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SARS-CoV-2 mutation maps

GISAID1 uses mafft 2 to align all other viral sequences to the reference sequence. We downloaded the alignment
prepared on February 12, 2021, and then produced the mutation maps for the FSE and the spike gene segment by
counting mutations in the aligned sequences for every residue in the segment (Fig. S1). The maximum mutation
count is 5541 in the FSE region, and 436160 in the spike region. However, most of the FSE residues have mutation
counts ≤ 10, so we choose a scale of 0 to 200 for the FSE mutation map to show enough details for these residues.
For the spike region, we choose a scale of 0 to 2000, and we see similar overall bar heights, suggesting an order of
magnitude more mutations than the FSE region.
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Figure S1: SARS-CoV-2 RNA mutation maps as available on GISAID on February 12, 2021. (Left) All sequence
mutation map (459421 viral sequences) for the 84 nt FSE region, with mutations colored based on nucleotide identity.
Mutations are counted for the reference sequence of 29891 nt. (Right) Mutation map for the 3822 nt spike region.

We downloaded the available British, South Africa, and Brazil variant sequences from GISAID on February 8,
2021, and 1000 randomly selected India variant sequences on July 8, 2021. We then aligned them with the reference
following similar steps as GISAID’s MSA:

1. Align each sequence to the reference by the following command line:

mafft --thread -1 [input] > [output]

2. Separate the sequences into two groups: Group 1 for sequences that bring insertions into the reference when
performing Step 1 (G1 ), and Group 2 for the others (G2 ).
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3. Group 1 sequences are aligned together with the reference using a gap opening penalty −10:

mafft --retree 3 --maxiterate 10 --thread -1 --nomemsave --op 10 [G1] > [G1_aligned]

4. Add group 2 sequences into the alignment:

mafft --thread 1 --nomemsave --keeplength --add [G2] [G1_aligned] > [msa]

The variant mutation map (Fig. S2) is then produced using the final MSA msa by the same protocol as the all
sequence map.

The recent highly transmissible British (B.1.1.7 or Alpha) variant is associated with 6 amino acid substitutions
and 2 deletions in the spike protein. Among the 3575 British variant sequences, all of them have 5-11 mutations
in the spike gene, while only 4 sequences have mutations (all single nucleotide) in the FSE segment. The mutation
maps are shown in Fig. S2A. We find that 7 residues in the spike segment have mutation rates > 99.7%, and 6 of
them correspond to the 6 amino acid substitutions. For the FSE segment, only 3 residues are mutated: C13506U
twice, C13517U once, and A13533G once.

We conduct the same variant analysis for the recent concerning South Africa (B.1.351 or Beta) variant as well,
and we see similar results. Among the 898 South Africa variant sequences, all of them have 4-12 mutations in the
spike gene, while only 5 have mutations (all single nucleotide) in the FSE segment. In the mutation maps (Fig.
S2B), 7 residues in the spike segment have mutation rates > 87.9%. In the FSE, 3 residues are mutated once, and
the mutation C13517U seen above occurs twice.

Among the 94 Brazil (P.1 or Gamma) variant sequences, all of them have 9-13 mutations in the spike gene, while
no mutation is seen in the FSE region (Fig. S2C). Moreover, 12 residues in the spike segment have mutation rates
> 94.6%.

Finally, among the 1000 India (B.1.617 or Delta) variant sequences, all of them have 8-24 mutations in the spike
gene, while only one has 2 mutations in the FSE segment. In the mutation maps (Fig. S2D), 18 residues in the spike
segment have mutation rates > 99.5%. In the FSE, the two mutations are A13482G and C13517U, seen in South
Africa variant as well.

Folding predictions for 4 pseudoknot-containing RNAs

To examine how sequence lengths affect 2D structure prediction programs, we selected four experimentally solved
RNAs with pseudoknots from the Protein Data Bank (PDB) https://www.rcsb.org. The RNAs are: lysine ri-
boswitch (PDB ID: 3DIO), lariat-capping ribozyme (6GYV), glmS ribozyme (2GCV), and T-Box riboregulator
(6UFG). The 3D structures are extracted from respective PDB files, and corresponding 2D structures are deter-
mined using the RNApdbee webserver.3

Pseudoknot substructures in these RNAs are identified and taken to define “short” systems for 2D structure
prediction. An equal number of nucleotides are added to both ends of the lysine riboswitch and lariat-capping
ribozyme pseudoknots to reach 120 nt. Only the 3′ ends of the glmS ribozyme and T-Box riboregulator pseudoknot
are expanded to 120 nt, because no upstream nucleotides are relevant. The five programs PKNOTS, NUPACK,
IPknot, ProbKnot, and vsfold5 are used to predict 2D structures for three sizes (“short”, 120 nt, and all). The
predictions are compared to the 2D structures extracted from the experimental structures to assess the number of
residues that are correctly base paired. The accuracies are calculated as the percentage of correctly base-paired
residues in the total number of residues (Fig. S3).
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Figure S2: SARS-CoV-2 RNA mutation maps for the (A) British (B.1.1.7 or Alpha) variant, (B) South Africa
(B.1.351 or Beta) variant, (C) Brazil (P.1 or Gamma) variant, and (D) India (B.1.617 or Delta) variant for (left) the
84 nt FSE region and (right) the spike region.
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Figure S3: Length effects on 2D structure predictions for four RNAs with pseudoknots. For each RNA, its experimentally determined 2D structure is shown, with
the pseudoknot substructure boxed in red. Three length scales are taken for predictions using five programs: “short” for the pseudoknot substructure, 120 nt
created by adding equal number of nucleotides on both sides of the pseudoknot, and “all” from the whole RNA structure. For the four RNAs as listed left to right,
the pseudoknot lengths are 102, 106, 79, and 85 nt, respectively, and the total lengths are 174, 192, 151, and 166 nt, respectively. Prediction accuracies with respect
to the experimental structures are determined by the relative number of correct base pairs for the three lengths, using PDB structures 3DIO for lysine riboswitch,
6GYV for lariat-capping ribozyme, 2GCV for glmS ribozyme, and 6UFG for T-box riboregulator. Although the accuracy varies with the method and RNA, the
120 nt window recommended in the literature appears reasonable in general.
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Dual graph partition and substructure

