figure S59. HPLC-ELSD spectrum of 27a S67
Figure S60. HPLC-ELSD spectrum of 27d S67
S2

SI TABLES

Compound		Structure	R ₂ R ₃ O R ₄		5-I enz	.OX yme	5-I PM	LOX INL
	R1	R2	R3	R4	$IC_{50} \left[\mu M \right]^a$	at 1 µM [%] ^b	$IC_{50}\left[\mu M ight]^{a}$	at 3 µM [%]°
la	CH ₃	Н	CH ₃		> 1 ^d	86.1 ± 8.3	> 3 ^d	88.6 ± 10.5
16	CH ₃	Н	Н		$0.75\pm0.15^{\rm d}$	32.8 ± 9.0	> 3 ^d	79.6 ± 6.1
1c	Н	Н	CH ₃		0.91 ± 0.15^{d}	47.0 ± 4.5	> 3 ^d	78.5 ± 13.6
1d	Н	Н	Н	p ²	0.60 ± 0.25	43.3 ± 7.2	> 3 ^d	107.4 ± 3.2
2	Cl	Н	СНО	p ²	> 1	72.9 ± 5.6	> 3	109.8 ± 10.7
3	СНО	Н	Н		> 1	94.6 ± 3.5	> 3	92.2 ± 6.3
4	СНО	CH ₂ OCH ₃	Н	p ²	> 1	77.3 ± 17.2	> 3	91.9 ± 5.3
5	CO ₂ H	Н	Н		> 1	54.6 ± 5.8	> 3	80.8 ± 0.6
6a	CH ₃	Н	CH ₃	s ^z	0.33 ± 0.08^{d}	16.9 ± 6.6	> 3 ^d	75.5 ± 4.5

Table S1. Inhibition of human isolated 5-LOX and 5-LOX product formation in activated PMNL by natural vitamin E forms and derivatives (1a-11)

6b	CH ₃	Н	Н	s ²	$0.19\pm0.03^{\rm d}$	6.4 ± 3.2	2.11 ± 0.36^{d}	41.4 ± 8.0
6c	Н	Н	CH ₃	s ²	$0.20\pm0.06^{\rm d}$	6.4 ± 3.2	> 3 ^d	73.5 ± 1.2
6d	Н	Н	Н	set and a set of the s	$0.17\pm0.10^{\rm d}$	6.7 ± 3.1	> 3 ^d	74.9 ± 8.0
7	СНО	Н	Н	set and a set of the s	> 1	74.5 ± 4.3	> 3	87.1 ± 8.0
8	СНО	Н	Br	s ²	> 1	59.0 ± 5.9	> 3	79.2 ± 16.7
9a	CH ₃	Н	CH ₃	, ² , OH	0.35 ± 0.04^{d}	1.5 ± 0.4	$0.19\pm0.05^{\rm d}$	21.6 ± 2.5
9b	Н	Н	Н	, ² , OH	$0.12\pm0.04^{\rm d}$	2.1 ± 0.3	$0.54\pm0.18^{\rm d}$	22.6 ± 2.4
10a	CH ₃	Н	CH ₃	st OH	0.11 ± 0.01^{d}	0.2 ± 0.1	$0.27\pm0.10^{\rm d}$	13.2 ± 2.0
10b	CH ₃	Н	Н	, st. OH	$0.09\pm0.03^{\rm d}$	0.2 ± 0.1	$0.38\pm0.09^{\rm d}$	7.7 ± 1.3
10c	Н	Н	Н	, st. OH	$0.15\pm0.05^{\rm d}$	2.7 ± 1.5	1.26 ± 0.33^{d}	8.8 ± 1.9
10d	Н	Н	CH ₃	Set OH	$0.12\pm0.03^{\rm d}$	0.0 ± 0.0	$0.14\pm0.02^{\rm d}$	1.1 ± 1.1
10e	Н	Н	Н	oH	0.14 ± 0.03^d	0.3 ± 0.2	0.22 ± 0.04^{d}	2.0 ± 0.2
11	Н	н	Н	st CHO	0.12 ± 0.05	0.4 ± 0.3	0.57 ± 0.09	17.6 ± 1.3^{b}

