
Statistical Analysis Plan for Assessing Immune

Correlates in the Coronavirus Efficacy (COVE) Phase

3 Trial of the mRNA-1273 COVID-19 Vaccine

USG COVID-19 Response Team / Coronavirus Prevention Network
(CoVPN) Biostatistics Team

Peter B. Gilbert1,2*, Youyi Fong1,2, David Benkeser3, Jessica Andriesen1,
Bhavesh Borate1, Marco Carone2, Lindsay N. Carpp1, Iván Dı́az4, Michael
P. Fay5, Andrew Fiore-Gartland1, Nima S. Hejazi6, Ying Huang1,2, Yunda
Huang1, Ollivier Hyrien1, Holly E. Janes1,2, Michal Juraska1, Kendrick Li2,
Alex Luedtke7, Martha Nason5, April K. Randhawa1, Lars van der Laan6,

Brian D. Williamson1, Wenbo Zhang2, Dean Follmann5

1Vaccine and Infectious Disease and Public Health Sciences Divisions, Fred
Hutchinson Cancer Research Center, Seattle, Washington

2Department of Biostatistics, University of Washington, Seattle, Washington

3Department of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, Georgia

4Department of Population Health Sciences, Weill Cornell Medical College,
New York, New York

5National Institute of Allergy and Infectious Diseases, Bethesda, Maryland

6Division of Biostatistics, School of Public Health, University of California,
Berkeley, California

7Department of Statistics, University of Washington, Seattle, Washington

Correspondence: *pgilbert@fredhutch.org

August 9, 2021

mailto:pgilbert@fredhutch.org


Contents

List of Tables 5

List of Figures 6

1 Introduction 7

2 Antibody Assays and Day 29 and Day 57 Markers 7

3 Study Cohorts and Endpoints 12
3.1 Study Cohort for Correlates Analyses . . . . . . . . . . . . . . 12
3.2 Study Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Objectives of Immune Correlates Analyses of a Phase 3 Trial
Data Set 13
4.1 Correlates of Risk and Correlates of Protection . . . . . . . . . 13
4.2 Synthesis of the Phase 3 Correlates Analyses for Decisions . . 15

5 Case-cohort Sampling Design for Measuring Antibody Mark-
ers 15
5.1 Immunogenicity subcohort . . . . . . . . . . . . . . . . . . . . 16
5.2 Correlates Objectives Addressed in Two Stages . . . . . . . . 18

6 Unsupervised Feature Engineering of Antibody Markers (Stage
1: Day 1, 57) 19
6.1 Descriptive Tables and Graphics . . . . . . . . . . . . . . . . . 19

6.1.1 Antibody marker data . . . . . . . . . . . . . . . . . . 19
6.1.2 Graphical description of antibody marker data . . . . . 25

6.2 Methods for Positive Response Calls for bAb and nAb Assays 27
6.3 SARS-CoV-2 Antigen Targets Used for bAb and nAb Markers 27
6.4 Score Antibody Markers Combining Information Across Indi-

vidual bAb and/or nAb Readouts . . . . . . . . . . . . . . . . 27

7 Baseline Risk Score (Proxy for SARS-CoV-2 Exposure) 28

2



8 Correlates Analysis Descriptive Tables by Case/Non-Case
Status 29

9 Correlates of Risk Analysis Plan 30
9.1 CoR Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.2 Outline of the Set of CoR Analyses . . . . . . . . . . . . . . . 30
9.3 Day 29 and Day 57 Markers Assessed as CoRs and CoPs . . . 30

9.3.1 Inverse probability sampling weights used in CoR anal-
yses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9.3.2 Choice of regression methods . . . . . . . . . . . . . . 33
9.3.3 Univariate CoR: Nonparametric threshold regression

modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.4 Univariable CoR: Supportive Exploratory Flexible Parametric

Risk Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.4.1 P-values and Multiple hypothesis testing adjustment

for CoR analysis . . . . . . . . . . . . . . . . . . . . . 38
9.5 Multivariable CoR: Superlearning of Optimal Risk Prediction

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.5.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.5.2 Input variable sets . . . . . . . . . . . . . . . . . . . . 40
9.5.3 Missing data . . . . . . . . . . . . . . . . . . . . . . . . 41
9.5.4 Implementation of superlearner . . . . . . . . . . . . . 42

10 Correlates of Protection: Generalities 50

11 Correlates of Protection: Correlates of Vaccine Efficacy Anal-
ysis Plan 50

12 Correlates of Protection: Interventional Effects 54
12.1 CoP: Controlled Vaccine Efficacy . . . . . . . . . . . . . . . . 55

12.1.1 Conservative (upper bound) inference and sensitivity
analysis for the Cox model correlates of risk analysis . 56

12.2 CoP: Stochastic Interventional Effects on Risk and Vaccine
Efficacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3



12.3 CoP: Mediation of Vaccine Efficacy . . . . . . . . . . . . . . . 65

13 Summary of the Set of CoR and CoP Analyses and Their
Requirements and Contingencies, and Synthesis of the Re-
sults, Including Reconciling Any Possible Contradictions in
Results 68
13.1 Synthesis Interpretation of Results . . . . . . . . . . . . . . . 70
13.2 Multiple Hypothesis Testing Adjustment for CoP Analysis . . 75

14 Estimating a Threshold of Protection Based on an Estab-
lished or Putative CoP (Population-Based CoP) 76

15 Considerations for Baseline SARS-CoV-2 Positive Study Par-
ticipants 77

16 Avoiding Bias with Pseudovirus Neutralization Analysis due
to Use of Anti-HIV Antiretroviral Drugs 77

17 Accommodating Crossover of Placebo Recipients to the Vac-
cine Arm 78

4



List of Tables

1 Correlates of Risk (CoRs) and Correlates of Protection (CoPs)
Objectives for Day 57 Markers . . . . . . . . . . . . . . . . . . 14

2 Planned Immunogenicity Subcohort Sample Sizes by Baseline
Strata for Antibody Marker Measurement . . . . . . . . . . . 17

3 Baseline Subgroups that are Analyzed1. . . . . . . . . . . . . . 24
4 Learning Algorithms in the Superlearner Library of Estimators

of the Conditional Probability of Outcome, for Building the
Baseline Risk Score Based on the Placebo Arm1. . . . . . . . . 48

5 Learning Algorithms in the Superlearner Library of Estimators
of the Conditional Probability of Outcome: Simplified Library
in the Event of Fewer than 50 Vaccine Breakthrough Cases for
an Analysis, for Use in Multivariable CoR Analysis of Moderna
COVE1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Learning Algorithms in the super learner Library for mediation
methods1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Summary of Stage 1 Day 57 Marker CoR and CoP Analyses
with Requirements/Contingencies for Conduct of the Analysis
(Same Considerations Apply for Day 29 Markers) . . . . . . . 69

5



List of Figures

1 A) Structural relationships among study endpoints in a COVID-
19 vaccine efficacy trial (Mehrotra et al., 2020).B) Study end-
point definitions. . . . . . . . . . . . . . . . . . . . . . . . . . 79

2 Example at-COVID diagnosis and post-COVID diagnosis dis-
ease severity and virologic sampling schedule, in a setting where
frequent follow-up of confirmed cases can be assured. Par-
ticipants diagnosed with virologically-confirmed symptomatic
SARS-CoV-2 infection (COVID) enter a post-diagnosis sam-
pling schedule to monitor viral load and COVID-related symp-
toms (types, severity levels, and durations). . . . . . . . . . . 80

3 Case-cohort sampling design (Prentice, 1986) that measures
Day 1, 29, 57 antibody markers in all participants selected into
the subcohort and in all COVID and COV-INF cases occurring
outside of the subcohort. . . . . . . . . . . . . . . . . . . . . . 81

4 Two-stage correlates analysis. Stage 1 consists of analyses of
Day 29 and Day 57 markers as correlates of risk and of protec-
tion of the primary endpoint and potentially also of some sec-
ondary endpoints, and includes antibody marker data from all
COVID and SARS-CoV-2 infection cases (COV-INF) through
to the time of the data lock for the first correlates analyses.
Stage 2 consists of analyses of Day 29 and Day 57 markers
as correlates of risk and of protection of longer term endpoints
and analyses of longitudinal markers as outcome-proximal cor-
relates of risk and of protection, and includes antibody marker
data from all subsequent COVID and COV-INF cases. Stage
1 measures Day 1, 29, 57 antibody markers and COV-INF and
COVID diagnosis time point markers; Stage 2 measures an-
tibody markers from all sampling time points and COV-INF
plus COVID diagnosis sampling time points not yet assayed.
The same immunogenicity subcohort is used for both stages. . 82

6



1 Introduction

This SAP describes the statistical analysis of antibody markers measured at
Day 29 and at Day 57 as immune correlates of risk and as immune corre-
lates of protection against the COVID primary endpoint in the Coronavirus
Efficacy (COVE) phase 3 trial of the mRNA-1273 COVID-19 vaccine. In
this trial, estimated efficacy of the mRNA-1273 vaccine against symptomatic
COVID illness was 94.1% (95% confidence interval, 89.3 to 96.8%) [Baden
et al. (2021)].