We developed a partition algorithm that divides a dual graph into its component subgraphs while keeping pseudoknots
and junction intact.4 Here, we apply it to several important dual graphs mentioned in this paper (Fig. S4).

Dual graph 3 6 and 3 5 cannot be divided further, but graph 3 3 can be divided into 2 3, which represents the
pseudoknot formed by intertwining Stems 1 and 2, and 2 1 representing two hairpins Stems 1 and 3. The two
subgraphs are combined by overlapping one common vertex (Stem 1).

Dual graph 4 7 represents the two-pseudoknot structure predicted by NUPACK for the 84 nt FSE (Fig. 3), and it
can be divided into 3 3 and 2 3. The 2 3 graph represents the extra pseudoknot formed by the loop region of Stem
3 and the 3′ end.

Dual graph 4 12 represents the 3 6-containing structure predicted for the 87 nt FSE by ShapeKnots (Fig. S11),
and here the 3 6 subgraph is detected by our partition algorithm. Meanwhile, this 4 12 is a subgraph of 6 132, which
represents the 144 nt minor 3 6-containing structure (Fig. 4).

Similarly, dual graph 4 21 represents the 87 nt 3 3-containing structure (Fig. S11), with a flanking Stem SF .
Though 4 21 cannot be partitioned further, it is identified as a subgraph of 7 2192, which represents the 144 nt
major 3 3-containing structure (Fig. 4).

Although graphs 3 6, 3 5, and 4 21 cannot be partitioned further, we can still see clearly the substructures
contained in them. The vertices (Stems 1 and 3) and edges in graph 2 1 (omitting self-loops) are contained in 3 6,
3 3, and 3 5. Likewise, graph 3 3 is contained in 4 21.
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Figure S4: Dual graph partition and substructure.
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Figure S5: Replicate 2 SHAPE reactivity analysis for SARS-CoV-2 frameshifting element for 77 nt and 144
nt. (A) The SHAPE reactivity for the 77 nt construct is plotted by bars, with red/yellow/black representing
high/medium/low reactivity. The arc plot at top shows the dominant 3 6 pseudoknot predicted by ShapeKnots, and
at bottom is the minor 3 5. (B) (Top) SHAPE reactivity and ShapeKnots predictions for 144 nt construct. The arc
plot at top shows two major 3 3-containing structures predicted by ShapeKnots, with common base pairs except
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structure. (Bottom) Labeled dual graphs for the three structures predicted for 144 nt.
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Figure S6: Replicate comparative analysis for the SHAPE reactivity data and application for wildtype 77 nt and 144
nt. (A) The reactivity data for the (top) two 77 nt and (bottom) two 144 nt replicates are aligned for comparison.
The consensus dominant structures by ShapeKnots are superimposed as arc plots. (B) PairMap analysis for (top)
77 nt and (bottom) 144 nt construct based on DMS structure probing of the RNA followed by correlated mutation
analysis. This analysis reveals regions of nucleotides that are likely to form pairing interactions, but absence of
correlated mutations does not indicate lack of pairing.
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Figure S7: Design of the 3 6 pseudoknot-strengthening mutants (PSMs). (A) 3 6 PSM for 77 nt. Panel 1 shows
the mutation regions and the target folding for RAG-IF. Panel 2 lists minimal mutation results. Panel 3 shows
2D prediction program screening for the strongest mutant [3G-U, 4U-A, 68C-A, 69A-C], and identification of two
additional mutations [18G-A, 19C-A] based on ProbKnot. (B) 3 6 PSM for the 144 nt construct. Program screening
using 6 programs identify another mutation based on ProbKnot. See Methods of text for details.
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comparisons are highlighted.

9



Figure S9: Design of the 3 3 pseudoknot-strengthening mutant (PSM). Panel 1 shows the mutation regions and the
target folding for RAG-IF. Panel 2 lists minimal mutation results. Panel 3 shows 2D prediction program screening
for the strongest mutant [4U-C, 71G-A, 72G-U].
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Figure S10: Alignments of mutant replicates and their consensus structures for (A) 3 6 PSM 77 nt and 144 nt, (B) 3 3 PSM 77 nt, and (C) 3 5 Mutant 77 nt.
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Figure S13: Other major and minor SARS-CoV-2 FSE conformations reported in the literature.5–14 The common
77 nt FSE region is highlighted in red, and the sequences are aligned.
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Figure S16: Comparisons of chemical probing by different groups for extended FSE region (residues 13280–13644).
(A) Comparative in vivo genome-wide SHAPE reactivity profile from three groups.6,10,13 Scatter plots on the right
show low Pearson correlation coefficient (r < 0.5) between the datasets. (B) Comparative in vitro SHAPE reactivity
profile from four groups including our 222 nt construct.8,10,12 Low correlation between different datasets except for
our 222 nt construct with Iserman et al. 1000 nt construct12 (r = 0.85). (C) Comparative in vitro DMS reactivity
profile from three groups,8,10,11 again with low correlation.
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