 $0.69 \pm 0.24 \qquad 34.6 \pm 14.1 \qquad 3.57 \pm 0.55 \qquad 55.6 \pm 5.6$

 ${}^{a}IC_{50}$ values (μM) and residual activities (% control) at ${}^{b}1$ or ${}^{c}3 \mu M$ compound concentration given as mean ± SEM of single determinations obtained in 3 to 4 independent experiments. d Highlighted data (grey) originates from Pein et al.⁴.

Table S2. Nomenclature proposed to name natural vitamin E forms and ω -oxidized derivatives

^aThe nomenclature of structurally related compounds follows this principle.

Metabolite	Transition	Collision energy [eV]	External standard	Lower limit of quantitation [nM] ^a
α-TE-12a',13'-diCH ₂ OH (27a)	455 → 135	-55	$\alpha\text{-TE-12a',13'-diCH_2OH}\left(\textbf{27a}\right)$	0.2
	$455 \rightarrow 163^{\rm b}$	-45		
	455 → 438	-35		
α-TE-12a',13'-diCH ₂ OH (sulfate)	$535 \rightarrow 163^{\rm b}$	-55	$\alpha\text{-}TE\text{-}12a',13'\text{-}diCH_2OH\left(\textbf{27a}\right)$	/
	535 → 243	-45		
a-TE-12a'/13'-CH ₂ OH/COOH	469 → 163	-55	$\alpha\text{-}\text{TE-12a',}13'\text{-}\text{diCH}_2\text{OH}\left(\textbf{27a}\right)$	/
a-TE-11'-COOH	413 → 163	-55	α-TE-12a',13'-diCH2OH (27a)	/
а-ТЕ-9'-СООН	385 → 163	-55	α-TE-12a',13'-diCH2OH (27a)	/
a-TE-7'-COOH	345 → 163	-38	$\alpha\text{-}TE\text{-}12a',13'\text{-}diCH_2OH\left(\textbf{27a}\right)$	/
a-TE-5'-COOH	$317 \rightarrow 163$	-38	α-TE-12a',13'-diCH2OH (27a)	/
a-T-13'-COOH (sulfate)	539 → 163	-46	а-Т-13'-СООН (12а) ^с	1 ^c

Table S3. Conditions for the quantification of 27a and its metabolites by UPLC-MS/MS $\,$

asignal-to-noise ratio \ge 3. btransition used for quantitation. canalyzed according to Pein et al.⁴

SI SCHEMES

Scheme S1. SARs on cell-free 5-LOX inhibition^a

 a Fold-changes in IC₅₀ values compared to the structurally parental compound (indicated in brackets) are visualized in the scheme by green downward (decreased IC₅₀) and blue upward arrows (increased IC₅₀) as indicated in the legend. R indicates that the side-chain is identical between parental and daughter compounds that are connected by an arrow. n.i., no inhibition.

Scheme S2. SARs on the inhibition of 5-LOX product formation in PMNL^a

 a Fold-changes in IC₅₀ values compared to the structurally parental compound (indicated in brackets) are visualized in the scheme by green downward (decreased IC₅₀) and blue upward arrows (increased IC₅₀) as indicated in the legend. R indicates that the side-chain is identical between parental and daughter compounds that are connected by an arrow. n.i., no inhibition; n.d., not determined.

SI FIGURES

Figure S1. Correlation network of the compound library for inhibition of cell-free 5-LOX.

The network visualizes structural similarity between compounds calculated using Tanimoto similarity. Nodes represent individual compounds and connecting edges represent Tanimoto coefficients > 0.9. The node shape differentiates between derivatives derived from amplexichromanols (AC), garcinoic acids (GA), or other leads, and the filling highlights the parental series, i.e. amplexichromanol (red), garcinoic acid (blue), tocopherol and tocotrienol (green). The node size reflects the potency (IC₅₀ values) of the compound to inhibit S-LOX product formation in cell-free assays.