2 Antibody Assays and Day 29 and Day 57 Markers

The antibody markers of interest are measured using two different humoral
immunogenicity assays [more detail on assay type (2) can be found in Sholukh
et al. (2020)]:

(1) bAbs: Binding antibodies to the vaccine insert SARS-CoV-2 proteins;

and (2) Pseudovirus-nAbs: Neutralizing antibodies against viruses
pseudotyped with the vaccine insert SARS-CoV-2 proteins.

The Supplementary text in the article provides details of the assays. We
include the necessary statistical details below.

(1) bAb assay: The MSD-ECL Multiplex Assay (MSD-ECL = meso scale
discovery-electrochemiluminescence assay).

The MSD assay measures binding antibody to antigens corresponding to:
Spike (an engineered version of the Spike protein harboring a double proline
substitution (S-2P) that stabilizes it in the closed, prefusion conformation
[McCallum et al. (2020)]); the Receptor Binding Domain (RBD) of the Spike
protein; and Nucleocapsid protein (N), which is not contained in any of the
COVID-19 vaccines.

The bAb assay readouts are in units AU/ml, where AU stands for arbitrary
units from a standard curve. The process of validating the assay defined a
lower limit of detection (LLOD), an upper limit of detection (ULOD), a lower
limit of quantitation (LLOQ), an upper limit of quantitation (ULOQ), and a
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positivity cut-off for each antigen that defines positive vs. negative response.
These values are as follows:

• bAb Spike:

– Pos. Cutoff = 1204.71 AU/ml

– LLOD = 34.18 AU/ml

– ULOD = 19,136,250 AU/ml

– LLOQ = 199.64 AU/ml

– ULOQ = 1,128,438.87 AU/ml

• bAb RBD:

– Pos. Cutoff = 517.86 AU/ml

– LLOD = 58.59 AU/ml

– ULOD = 8,201,250 AU/ml

– LLOQ = 125.9678 AU/ml

– ULOQ = 598,133.3615 AU/ml

• N:

– Pos. cutoff = 9779.62 AU/ml

– LLOD = 39.06 AU/ml

– ULOD = 21,870,000

– LLOQ = 1870.70 AU/ml

– ULOQ = 239,449.31

The Vaccine Research Center established factors for converting the MSD
assay readouts from AU/ml to WHO International Units/ml. For the three
binding antibody variables CoV-2 Spike IgG, CoV-2 RBD IgG, and CoV-2
N IgG, these conversion factors are 0.0090, 0.0272, and 0.0024, respectively.
These conversion factors are applied, such that all binding Ab readouts are
reported in WHO International Units/ml (IU/ml), for all analyses. These
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conversion factors are also applied to yield the LLOD, ULOD, LLOQ, and
ULOQ on the WHO IU/ml scale. The following shows the assay limits on
the IU/ml scale:

• bAb Spike:

– Pos. Cutoff = 10.8424 IU/ml

– LLOD = 0.3076 IU/ml

– ULOD = 172,226.2 IU/ml

– LLOQ = 1.7968 IU/ml

– ULOQ = 10,155.95 IU/ml

• bAb RBD:

– Pos. Cutoff = 14.0858 IU/ml

– LLOD = 1.593648 IU/ml

– ULOD = 223,074 IU/ml

– LLOQ = 3.4263 IU/ml

– ULOQ = 16,269.23 IU/ml

• bAb N:

– Pos. Cutoff = 23.4711 IU/ml

– LLOD = 0.093744 IU/ml

– ULOD = 52,488 IU/ml

– LLOQ = 4.4897 IU/ml

– ULOQ = 574.6783 IU/ml

All values below the LLOD are assigned the value LLOD/2. For immuno-
genicity reporting, values greater than the ULOQ are not given a ceiling
value of the ULOQ, the actual readouts are used. For the immune correlates
analyses, values greater than the ULOQ are assigned the value of the ULOQ.
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(2) Pseudovirus-nAb assay: A firefly luciferase (ffLuc) reporter neutraliza-
tion assay for measuring neutralizing antibodies against SARS-CoV-2 Spike-
pseudotyped viruses.

Based on the assay in the Duke lab of David Montefiori, serum inhibitory
dilution 50% titer (ID50) and serum inhibition dilution 80% titer (ID80)
values are estimated based on a starting serum dilution of 1:10, with eight
5-fold dilutions. Thus 1:10 is the LLOD on the scale of the assay. The process
of validating the assay defined the LLOD, LLOQ, and ULOQ for ID50 and
ID80 as follows:

• ID50:

– LLOD = 10

– LLOQ = 18.5

– ULOQ = 45118

• ID80:

– LLOD = 10

– LLOQ = 14.3

– ULOQ = 10232

ID50 and ID80 values below the LLOD are assigned the value 10/2 = 5.
Values between the LLOD and the LLOQ are taken as their actual numeric
value. For immunogenicity reporting, values greater than the ULOQ are not
given a ceiling value of the ULOQ, the actual readouts are used. For the
immune correlates analyses, values greater than the ULOQ are assigned the
value of the ULOQ.

ID50 and ID80 values are reported in international units based on the re-
port from David Montefiori “Reagent Calibration Report: First WHO In-
ternational Standard for SARS-CoV-2 Immunoglobulin in a Neutralization
Assay” (May, 2021). This report derived calibration factors based on arith-
metic means:

• Calibration factor ID50: 0.242
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• Calibration factor ID80: 1.502

The original readouts are calibrated to the IU scale by multiplying each
original ID50 value by 0.242, and multiplying each original ID80 value by
1.502, and units are reported as calibrated ID50 (cID50) and calibrated ID80
(cID80). Consequently, the LLOD, LLOQ and ULOQ for cID50 and cID80
are as follows in International Units:

• cID50:

– LLOD = 2.42

– LLOQ = 4.477

– ULOQ = 10919

• cID80:

– LLOD = 15.02

– LLOQ = 21.4786

– ULOQ = 15368

Based on each immunoassay applied to triples of serum samples collected
from participants on Day 1 (baseline, first dose of vaccination visit), Day
29 (second dose of vaccination visit), and Day 57 (post-vaccination visit),
the following set of antibody markers was defined for immunogenicity and
immune correlates analyses.

• For bAb: log10 IgG concentration (IU/ml) at each time point, the dif-
ference in log10 concentration (Day 29 minus Day 1) representing log10

fold-rise in IgG concentration from baseline to dose two, and the dif-
ference in log10 concentration (Day 57 minus Day 1) representing log10

fold-rise in IgG concentration from baseline to 28 days post dose two.
These markers are defined for each antigen Spike, RBD, and N.

• For PsV nAb: log10 serum inhibitory dilution 50% titer (cID50) and
serum inhibition dilution 80% titer (cID80) at each time point, as well
as the log10 fold-rise of these markers over Day 1 to Day 29, and over
Day 1 to Day 57.
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3 Study Cohorts and Endpoints

3.1 Study Cohort for Correlates Analyses

The analysis cohort for the correlates analysis is baseline SARS-CoV-2 neg-
ative participants in the per-protocol cohort, with the per-protocol cohort
defined as those who received both planned vaccinations without any speci-
fied protocol deviations, and who were SARS-CoV-2 negative at the terminal
vaccination visit. We refer to this cohort representing the primary popu-
lation for correlates analysis as the Per-Protocol Baseline Negative Cohort.
The definition of baseline negative and per-protocol are the same as in Baden
et al. (2021).

As the primary analysis of vaccine efficacy is conducted in baseline negative
individuals, correlates of risk (CoR) and correlates of protection (CoP) anal-
yses are only done in baseline negative individuals, and the analysis of data
from baseline positive individuals is for purposes of immunogenicity charac-
terization, given too-few anticipated vaccine breakthrough study endpoints
for CoR/CoP assessment (although if there are many baseline positive vac-
cine breakthrough endpoint cases that baseline positive subgroup analyses
may be considered). In baseline negative individuals, antibody marker data
in placebo recipients is relevant for verifying the expectation that almost
all Day 29 and Day 57 marker responses will be negative, given the lack of
SARS-CoV-2 antigen exposure.

