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Section S1. Additional figures. 

Figure S1. Evolutionary capacity dictates whether increasing steepness of the 

environmental gradient is beneficial or detrimental to the network. Final mean abundance 

by environmental steepness gradient: 0 °C (red), 5 °C (blue), 10 °C (green) and 20 °C (purple). 

Results are shown for the end of the constant temperature period (A-F) and the temperature 

increase period (G-L) averaged across 20 iterations. Low openness condition was 𝛾=0.14 and 

high openness condition was 𝛾=1.0.  
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Figure S2. Representative trajectories under different levels of relative abundance and 

average trait value by patch for regular and random networks under high openness (𝛾=1.0) 

and different levels of additive genetic variance. Simulations during constant temperature with 

no genetic variance (V=0) (A), constant temperature with low genetic variance (V=0.06) (B), and 

increasing temperature with high genetic variance (V=0.2). -Trajectories are colored by relative 

patch temperature, where warmer and cooler colors represent higher and lower temperatures, 

respectively. Lines are mean trajectories averaged across 20 runs. Translucent lines in the bottom 

row are the temperature time series. 
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Figure S3. Hot and intermediate patches reach lower abundance in random networks. 

Final mean abundance of the four coldest (green), intermediate (orange) and hottest (purple) 

patches in regular and random networks. Results are shown for the end of the constant 

temperature period (A-F) and the temperature increase period (G-L) averaged across 20 

iterations. Low openness condition was 𝛾=0.14 and high openness condition was 𝛾=1.0. 
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Section S2. Derivation of immigration and gene flow terms 

S2.1 Immigration 

At the current time t , site  has relative abundance . Let  be the effective fecundity 

rate such that offspring are produced at rate  at each site. Let connectivity matrix  

contain the connection strengths among sites such that element  is the probability of offspring 

reaching site  from site . Focusing only on deterministic dispersal (and ignoring local 

population growth and stabilizing selection), the relative abundance due to immigration after a 

very short period of time, , is  

    (S1) 

Here,  is a density dependence term such that recruitment at a site slows as relative 

abundance approaches 1. (Note that is equivalent to  if the carrying capacity, 

, is set to 1.) 

Using big O notation, the Taylor series expansion of  can be written as 

,     (S2) 

where  signifies higher order terms. By combining equations Eqs. S1 and S2, we can solve 

for  as 

.     (S3) 

Letting   and  go to 0, the instantaneous change in abundance from 

immigration becomes , which is the second term in Eq. 1 from the main text. Note 

that we drop  in the main text for simplicity.  
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S2.2 Gene flow 

At the current time step, t, site  has mean trait value . From the previous section, we 

know that the increase in abundance at site  after a short duration  that is attributed to new 

individuals is  (Eqs. S1 and S2) . Based on the migrant pool model of 

colonization (Slatkin, 1977; Hanski et al., 2011), the mean trait value at site  of  immigrants with 

abundance  before density dependence is 

.      (S4) 

To calculate the new mean trait value after a short time period , we need to average the 

current trait weighted by the relative abundance of individuals (local+immigrant). As such, the 

mean trait value due to gene flow after duration  is: 

.   (S5) 

The Taylor series expansion of  can be written as 

.    (S6) 

We can then combine Eqs. S5 and S6 and solve for  as 

,      (S7) 

 (S8) 

and 

   .   (S9) 

Letting  go to 0, we find 

.    (S10) 

The instantaneous rate of change in mean trait value due to colonization is therefore 

, which is the first term in Eq. 2 from the main text. This term 

can be interpreted as the difference between the incoming mean colonization trait value and the 

current mean trait , which is then scaled by the fraction of the population 
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attributed to new immigrants ( ) and the abundance of the population relative to the overall 

carrying capacity  . Again, we drop  in the main text notation for simplicity. 
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Section S3. Alternative eco-evolutionary model formulation with quadratic fitness 

S3.1 Introduction 

 A common approach used to model quantitative trait dynamics is to assume a quadratic 

fitness function. Traditionally, quantitative genetics models in discrete time with non-

overlapping generations assume a Gaussian formulation, which is equivalent to a quadratic in 

continuous time with overlapping generations (e.g., Kirkpatrick & Barton, 1997; Lande, 1976; 

Pease et al., 1989). Therefore, an alternative approach to the model in the main text incorporates 

a quadratic function for growth  at each patch i.  

Following Kirkpatrick & Barton (1997), the intrinsic growth rate as a function of mean 

trait value, zi, is 

.       (S11) 

The strength of selection is , which is equivalent to the variance in a Gaussian fitness 

function. In our main formulation (Eq. 4 in the main text), the variance is .  is the current 

temperature. Letting , Eq. S11 can be rewritten as  

.      (S12) 

The overall fitness equation, , includes this growth rate as well as the effects of intraspecific 

competition, where the strength of the latter is denoted by  (in our original formulation, 

): 

.        (S13) 

Note that we do not include additional mortality in this formulation, as compared to exponential 

mortality in the main text model (Eq. 5). Finally, population dynamics without dispersal can be 

written as 

,       (S14) 

where V is the additive genetic variance (as in our main text equations) and genetic load is 

captured by the second term in Eq. S14. This is equivalent to the genetic load term in Eq. 1: 

. 
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Following Pease and Lande (1989), the effect of selection on mean trait value assuming 

normally distributed phenotypes is . Incorporating Eq. S13 from above and adding a 

term (qi) to reduce selection at low abundance, the effect of selection is then 

 .       (S15) 

To account for dispersal, we use the same immigration and gene flow terms used in the main text 

(second term in Eq. 1 and first term in Eq. 2), which were derived in Supporting Information B. 

The full model is then 

         (S16) 

   (S17) 

where li  is the immigration rate (Eq. 6) and  is the population-weighted mean trait of 

immigrating individuals (Eq. 7).
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S3.2 Results from the alternative model  

Parameter values used were from Table 1 unless explicitly stated in the figure caption. 

We found that our main conclusions were robust to the alternative quadratic fitness formulation. 

First, random networks led to greater abundance at low V, but regular networks led to greater 

abundance at higher V (Figs. S4 and S5). Second, we found that regular networks promote local 

adaptation while random networks are susceptible to gene swamping from sites with the highest 

abundance. This is evident in the maintenance of a wide set of trait values in the regular network 

and a narrowing of values in the random networks (Fig. S6).  
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Figure S4. Influence of genetic variance on network-wide mean abundance at different 

levels of system openness. (Compare to Fig. 2 in the main text.) Results above the dashed 

horizontal line indicate that final abundance is higher in regular than random networks while 

results below the line indicate the opposite. Note the change in scale between top and bottom 

rows.  
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Figure S5. Final mean abundance across regular and random networks under constant (A, 

B) and increasing temperature scenarios (C,D). (Compare to Fig. 3 in the main text.) Results 

are shown for two levels of openness under different levels of additive genetic variance.  
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Figure S6. Illustrative trajectories of relative abundance (A, B) and average trait value by 

patch (C, D) for regular and random networks. (Compare to Fig. 4 in the main text.) 

Simulations during the temperature increase period in a system with low openness (𝛾=0.14) and 

low additive genetic variance (V=0.06). -Trajectories are colored by relative patch temperature, 

where warmer and cooler colors represent higher and lower temperatures, respectively. Lines are 

mean trajectories averaged across 20 runs. Translucent lines in the bottom row are the 

temperature time series.   
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