Figure S2. Molecular docking simulation of 5-LOX.

 $(A-B)\ Proposed\ interaction\ of\ \textbf{13d}\ (A)\ and\ \textbf{27d}\ (B)\ with\ 5-LOX\ at\ the\ interface\ of\ the\ catalytic\ and\ regulatory\ C2-like\ domain.$

Figure S3. Fluorescence spectroscopic analysis of 5-LOX ligand interactions.

(A, B) Fluorescence excitation spectra as percentage of maximum fluorescence intensity shown for 5-LOX titrated with 12a (A) and 13d (B). Data are expressed as mean \pm SEM (transparent area) from n = 2 independent experiments.

Figure S4. Effect of 27a on human monocyte and PBMC viability.

PBMC (A) or monocytes (B) were treated with **27a** or **12a** for 24 h (A, B) or 2 h (B). (A) Mitochondrial dehydrogenase activity analyzed by MTT assay. (B) Membrane integrity measured as LDH release into the culture medium. Data are expressed as mean + SEM (A) or mean with single values (B) from n = 4 (A), n = 3 (B) independent experiments. *p < 0.05, ***p < 0.001 vs. control; RM one-way ANOVA + Tukey *post hoc* test.

Figure S5. Compound 27a selectively inhibits 5-LOX product formation in activated monocytes.

Heatmap showing the effect of **27a** (1 μ M) on the lipid mediator profile in A23187/AA-treated monocytes that were pre-activated with LPS. HODE, hydroxyoctadecadienoic acid; t-/et-LTB₄, LTB₄ isomers; TX, thromboxane. Data are expressed as percentage change to vehicle control and are given as mean from n = 3 independent experiments.

Figure S6. Compound 27a attenuates cytokine-triggered defects in reconstructed human epidermis (RHE).

RHE exposed to **27a** or dexamethasone (dex) was treated with a cytokine cocktail for 2 days (A) or 4 days (B-D) to trigger the inflammatory reaction. (A) Concentration of thymic stromal lymphopoietin (TSLP) in the growth medium. The dotted line indicates basal levels without cytokine stress. (B) Morphological changes visualized by hematoxylin and eosin staining (scale bar: 50 μ m). Images in the dotted box are shown in Fig. 5B. (C) Impermeability of the *stratum corneum*. The *stratum corneum* of cytokine-stressed RHE becomes permeable for Lucifer yellow (green) that diffuses into the viable cell layers, as shown in the inserts in higher magnification (scale bar outer box: 20 μ m, scale bar insert: 10 μ m; exemplary images from three independent experiments that are not shown in Fig. 5E). (D) Mitochondrial dehydrogenase activity analyzed by MTT assay. Data are expressed as mean + SEM (A, **27a**) with single values (A, dex) or mean with single values (D) from n = 2 (A), n = 3 (B, C) independent experiments or n = 6 based on three independent experiments in biological duplicates (D). ***p < 0.001 vs. control; ordinary one-way ANOVA + Tukey *post hoc* test.

Figure S7. Effect of 27a on resolvin (Rv)E3 and systemic LTB4 levels in mice with acute peritonitis.

Mice received **27a** (10 mg/kg, A: i.p., B: p.o.) or zileuton (zil; 10 mg/kg, A: i.p., B: p.o.) and were sacrificed 4 h (A) or 30 min (B) post zymosan injection. (A) LTB₄ levels in plasma analyzed by ELISA. (B) RvE3 levels in the exudate analyzed by UPLC-MS/MS. Data are expressed as mean with single values from n = 6 (A, w/o and **27a**), n = 5 (A, zil), n = 9 (B, w/o), n = 10 (B, **27a** and zil) mice. Two-tailed unpaired *t*-test of log data.