3.2 Study Endpoints

Endpoints for correlates analyses of Day 57 markers are included if they occur
at least 7 days after the Day 57 visit, to help ensure that the endpoint did
not occur prior to Day 57 antibody measurement. Similarly, endpoints for
correlates analyses of Day 29 markers are included if they occur at least 7
days after the Day 29 visit, again to help ensure that the endpoint did not
occur prior to Day 29 antibody measurement.

Figure 1 defines five study endpoints assessed in COVID-19 vaccine efficacy
trials, where COVID (symptomatic infection) is used as the primary endpoint
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in the COVE trial. Only the COVID endpoint is assessed in the current
manuscript. For the correlates analysis, all available follow-up for partici-
pants is included through to the time of the data base lock for the correlates
analysis, for every CoR and CoP analysis that is conducted. This means that
the time of right censoring for a given failure time endpoint is the first event
of loss to follow-up or the date of administrative censoring defined as the last
date of available follow-up. For CoP analyses, which use both vaccine and
placebo recipient data and leverage the randomization, follow-up is censored
at the time of unblinding. In general for the current manuscript all blinded
follow-up is included and no post-unblinding follow-up is included.

4 Objectives of Immune Correlates Analyses of a Phase 3 Trial
Data Set

4.1 Correlates of Risk and Correlates of Protection

We broadly classify the proposed analyses into two related categories: corre-
lates of risk (CoR) and correlates of protection (CoP) analyses. CoR analyses
seek to characterize correlations/associations of markers with future risk of
the outcome amongst vaccinated individuals in the study cohort. CoP anal-
yses seek to formally characterize causal relationships among vaccination,
antibody markers and the study endpoint, and use data from both vaccine
and placebo recipients. Table 1 summarizes these objectives and statistical
frameworks that are commonly used to these ends; while the table focuses on
Day 57 markers, the same objectives are of interest for Day 29 markers.

The advantage of CoR analyses it that it is possible to obtain definitive
answers from the phase 3 data sets, that is one can credibly characterize as-
sociations between markers and outcome. The advantage of CoP analyses is
that the effects being estimated have interpretation directly in terms of how
an antibody marker can be used to reliably predict vaccine efficacy (the cri-
terion for use of a non-validated surrogate endpoint for accelerated approval,
Fleming and Powers, 2012). The disadvantage of CoR analyses are that a
CoR may fail to be a CoP, for example due to unmeasured confounding, lack
of transitivity where a vaccine effect on an antibody marker occurs in different
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individuals than clinical vaccine efficacy, or off-target effects (VanderWeele,
2013). The disadvantage of CoP analyses is that statistical inferences rely
on causal assumptions that cannot be completely verified from the phase 3
data, such that compelling evidence may require multiple phase 3 trials and
external evidence on mechanism of protection (e.g., from adoptive transfer
or vaccine challenge trials). Our approach presents results for both CoR and
CoP analyses, seeking clear exposition of how to interpret results, the as-
sumptions undergirding the validity of the results, and diagnostics of these
assumptions and assessment of robustness of findings to violation of assump-
tions.

Table 1: Correlates of Risk (CoRs) and Correlates of Protection (CoPs) Objectives for Day 57
Markers

Objective Type Objective

CoRs (Risk Prediction To assess Day 57 markers as CoRs in vaccine
Modeling) recipients

a. Relative risks of outcome across marker levels
b. Absolute risk of outcome across marker levels
c. Machine learning risk prediction for
multivariable markers

CoP: Correlates of VE To assess Day 57 markers as correlates of VE in
vaccine recipients
a. Principal stratification effect modification analysis
b. Assesses VE across subgroups of vaccine recipients defined by
Day 57 marker level in vaccine recipients

CoP: Controlled To assess Day 57 markers for how assignment
Effects on to vaccine and a fixed marker value would
Risk and VE alter risk compared to assignment to placebo

CoP: Stochastic To assess Day 57 markers for how stochastic
Interventional Effects shifts in their distribution would
on Risk and VE alter mean risk and VE (Hejazi et al., 2020)

CoP: Mediators of VE To assess Day 57 markers as mediators of VE
a. Mechanisms of protection via natural direct and indirect effects
a. Estimate the proportion of VE mediated by a marker or markers
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4.2 Synthesis of the Phase 3 Correlates Analyses for Decisions

Establishment of an immunologic biomarker for approval/bridging applica-
tions is generally not based on pre-fabricated criteria nor a single type of
correlates analysis. Therefore, the goal of the correlates analysis is to gener-
ate evidence about correlates from many perspectives, and to synthesize the
evidence to support certain decisions. Consequently, we believe there is value
in assessing all of the types of correlates presented in Table 1, given that the
analyses address distinct questions. Obtaining a set of results from multiple
distinct approaches that provide complementary and coherent support may
increase the rigor and robustness of an evidence package supporting potential
use of an antibody marker as a validated surrogate (for traditional approval)
or as a non-validated surrogate (for accelerated approval) (Fleming and Pow-
ers, 2012); these uses of a biomarker are summarized below. However, the
assumptions needed for valid inferences are somewhat different across the
methods, and some of these assumptions have testable implications; there-
fore examination of the assumptions may lead to favoring some methods over
others, and affect the synthesis and interpretation of results, and moreover if
diagnostics support that some necessary assumptions are infeasible then cer-
tain analyses will be canceled, as described below. Section 13 summarizes the
approach that is used and the interpretation of the set of multiple correlates
of protection methods.

5 Case-cohort Sampling Design for Measuring Antibody Markers

Figure 3 illustrates the case-cohort (Prentice, 1986) sampling design that is
used for measuring Day 1, 29, 57 antibody markers in a random sample of
trial participants. The random sample is stratified by the key baseline co-
variates: assigned randomization arm, baseline SARS-CoV-2 status (defined
by serostatus and NAAT and/or RNA PCR testing, Baden et al., 2021), and
randomization strata (defined by age and heightened COVID at-risk status).
Because the design uses a stratified random sample instead of the simple
random sample proposed by Prentice (1986), the design may also be referred
to as a “two-phase sampling design” (Breslow et al., 2009b,a), where “phase
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one” refers to variables measured in all participants and “phase two” refers
to variables only measured in a subset (thus the “case-cohort sample” con-
stitutes the phase-two data).

The case-cohort design enables obtaining marker data (Day 1, 29, 57) for the
immunogenicity subcohort during early trial follow-up in real-time batches,
thereby accelerating the time until final data set creation and hence data
analysis and results on Day 29 and Day 57 marker correlates. The design
allows using the same immunogenicity subcohort to assess correlates for mul-
tiple endpoints, relevant for the COVID-19 VE trials with multiple endpoints
(Figure 1). This makes the design operationally simpler than a case-control
sampling design.

5.1 Immunogenicity subcohort

The immunogenicity subcohort was sampled from the subset of participants
in the Full Analysis Set (FAS) cohort used in the primary analysis of vaccine
efficacy against the primary endpoint (with the FAS defined as all randomized
participants who received at least one dose of investigational product) for
whom all of the following information was available: baseline SARS-CoV-
2 status; age, race/ethnicity (needed to define Minority status as described
below), and heightened COVID at-risk status; and Day 1, Day 29, and Day
57 samples collected.

Table 2 summarizes the planned size of the immunogenicity subcohort, by
the baseline factors used to stratify the random sampling. In this subco-
hort 6 baseline demographic strata are used. A 50:50 balance is specified by
minority status Yes:No. The subcohort sampling is implemented to create
representative sampling across the entire period of enrollment.

For the sampling, Minority includes Blacks or African Americans, Hispanics
or Latinos, American Indians or Alaska Natives, Native Hawaiians, and other
Pacific Islanders. Non-Minority includes all other races with observed race
(Asian, Multiracial, White, Other) and observed ethnicity Not Hispanic or
Latino. Therefore Unknown and Not reported have missing values for this
sampling stratum variable.
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“At-risk” refers to participants considered to be at heightened risk of se-
vere COVID-19 illness. Only participants 18-64 were categorized as either
“At-risk” or “Not at-risk”. Specifically, participants 18-64 were categorized
as “at-risk” if they had at least one of the following risk factors: chronic
lung disease (e.g., emphysema, chronic bronchitis, idiopathic pulmonary fi-
brosis, cystic fibrosis, or moderate-to-severe asthma); cardiac disease (e.g.,
heart failure, congenital coronary artery disease, cardiomyopathies, or pul-
monary hypertension); severe obesity (BMI ≥40); diabetes (type 1, type 2,
or gestational); liver disease; or HIV infection.

Table 2: Planned Immunogenicity Subcohort Sample Sizes by Baseline Strata for Antibody Marker
Measurement

Baseline SARS-CoV-2 Negative2 Baseline SARS-CoV-2 Positive3

Bas. Cov. Strata1 1 2 3 4 5 6 1 2 3 4 5 6
Vaccine 150 150 150 150 150 150 50 50 50 50 50 50
Placebo 20 20 20 20 20 20 50 50 50 50 50 50

1Sampling was stratified within 6 baseline covariate strata:

1 = Age 18-64 Minority At-risk; 2 = Age 18-64 Non-Minority At-risk; 3 = Age 18-64 Minority Not At-risk;

4 = Age 18-64 Non-Minority Not At-risk; 5 = Age ≥ 65 Minority; 6 = Age ≥ 65 Non-Minority
2The vaccine group baseline negative strata are assigned large sample sizes because the correlates of

risk analysis focuses on baseline negative vaccine recipients. The placebo group baseline negative strata

are assigned small sample sizes given the expectation that almost all Day 57 bAb and nAb readouts

will be negative/zero given the absence of prior exposure to SARS-CoV-2 antigens.
3Equal stratum sizes are assigned for the vaccine and placebo groups in order to compare bAb and

nAb responses in previously infected persons, studying potential differences in natural+vaccine-elicited

responses vs. natural-elicited responses.

If certain strata do not have enough eligible participants available for sam-
pling, then additional sampling is done from other strata to keep the total
immunogenicity subcohort sample size close to 1620 or somewhat higher.

Figure S1 and Table S3 in the Supplementary Material describe the actual
numbers of participants sampled into the baseline negative portion of the
immunogenicity subcohort – the relevant portion given the focus of correlates
analyses on baseline negative participants.
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5.2 Correlates Objectives Addressed in Two Stages

Figure 4 depicts the two stages of the immune correlates analyses. Stage 1 in-
cludes antibody marker data from all COVID and infection (COV-INF) cases
diagnosed through to the last date of: (1) the time that at least 25 evaluable
vaccine breakthrough COVID endpoint cases are available for analysis; and
(2) the time of a data-cut at or after the primary analysis used to define
the data base for the first correlates analysis. Only Day 1, 29, 57 antibody
markers, and COVID and COV-INF diagnosis time point antibody markers,
are measured in Stage 1. The objectives of Stage 1 correlates analyses fo-
cus on Day 29 and Day 57 markers, which are the objectives listed in Table
1. Stage 1 focuses on Day 57 markers because in general validated or non-
validated surrogate endpoints for approved vaccines are based on the peak
antibody time point, and this approach fits the priority to develop a val-
idated or non-validated surrogate endpoint as rapidly as possible. Stage 1
also focuses on Day 29 markers because if a correlate based on this time point
is found to perform as well as a Day 57 correlate, then it may be preferred
given the practical advantage to be measured earlier and to not require a Day
57 post-vaccination visit and blood draw. Another advantage of an earlier
measurement is providing opportunity to include additional breakthrough
COVID endpoint cases (intercurrent endpoints) in the correlates analyses.

Stage 2 includes antibody marker data from all COVID and COV-INF cases
diagnosed after the Stage 1 cases through to the end of the trial, including
all available sampling time points (6–7 time points). For immunogenicity
subcohort participants, the antibody markers at all available time points
other than Day 1, 29, 57 are measured for Stage 2 correlates analyses (4–5
additional time points). The Stage 2 clinical endpoint data and antibody
marker data enable assessment of longitudinal antibody markers as outcome-
proximal correlates of instantaneous endpoint risk and as various types of
outcome-proximal correlates of protection.

The manuscript restricts to assessment of Stage 1 correlates.
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6 Unsupervised Feature Engineering of Antibody Markers (Stage
1: Day 1, 57)

6.1 Descriptive Tables and Graphics

6.1.1 Antibody marker data

Binding antibody titers to full length SARS-CoV-2 Spike protein, to the RBD
domain of the Spike protein, and to the Nucleocapsid (N) protein will be mea-
sured in all participants in the immunogenicity subcohort (augmented with
infected cases). N-specific binding antibody titers are not used for correlates
analyses or for graphical reporting; these data are only used for tabular re-
porting. Binding antibody IgG Spike, IgG RBD, IgG N, as well as fold-rise
in these three markers from baseline, are measured at each pre-defined time
point. Indicators of 2-fold rise and 4-fold rise in IgG concentration (fold rise
[post/pre] ≥ 2 and ≥ 4, 2FR and 4FR) are measured at each pre-defined
post-vaccination timepoint. Binding antibody responders to a given antigen
at each pre-defined timepoint are defined as participants with value above the
antigen-specific positivity cut-off. Binding antibody IgG 2FR (4FR) at each
pre-defined timepoint to a given antigen are defined as participants who had
baseline values below the LLOQ with IgG concentration at least 2 times (4
times) above the assay LLOQ, or as participants with baseline values above
the LLOQ with at least a 2-fold (4-fold) increase in IgG concentration.

Pseudovirus neutralizing antibody cID50 and cID80 titers, as well as fold-rise
in cID50 and cID80 titers from baseline, are measured at each pre-defined
time point. Indicators of 2-fold rise and 4-fold rise in cID50 titer (fold rise
[post/pre] ≥ 2 and ≥ 4, 2FR and 4FR) are measured at each pre-defined
post-vaccination timepoint. Neutralization responders at each pre-defined
timepoint are defined as participants who had baseline values below the
LLOD with detectable cID50 neutralization titer above the assay LLOD,
or as participants with baseline values above the LLOD with a 4-fold in-
crease in neutralizing antibody titer. Neutralization 2FR (4FR) at each pre-
defined timepoint are defined as participants who had baseline values below
the LLOQ with cID50 at least 2 times (4 times) above the assay LLOQ, or
as participants with baseline values above the LLOQ with at least a 2-fold
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(4-fold) increase in neutralizing antibody titer. While quantitative fold-rise
is shown for both cID50 and cID80, response above LLOD, 2FR and 4FR re-
sponder status are shown only for cID50. (However, for superlearner analysis
of multivariable CoRs, 2FR and 4FR responder status variables are included
for each of pseudovirus-nAb cID50 and cID80, given the objectives of more
comprehensive analysis in building the estimated optimal surrogate.)

Note that for defining positive response, 2FR, and 4FR, a reason why values
below the LLOD are set to half the LLOD before calculating the indicator
of response, is to ensure that a vaccine recipient that has an unusually low
antibody readout at baseline and a post-vaccination value below or near the
LLOD is not erroneously counted as a responder.

The following list describes the antibody variables that are measured from
immunogenicity subcohort and infection case participants. (The pre-defined
time points are Day 1, 29, 57.)

1. Individual anti-Spike antibody concentration at each pre-defined time
point

2. Individual anti-Spike antibody fold-rise concentration post-vaccination
relative to baseline at each pre-defined post-vaccination time point

3. Individual anti-RBD antibody concentration at each pre-defined time
point

4. Individual anti-RBD antibody fold-rise post-vaccination relative to base-
line at each pre-defined post-vaccination time point

5. Individual anti-N antibody concentration at each pre-defined time point

6. Individual anti-N antibody fold-rise post-vaccination relative to baseline
at each pre-defined post-vaccination time point

7. 2-fold-rise and 4-fold rise (fold rise in anti-Spike antibody concentra-
tion [post/pre] ≥ 2 and ≥ 4, 2FR and 4FR) at each pre-defined post-
vaccination time point

8. 2-fold-rise and 4-fold rise (fold rise in anti-RBD antibody concentra-
tion [post/pre] ≥ 2 and ≥ 4, 2FR and 4FR) at each pre-defined post-
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vaccination time point

9. 2-fold-rise and 4-fold rise (fold rise in anti-N antibody concentration
[post/pre]≥ 2 and≥ 4, 2FR and 4FR) at each pre-defined post-vaccination
time point

10. Pseudovirus-nAb responders, at each pre-defined timepoint defined as
participants who had baseline values below the LLOQ with detectable
pseudovirus-nAb cID50 titers above the assay LLOQ or as participants
with baseline values above the LLOQ with a 4-fold increase in pseudovirus-
nAb cID50 titers

Summaries of the immunogenicity data will be reported in tables. In partic-
ular, the tables will include, for each pre-defined post-baseline time point:

1. For each binding antibody marker, the estimated percentage of partici-
pants defined as responders, and with concentrations ≥ 2x LLOQ or ≥
4 x LLOQ, will be provided with the corresponding 95% CIs using the
Clopper-Pearson method.

In addition, the estimated percentage of participants defined as respon-
ders, participants with 2-fold rise (2FR), and participants with 4-fold
rise (4FR) will be provided with the corresponding 95% CIs using the
Clopper-Pearson method.