Figure S8. ¹H and ¹³C NMR spectra of 49 in acetone-*d*₆

Figure S9. ¹H and ¹³C NMR spectra of 50 in CDCl₃

Figure S10. $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 13e in CDCl_3

Figure S11. $^1\!H$ and $^{13}\!C$ NMR spectra of 51 in CDCl_3

Figure S12. ¹H and ¹³C NMR spectra of 2 in acetone- d_6

Figure S13. ¹H and ¹³C NMR spectra of 4 in acetone-*d*₆

Figure S14. ¹H and ¹³C NMR spectra of 53 in CDCl₃

Figure S15. ¹H and ¹³C NMR spectra of 19b in CDCl₃

Figure S16. $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 19a in CDCl_3

Figure S17. $^1\!H$ and $^{13}\!C$ NMR spectra of 20 in CDCl_3

Figure S18. ¹H and ¹³C NMR spectra of 21 in CDCl₃

Figure S19. ¹H and ¹³C NMR spectra of 22 in CDCl₃

Figure S20: ¹H and ¹³C NMR spectra of 55 in CDCl₃

Figure S21. $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 15b in CDCl_3

S31

Figure S23. $^1\!H$ and $^{13}\!C$ NMR spectra of 25 in CDCl_3

Figure S24. ¹H and ¹³C NMR spectra of 58 in CDCl₃

Figure S25. $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 14 in CDCl_3

Figure S26. $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 59 in CDCl_3

S35

Figure S27. $^1\!H$ and $^{13}\!C$ NMR spectra of 16 in CDCl_3

Figure S28. $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 60 in CDCl_3

Figure S29. ¹H and ¹³C NMR spectra of 17 in CDCl₃

Figure S30. $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 61 in CDCl_3

Figure S31. $^1\!H$ and $^{13}\!C$ NMR spectra of 18 in CDCl_3

S41

Figure S33. $^1\!H$ and $^{13}\!C$ NMR spectra of 66 in CDCl $_3$

Figure S34. $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 26 in CDCl_3

Figure S35. ¹H and ¹³C NMR spectra of 41 in acetone- d_6

Figure S36. ¹H and ¹³C NMR spectra of 40 in methanol-*d*₄

Figure S37. ¹H and ¹³C NMR spectra of 35 in acetone- d_6

HO.

Figure S38. ¹H and ¹³C NMR spectra of 36 in acetone- d_6

Figure S39. ¹H and ¹³C NMR spectra of 37 in acetone- d_6

Figure S40. ¹H and ¹³C NMR spectra of 38 in acetone- d_6

Figure S41. ¹H and ¹³C NMR spectra of 39 in acetone- d_6

Figure S42. ¹H and ¹³C NMR spectra of 42 in acetone- d_6

Figure S43. ¹H and ¹³C NMR spectra of 43 in acetone- d_6

Figure S44. ¹H and ¹³C NMR spectra of 67 in acetone- d_6

Figure S45. ¹H and ¹³C NMR spectra of 31 in acetone- d_6

Figure S46. ¹H and ¹³C NMR spectra of 70 in acetone- d_6

Figure S47. ¹H and ¹³C NMR spectra of 48 in acetone- d_6

Figure S48. ¹H and ¹³C NMR spectra of 46 in acetone- d_6

Figure S49. ¹H and ¹³C NMR spectra of 68 in acetone- d_6

Figure S50. ¹H and ¹³C NMR spectra of 31 in acetone- d_6

Figure S51. ¹H and ¹³C NMR spectra of 69 in acetone- d_6

Figure S52. ¹H and ¹³C NMR spectra of 32 in acetone- d_6

Figure S53. ¹H and ¹³C NMR spectra of 62 in CDCl₃

Figure S54. ¹H and ¹³C NMR spectra of 28 in CDCl₃

Figure S55. ¹H and ¹³C NMR spectra of 63 in CDCl₃

Figure S56. ¹H and ¹³C NMR spectra of 29 in CDCl₃

Figure S57. HPLC-ELSD spectrum of 13a

Figure S58. HPLC-ELSD spectrum of 13d

Figure S59. HPLC-ELSD spectrum of 27a

Figure S60. HPLC-ELSD spectrum of 27d