2. For the cID50 pseudo-virus neutralization antibody marker, the esti-
mated percentage of participants defined as responders, participants with
2-fold rise (2FR), and participants with 4-fold rise (4FR) will be provided
with the corresponding 95% CIs using the Clopper-Pearson method

3. Geometric mean titers (GMTs) and geometric mean concentrations (GMCs)
will be summarized along with their 95% CIs using the t-distribution
approximation of log-transformed concentrations/titers (for each of the
four Spike-targeted marker types including pseudovirus-nAb cID50 and
cID80, as well as for binding Ab to N).

4. Geometric mean titer ratios (GMTRs) or geometric mean concentration
ratios (GMCRs) are defined as geometric mean of individual titers/concentration
ratios (post-vaccination/pre-vaccination for each injection)
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5. GMTRs/GMCRs will be summarized with 95% CI (t-distribution ap-
proximation) for any post-baseline values compared to baseline, and
post-Day 57 values compared to Day 57

6. The ratios of GMTs/GMCs will be estimated between groups with the
two-sided 95% CIs calculated using t-distribution approximation of log-
transformed titers/concentrations [the groups compared are vaccine re-
cipient Non-Cases vs. vaccine recipient breakthrough cases used for Day
57 marker correlates analyses (Post Day 57 cases) and vaccine recipi-
ent Non-Cases vs. vaccine recipient breakthrough cases used for Day 29
marker correlates analyses (Intercurrent cases and Post Day 57 cases)].

7. The differences in the responder rates, 2FRs, 4FRs between groups will
be computed along with the two-sided 95% CIs by the Wilson-Score
method without continuity correction (Newcombe, 1998) (the groups for
comparison are as described in the previous bullet).

All of the above point and confidence interval estimates will use inverse prob-
ability of antibody marker sampling weighting in order that estimates and
inferences are for the population from which the whole study cohort was
drawn. In two-phase sampling data analysis nomenclature, the “phase 1
ptids” are the per-protocol individuals excluding individuals with a COVID
failure event or any other evidence of SARS-CoV-2 infection < 7 days post
Day 57 visit. The “phase 2 ptids” are then the subset of these phase 1 ptids in
the immunogenicity subcohort with Day 1 and Day 29 and Day 57 Ab marker
data available. Thus, marker data for the COVID endpoint cases outside the
subcohort will not be used in immunogenicity analyses; these cases are ex-
cluded from immunogenicity analyses. Similarly, for Day 29 marker correlates
analyses the “phase 1 ptids” are the per-protocol individuals excluding indi-
viduals with a COVID failure event or any other evidence of SARS-CoV-2
infection < 7 days post Day 29. The “phase 2 ptids” are then the subset of
these phase 1 ptids in the immunogenicity subcohort with Day 1 and Day 29
Ab marker data available. Thus again, marker data for the COVID endpoint
cases outside the subcohort will not be used in immunogenicity analyses;
these cases are excluded from immunogenicity analyses.
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The estimated weight ŵsubcohort.57x is the inverse sampling probability weight,
calculated as the empirical fraction (No. Day 57 phase 1 ptids / No. Day 57
phase 2 ptids) within each of the baseline strata [(vaccine, placebo) × (base-
line negative, baseline positive) × (demographic strata)]. For individuals
outside the phase 1 ptids, ŵsubcohort.57x is assigned the missing value code NA.
All other individuals have a positive value for ŵsubcohort.57x, including cases not
in the subcohort. This weight is only used for case outcome-status blinded
immunogenicity inferential analyses. Note that ŵsubcohort.57x is used for all
immunogenicity analyses, which are based solely on the immunogenicity sub-
cohort, for Day 1, Day 29, and Day 57 markers. (Not used for correlates
analyses.)

Tables will be provided separately for (1) baseline negative individuals, (2)
baseline positive individuals, (3) baseline negative individuals by subgroup
defined as in Table 3, and (4) baseline positive individuals by the same sub-
groups as in (3). Each table will show data for all available time points and
for each of the vaccine and placebo arms.
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Table 3: Baseline Subgroups that are Analyzed1.

Age: < 65, ≥ 65
Heightened Risk for Severe COVID: At risk, Not at risk
Age x Risk for Severe COVID:
< 65 At risk, < 65 Not at risk, ≥ 65 At risk, ≥ 65 Not at risk
Sex Assigned at Birth: Male, Female
Age x Sex Assigned at Birth:
< 65 Male, < 65 Male, ≥ 65 Female, ≥ 65 Female
Hispanic or Latino Ethnicity: Hispanic or Latino, Not Hispanic or Latino
Race or Ethnic Group:
White Non-Hispanic2, Black, Asian, American Indian or Alaska Native (NatAmer)
Native Hawaiian or Other Pacific Islander (PacIsl), Multiracial,
Other, Not reported, Unknown
Underrepresented Minority Status in the U.S.:
Communities of color (Comm. of color), White2

Age x Underrepresented Minority Status in the U.S.:
Age ≥ 65 Comm. of color, Age < 65 Comm. of color, Age ≥ 65 White, Age ≥ 65 White

1All analyses are done within strata defined by randomization arm and baseline positive/negative
status, such that these variables are not listed here as subgroups for analysis.

2White Non-Hispanic is defined as Race=White and Ethnicity=Not Hispanic or Latino. All of the
other Race subgroups are defined solely by the Race variable, with levels Black, Asian, American

Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiracial, Other, Not
reported, Unknown. Communities of color is defined by the complement of being known White

Non-Hispanic.

For comparing antibody levels between groups, the following groups are com-
pared:

• Baseline negative vaccine vs. baseline negative placebo

• Baseline positive vaccine vs. baseline positive placebo

• Baseline negative vaccine vs. baseline positive vaccine

• Within baseline negative vaccine recipients, compare each of the follow-
ing pairs of subgroups listed in Table 3: Age ≥ 65 vs. age < 65; risk
for severe COVID: at risk vs. not at risk; age ≥ 65 at risk vs. age ≥ 65
not at risk; age < 65 at risk vs. age < 65 not at risk; male vs. fe-
male; Hispanic or Latino ethnicity: Hispanic or Latino vs. Not Hispanic
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or Latino; Underrepresented minority status: Communities of color vs.
White Non-Hispanic (within the U.S.).

The entire immunogenicity analysis is done in the per-protocol cohort with
Day 1, Day 29, and Day 57 marker data available (the two-phase sample).

6.1.2 Graphical description of antibody marker data

The Day 1, 29, 57 antibody marker data collected from the immunogenicity
subcohort participants will be described graphically. These data are repre-
sentative of the entire study cohort. Importantly, only antibody data from
the immunogenicity subcohort are included (i.e., no data from cases outside
the subcohort are included). This makes the analyses unsupervised (inde-
pendent of case-control status), enabling interrogation and optimization of
the antibody biomarkers prior to the inferential correlates analyses.

Plots are developed for the following purposes. All of the analyses are done
separately within each of the four subgroups defined by randomization arm
cross-classified with baseline negative/positive status. In addition, many of
the descriptive analyses will also be done separately for each demographic
subgroup of interest listed above. For descriptive plots of individual marker
data points that pool over one or more of the baseline strata subgroups, plots
show all observed data points.

For each antibody marker readout, both Day 57 and baseline-subtracted Day
57 readouts are of interest. We will refer to the latter as ‘delta.’ All readouts,
including delta, will be plotted on the log10 scale, with plotting labels on the
natural scale. As such, delta is log10 fold-rise in the marker readout from
baseline.

The following descriptive graphical analyses are done.

1. The distribution of each antibody marker readout at Day 1, Day 29, and
Day 57 will be described with plots of empirical reverse cumulative distri-
bution functions (rcdfs) and boxplots (including individual data points)
within each of the four groups defined by randomization arm (vaccine,
placebo) and baseline positivity stratum (seronegative, seropositive). In-

25



verse probability of sampling into the subcohort weights (ŵsubcohort.57x)
are used in the estimation of the rcdf curves; henceforth we refer to these
weights as “inverse probability of sampling” (IPS) weights. Analyses of
Day 1 markers always pool across vaccine and placebo recipients given
that the two subgroups are the same at baseline.

2. Plots are arranged to compare each Day 29 or Day 57 marker readout
between randomization arms within each of the baseline seropositive and
baseline seronegative subgroups.

3. Plots are also arranged to compare each Day 29 or Day 57 marker readout
between baseline serostatus groups within each randomization arm.

4. The correlation of each antibody marker readout among Day 1, Day
29, and Day 57, and between Day 1 and fold-rise to Day 29 and to
Day 57 (delta), is examined within each randomization arm and baseline
positivity stratum. Pairs plots/scatterplots will be used, annotated with
baseline strata-adjusted Spearman rank correlations, implemented in the
PResiduals R package available on CRAN. For calculating the correlation
within each randomization arm and baseline positivity stratum, because
PResiduals does not currently handle sampling weights, the correlation
estimates are computed as follows: For each re-sampled data set in the
second approach to graphical plotting, the covariate-adjusted Spearman
correlation is calculated. The average of the estimated correlations across
re-sampled data sets is reported.

5. The correlation of each pair of Day 1 antibody marker readouts are com-
pared within each baseline positivity stratum, pooling over the two ran-
domization arms. Pairs plots/scatterplots and baseline-strata adjusted
Spearman rank correlations are used, with covariate-adjusted Spearman
rank correlations computed as described above. The same analyses are
done for each pair of Day 29 antibody marker readouts and for each pair
of Day 57 antibody marker readouts.

6. Point estimates of Day 57 marker positive response rates for each ran-
domization arm within each baseline positivity stratum are provided.
The point and 95% CI estimates include all of the data and use IPS
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weights. The same analyses are done for Day 29 marker positive re-
sponse rates.

6.2 Methods for Positive Response Calls for bAb and nAb Assays

As noted above, binding antibody responders at each pre-defined timepoint
are defined as participants with concentration above the specified positivity
cut-off, with a separate cut-off for each antigen Spike, RBD, N (10.8424,
14.0858, and 23.4711, respectively, in IU/ml). This approach is used for each
of the Spike and RBD and N protein antigen targets.

Pseudovirus neutralization responders at each pre-defined timepoint are de-
fined as participants who had baseline cID50 values below the LLOD with de-
tectable cID50 neutralization titer above the assay LLOD, or as participants
with baseline values above the LLOD with a 4-fold increase in neutralizing
antibody titer. Otherwise a value is negative for pseudovirus neutralization.
The same approach is used based on cID80 titer.

6.3 SARS-CoV-2 Antigen Targets Used for bAb and nAb Markers

The homologous vaccine strain antigens are used for the immune correlates
analyses for the bAb markers, whereas the homologous vaccine strain with
D614G mutation is used for the pseudovirus nAb markers.

6.4 Score Antibody Markers Combining Information Across Individual bAb
and/or nAb Readouts

For each time point Day 29 and Day 57 separately, score antibody markers
that combine information across the five individual markers are defined and
included in the multivariable CoR machine learning analyses. In particular,
five score variables are studied:

1. Maximum signal-diversity score calculated as described in He and Fong
(2019).

2. First two linear principal components PCA1 and PCA2
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3. Nonlinear extensions of principal components FSDAM1 and FSDAM2
calculated as in Fong et al. (2020).

The purpose of these score markers is to seek to maximally capture the main
immune response signal and to study whether there are more than one dis-
tinct signals that are associated with the COVID outcome, and to study
whether score markers can provide strengthened association with COVID
compared to the individual assay markers. The score markers are included
as input features in the machine learning (superlearning) prediction modeling
(multivariable CoR objective).

7 Baseline Risk Score (Proxy for SARS-CoV-2 Exposure)

The list of baseline covariates potentially relevant for SARS-CoV-2 expo-
sure and risk of COVID was specified (Table S4 in Supplementary Material).
Based on these covariates, a baseline risk score is developed and controlled
for in correlates analyses to adjust for potential confounding. The risk score
is developed using placebo arm data only, restricting to baseline negative
per-protocol placebo recipients. The risk score is defined as the logit of the
predicted outcome probability from a regression model estimated using the
ensemble algorithm superlearner (i.e. stacking), where this logit predicted
outcome is scaled to have empirical mean zero and empirical standard devi-
ation one. The settings of superlearner (i.e., loss function, cross-validation
technique, library of learners) that are used for implementation of super-
learner for building a baseline risk score are described in Section 9.5. For
predictive modeling of the COVID endpoint, cases are COVID endpoints
starting 7 days post Day 57 visit and non-cases are participants with follow-
up beyond 7 days post Day 57 visit and never registered a COVID endpoint.

Independent of the superlearner risk score, important individual risk factors
are also specified for inclusion as adjustment factors in correlates analyses. In
particular, in addition to the risk score the at-risk indicator and the commu-
nities of color indicator are adjusted for in all correlates analyses. This choice
is justified by the epidemiological data showing that these two indicators are
strong infection and COVID-19 risk factors, and making use of the flexibility
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of super learner to develop a model for how age relates to risk.

Henceforth we refer to the baseline variables that are adjusted for in corre-
lates analyses as “baseline factors” which, depending on the risk score results
and performance, will consist of only the individual key risk factors, or key
individual risk factors plus the baseline risk score.

8 Correlates Analysis Descriptive Tables by Case/Non-Case Sta-
tus

The key table summarizing the distribution of each of the five antibody mark-
ers at the Day 1, 29, and 57 times points is listed below. For each time point
Day 1, Day 29, and Day 57 separately, the positive response rate with 95%
CI, and the GMT or GMC with 95% CI, is reported for each of of the case
and non-case groups. In addition, the point and 95% CI estimate of the dif-
ference in positive response rate (non-cases vs. cases) and the GMT or GMC
ratio (non-cases/cases), is reported. Two cases vs. non-cases comparisons
are done: Post Day 57 cases vs. Non-cases, and Intercurrent + Post Day 57
cases vs. Non-cases, with Post Day 57 cases and Intercurrent cases defined
below. The same set of non-cases is used in each comparison.

• Immunogenicity table: Antibody levels in the baseline SARS-CoV-2 neg-
ative per-protocol cohort (vaccine recipients). Post Day 57 cases are
baseline negative per-protocol vaccine recipients with the symptomatic
infection COVID-19 primary endpoint diagnosed starting 7 days after the
Day 57 study visit. Intercurrent cases are baseline negative per-protocol
vaccine recipients with the symptomatic infection COVID-19 primary
endpoint diagnosed starting 7 days after the Day 29 study visit and be-
fore 7 days post Day 57 study visit. Non-cases/Controls are baseline
negative per-protocol vaccine recipients sampled into the immunogenic-
ity subcohort with no COVID primary endpoint up to the time of data
cut and no evidence of SARS-CoV-2 infection up to six days post Day
57 visit.

The point and confidence interval estimates are computed using inverse prob-
ability sampling weights ŵsubcohort.57x for Post Day 57 cases and for Non-cases,
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and using ŵ29.x for Intercurrent + Post Day 57 cases combined, as defined in
Section 9.3.1.

9 Correlates of Risk Analysis Plan

This analysis plan for CoRs and CoPs focuses on the COVID primary end-
point, with its continuous failure times (failure time defined by the day of
the event) and no competing risks.

9.1 CoR Objectives

The following CoR objectives are assessed in baseline seronegative per-protocol
vaccine recipients:

1. Univariable CoR To assess each individual Day 29 and Day 57 anti-
body marker as a CoR of outcome in vaccine recipients, adjusting for
baseline factors (See Section 7)

2. Multivariable CoR To build models predictive of outcome based on
a set of Day 29 and Day 57 antibody marker readouts, adjusting for
baseline factors (See Section 7)

9.2 Outline of the Set of CoR Analyses

The univariable CoR objective is addressed by Cox proportional hazards
regression and nonparametric threshold regression. The multivariable CoR
objective is addressed by superlearning. All of these analyses are implemented
in automated and reproducible press-button fashion.

In addition, supportive exploratory analyses of the univariable CoR objec-
tive are conducted using flexible parametric regression modeling: generalized
additive model regression.

9.3 Day 29 and Day 57 Markers Assessed as CoRs and CoPs

The following four markers at Day 29 and at Day 57 are assessed as CoRs
and CoPs, usually as quantitative variables and in some analyses as ordered
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trinary variables or binary variables, all of which do not subtract Day 1
(baseline) values:

1. binding Ab to Spike (IgG IU/ml)

2. binding Ab to RBD (IgG IU/ml)

3. pseudovirus neutralization cID50

4. pseudovirus neutralization cID80

For all univariable CoR analyses (first objective), the non-baseline subtracted
versions of the Day 29 and Day 57 antibody markers are studied; the baseline-
subtracted versions are not studied given that the analyses are done in the
baseline negative cohort for which Day 1 readouts will generally be negative.
The multivariable machine learning CoR analyses include synthesis markers
that combine information across the individual markers listed above, as well
as including 2FR and 4FR versions of variables.

9.3.1 Inverse probability sampling weights used in CoR analyses

In section 6.1, estimated inverse probability sampling (IPS) weights ŵsubcohort.57x

were defined for per-protocol immunogenicity subcohort members, for the
purpose of immunogenicity analyses. This section describes the two IPS
weights, one used for Day 57 marker correlates analyses (ŵ57.x) and the other
used for Day 29 marker correlates analyses (ŵ29.x).

Consider the correlates analyses of Day 57 markers. For baseline sampling
stratum x [(vaccine, placebo) × (demographic strata)], the IPS weight w57.x

assigned to a non-case participant in stratum x is defined by ŵ57.x = 1/
π̂57(x) = Nx/nx, where Nx is the number of stratum x vaccine recipient non-
cases in the Per-Protocol Baseline Negative (PPBN) cohort and nx is the
number of these participants that also have Day 1, 29, and 57 marker data
available, where participants with any evidence of SARS-CoV-2 infection
before 7 days post Day 57 visit are excluded from the counts Nx and nx. For
non-case participant i in the immunogenicity subcohort, ŵ57.i = 1/π̂57(Xi)
denotes the weight ŵ57.x for this individual’s sampling stratum. All Post Day
57 cases are assigned sampling weight N1/n1 where N1 is the total number
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of vaccine recipient cases in the PPBN cohort restricting to cases with event
time starting 7 days post Day 57, and n1 is the number of these participants
that also had the Day 1, 29, and 57 markers measured, and again participants
with any evidence of SARS-CoV-2 infection < 7 days post Day 57 visit are
excluded from the counts Nx and nx.

In terms of two-phase sampling data analysis nomenclature, for the Day 57
marker analyses “phase 1 ptids” are defined as the entire PPBN cohort except
excluding participants with any evidence of SARS-CoV-2 infection < 7 days
post Day 57 visit. The “phase 2 ptids” are then the subset of these phase 1
ptids with Day 1, 29, and 57 Ab marker data available. Thus the weight ŵ57.x

is the inverse sampling probability weight, calculated as the empirical fraction
(No. phase 1 ptids / No. phase 2 ptids) within each of the baseline negative
strata (14 strata defined by PPBN vaccine group cases, PPBN placebo group
cases, PPBN vaccine group non-cases divided into the 6 demographic strata,
and PPBN placebo group non-cases divided into the 6 demographic strata).
For baseline negative individuals outside the phase 1 ptids, ŵ57.x is assigned
the missing value code NA. All other individuals have a positive value for
ŵ57.x.

Next consider the correlates analyses of Day 29 markers. For baseline sam-
pling stratum x [(vaccine, placebo) × (demographic strata)], the IPS weight
w29.x assigned to a non-case participant in stratum x is defined by ŵ29.x = 1/
π̂29(x) = Nx/nx, where Nx is the number of stratum x vaccine recipient non-
cases in the PPBN cohort and nx is the number of these participants that
also have Day 1 and Day 29 marker data available, where participants with
any evidence of SARS-CoV-2 infection before 7 days post Day 29 visit are
excluded from the counts Nx and nx. For non-case participant i in the im-
munogenicity subcohort, ŵ29.i = 1/π̂29(Xi) denotes the weight ŵ29.x for this
individual’s sampling stratum. All Intercurrent and Post Day 57 cases are
assigned sampling weight N1/n1 where N1 is the total number of vaccine re-
cipient cases in the PPBN cohort restricting to cases with event time starting
7 days post Day 29, and n1 is the number of these participants that also had
the Day 1 and Day 29 markers measured, and again participants with any
evidence of SARS-CoV-2 infection < 7 days post Day 29 visit are excluded
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from the counts Nx and nx.

In terms of two-phase sampling data analysis nomenclature, for the Day
29 marker analyses “phase 1 ptids” are defined as the entire PPBN cohort
except excluding participants with any evidence of SARS-CoV-2 infection
< 7 days post Day 29 visit. The “phase 2 ptids” are then the subset of
these phase 1 ptids with Day 1 and Day 29 Ab marker data available. Thus
the weight ŵ29.x is the inverse sampling probability weight, calculated as the
empirical fraction (No. phase 1 ptids / No. phase 2 ptids) within each of
the baseline negative strata (14 strata defined by PPBN vaccine group cases,
PPBN placebo group cases, PPBN vaccine group non-cases divided into the
6 demographic strata, and PPBN placebo group non-cases divided into the
6 demographic strata). For baseline negative individuals outside the phase
1 ptids, ŵ29.x is assigned the missing value code NA. All other individuals
have a positive value for ŵ29.x. In sum, the weights ŵ29.x are calculated in the
same way as the weights ŵ57.x, except the relevant time window for evidence
of infection or COVID is at least 7 days post Day 29 visit instead of at least
7 days post Day 57 visit.

9.3.2 Choice of regression methods

Time-to-event methods of Day 57 marker correlates analyses use the Day
57 visit date as the time origin. Similarly, time-to-event methods of Day 29
marker correlates analyses use the Day 29 visit date as the time origin.

The IPWCC Cox regression model designed for case-cohort sampling designs
will be used for estimation and inference on hazard ratios of outcomes by Day
29 or Day 57 marker levels, and for estimation and inference on marginalized
marker-conditional cumulative incidence over time. The models will be fit
using the survey R package available on CRAN, and will adjust for the base-
line factors. We use a method from the survey package that assumes without
replacement two-phase sampling and not Bernoulli sampling, which matches
the sampling design and approach to weight estimation (Lumley, 2010).

The final time point tF of follow-up for correlates analyses is taken to be
the latest COVID outcome event time. Let T be the failure time, S a Day
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29 or Day 57 marker of interest, and X the vector of baseline factors that
are adjusted for. With S1(t|s, x) = P (T > t|S = s,X = x,A = 1), the
Cox model fit yields an estimate of S1(t|s,Xi) for each individual i in the
phase-two sample. The marginalized conditional risk risk1(t|s) = EX [P (T ≤
t|s,X,A = 1)] through time t (for all times t through tF simultaneously) is
estimated based on the equation

risk1(t|s) =

∫
(1− S1(t|s, x))dH(x) (1)

where H(·) is the distribution of X in A = 1 individuals.

The function risk1(t|s) can be estimated by

r̂isk1(t|s) =

∑n
i=1

1
π̂(Xi)

(1− Ŝ1(t|s,Xi))∑n
i=1

1
π̂(Xi)

, (2)

where n is the number of participants with phase-two data.

The bootstrap is used to obtain 95% pointwise confidence intervals for risk1(tF |s).

The bootstrap process will be performed by resampling with replacement
the subjects within the subcohort and the subjects outside the subcohort
separately within each stratum and by resampling with replacement subjects
with undetermined stratification variables. Across all bootstrap samples, the
number of participants in each stratum in the immunogenicity subcohort
remains fixed, but the number of cases does not stay the same.

The results of the above Cox modeling will be output in a variety of ways:

1. Plot r̂isk1(tF |s) vs. s with 95% CIs for continuous S = s varying over its

whole range. Include on the plot the estimate of r̂isk0(tF ) with a 95%
CI for the placebo arm (horizontal bands), computed by a Cox model
marginalizing over the same baseline factors as for the analysis of the
vaccine arm.

2. Based on a fit of the Cox model to a nominal categorical antibody marker
defined as the tertiles of S, plot r̂isk1(t|s) for each category of S values
with 95% CIs, for all time points t from Day 57 through tF . If more
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than 20% of vaccine recipients have S below the LLOD of the assay,
then the categories instead will be (1) values ≤ LLOD; (2) values below
the median of values > LLOD; (3) values above the median of values >

LLOD. Include on the plot the estimated curve r̂isk0(t) with 95% CIs
for the placebo arm, computed by a Cox model marginalizing over the
same baseline factors as for the analysis of the vaccine arm.

3. Tabular reporting of the hazard ratio per 10-fold change in the quanti-
tative Day 29 or Day 57 antibody marker with 95% confidence interval
and 2-sided p-value.

4. Tabular reporting of the hazard ratio for the Middle and Upper categories
of the categorical Day 57 antibody marker vs. the Lower category, with
95% confidence interval and 2-sided p-value, as well as a global general-
ized Wald two-sided p-value for whether the hazard rate of the endpoint
varies across the three categories. The table includes the attack rate
(with no. of cases / no. at risk) through tF for each of the three vaccine
marker subgroups and for the placebo arm.

5. Report point and 95% CI estimates for the hazard ratio per 10-fold
change in the Day 29 or Day 57 antibody marker, for the entire per-
protocol baseline negative vaccine cohort and for each of the baseline
demographic strata subgroups defined in Table 3 (reported via forest
plotting).

6. Westfall-Young (1997) q-values and FWER-adjusted p-values for the
generalized Wald tests are included in the table.

The bootstrap is used to calculate 95% pointwise CIs for risk1(tF |s) in s.
The 2-sided Wald p-value for testing the regression coefficient of the marker
in the Cox model provides a valid test of the null hypothesisH0 : risk1(tF |s) =
risk1(tF ) for all s, and is reported.

In addition, the same Cox model analysis will be used to estimate the alterna-
tive marginalized conditional risk parameter defined by risk1(t|S ≥ s) where
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risk1(t|S ≥ s) = EX [P (T ≤ t|S ≥ s,X,A = 1)], which can be estimated by

r̂isk1(t|S ≥ s) =

∑n
i=1

1
π̂(Xi)

(1− Ŝ1(t|S ≥ s,Xi))∑n
i=1

1
π̂(Xi)

.

This parameter is useful because typically subgroups of interest are defined by
having marker response above a threshold. We will plot r̂isk1(tF |S ≥ s) vs. s
with 95% CIs for continuous S with s varying over the range of S in which the
number of cases to estimate Ŝ1(t|S ≥ s,Xi) is 5 or more. This type of analysis
is also included because it analyzes the same parameter as the nonparametric
threshold estimation method described below, providing a way to address the
threshold question both by Cox modeling and by nonparametric analysis.

9.3.3 Univariate CoR: Nonparametric threshold regression modeling

The van der Laan et al. (2021) extension of the nonparametric CoR threshold
estimation method of Donovan et al. (2019) is applied to each of the five non-
baseline subtracted antibody markers, at each time point Day 29 and Day 57,
using the version that defines the binary outcome Y of interest as Y = 1 if a
COVID endpoint occurred during the blinded period of follow-up and Y = 0
otherwise. The analyses adjust for the same baseline factors X as used in the
Cox model CoR analyses.

The extension adjusts for baseline covariates by estimating the conditional
mean function E[Y |S ≥ s,X,A = 1] using discrete-SuperLearner and then
empirically averaging over the baseline covariates X to estimate the marginal
risk riskY1 (S ≥ s) = EX [P (Y = 1|S ≥ s,X,A = 1)] for each threshold s of
the the antibody marker in a specified discrete set. We do not perform pooled
regression across the thresholds s, which ensures we are totally nonparametric
in estimating the threshold dependence of riskY1 (S ≥ s) on s. The Super-
Learner library includes a range of increasingly flexible parametric learners
including logistic regression (glm), bayesian logistic regression (bayesglm),
and L1-penalized logistic regression (glmnet). (Two of each learner is in-
cluded in the library, one with only main-term variables and another with
main-term and interaction variables.) An advantage of the nonparametric
CoR threshold method compared to Cox modeling that specifies a log linear
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hazard ratio with the marker is that it can potentially detect a threshold
of very low risk. The method is implemented with and without the mono-
tonicity constraint that riskY1 (S ≥ s) is monotone non-increasing in s, where
the results assuming monotonicity are reported unless there is evidence for
violation of this assumption.

The results are reported in the same way that Donovan et al. (2019) reports
results in its Figure 2, where point estimates, pointwise 95% confidence bands,
and simultaneous 95% confidence bands for riskY1 (S ≥ s) are plotted for
a range of threshold values. The simultaneous confidence bands cover the
entire curve in s with at least 95% probability and are useful for judging
whether risk varies over threshold subgroups, whereas the pointwise 95%
confidence bands are useful for quantifying precision at particular threshold
values. The method uses the same empirical two-phase sampling estimated
weights (IPS weights) as used for the other univariable IPWCC CoR analyses.
In addition, for each pre-specified risk threshold c set to take values over
a grid with lowest value 0, the method is applied to estimate the inverse
function sc = inf{s : EX [P (Y = 1|S ≥ s, A = 1, X] ≤ c}, where sc is
estimated by substitution of the marginal risk function estimate. Note that
the substitution estimator of sc requires that the marginal risk function is
estimated for all thresholds, which is computationally infeasible. Instead,
we estimate the marginal risk function on a sufficiently large discrete set and
linearly interpolate to obtain marginal risk estimates for all thresholds outside
the discrete set. In order for this estimand to be well defined, we operate
(for this estimand only) under the assumption that s 7→ riskY1 (S ≥ s) is
monotone. For the substitution-based estimator of the inverse function sc to
be well-defined, we require the estimate of s 7→ riskY1 (S ≥ s) to be monotone
as well. If there is evidence that the function estimate is not monotone then
we replace the estimate with its monotone projection, which preserves its
theoretical properties (Westling, van der Laan, Carone, 2020).

A plot of point and pointwise 95% confidence interval estimates of sc (over the
grid of c values) is provided to help indicate marker thresholds defining sub-
groups with very low risk of outcome. The confidence interval estimates for
sc are derived directly from the confidence interval estimates for the marginal
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risk function s 7→ riskY1 (S ≥ s), and therefore its estimates are compatible
with those of the marginal risk function. In addition, a plot of point and
simultaneous 95% confidence interval estimates of sc (over the grid of c val-
ues) is provided, where the simultaneous confidence interval estimates for sc
are derived directly from the simultaneous 95% confidence band estimates
for the marginal risk function s 7→ riskY1 (S ≥ s), and therefore its estimates
are compatible with those of the marginal risk function. In particular, no
multiple testing adjustments are needed.

The analysis is done using targeted maximum likelihood estimation (TMLE)
as described in van der Laan, Zhang, and Gilbert (2021), and the point-
wise and simultaneous simultaneous confidence bands are of the Wald-type,
obtained from the asymptotic distribution of the TMLE.

9.4 Univariable CoR: Supportive Exploratory Flexible Parametric Risk Mod-
eling

For each of the four non-baseline subtracted Day 57 antibody markers, flexi-
ble nonlinear modeling of outcome risk studied as a dichotomous outcome Y
will be conducted, as exploratory supportive analyses. Again, the analyses
adjust for the same baseline factors X as used in the Cox model CoR anal-
yses. A generalized additive model with degree of smoothing estimated by
cross-validation is employed (Wood, 2017). Two-phase sampling designs are
accounted for through inverse probability weighting and confidence intervals
are obtained through the same bootstrap scheme as the Cox proportional
hazard model bootstrap inference.

9.4.1 P-values and Multiple hypothesis testing adjustment for CoR analysis

In general, p-values are only reported from pre-specified and automated
(press-button) analyses. For the CoR analyses, p-values are reported for
the univariable Cox regression analyses of the four specified Day 57 antibody
marker variables. Two-sided p-values for hypothesis testing of a Day 57
marker CoR are calculated both for the Cox regression of quantitative mark-
ers (two-sided Wald tests), and for the Cox regression of markers binned into
tertiles (two-sided Generalized Wald tests). Therefore a total of eight 2-sided
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p-values for Day 57 CoRs are calculated.

It is not completely clear whether to perform multiple hypothesis testing
adjustment, given the expectation that the correlations among the markers
are high, and possibly very high, meaning that multiplicity correction could
incur a relatively high cost on the false negative error rate. However, given
that robust evidence supporting an antibody marker as a CoR will be re-
quired for qualifying a marker, we will conduct multiplicity adjustment for
CoR analysis, as the ability to make an inference that a marker passed pre-
specified multiplicity adjusted criteria should aid an overall evidence package
for establishing a validated or non-validated surrogate endpoint. Therefore,
multiplicity adjustment is performed across the eight 2-sided p-values.

A permutation-based method (Westfall et al., 1993) will be used for both
family-wise error rate (Holm-Bonferroni) and false-discovery rate (q-values;
Benjamini-Hochberg) correction. 104 replicates of the data under the null hy-
potheses will be created by randomly resampling the immunologic biomarkers
with replacement. For each Cox regression CoR analysis the unadjusted p-
value, the FWER-adjusted p-value, and the q-value is reported for whether
there is a covariate-adjusted association, where all p-values and q-values are
2-sided. The FWER-adjusted p-values and q-values are computed pooling
over both the quantitative marker and tertilized marker CoR analyses. As a
guideline for interpreting CoR findings, markers with FWER-adjusted p-value
≤ 0.05 are flagged as having statistical evidence for being a CoR. Addition-
ally, markers with unadjusted p-value ≤ 0.05 and q-value ≤ 0.10 are flagged
as having a hypothesis generated for being a CoR.

The multiplicity adjustment analyses described above for Day 57 marker
CoR analyses are repeated (conducted separately) for Day 29 marker CoR
analyses.

9.5 Multivariable CoR: Superlearning of Optimal Risk Prediction Models

9.5.1 Objectives

The multivariable CoR objective is addressed through two sub-objectives:
first to build an ‘estimated optimal surrogate’ (Price et al., 2018), a model
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that best predicts the outcome from Day 57 antibody markers and baseline
factors. The second sub-objective is estimation and inference on variable
importance measures for each Day 57 antibody marker, for ranking of anti-
body markers by their importance/influence on predicting risk. The analysis
plan is patterned off of the analysis of the HVTN 505 HIV-1 vaccine efficacy
trial (Neidich et al., 2019). This objective also builds models for predicting
outcome from Day 29 antibody markers and baseline factors, and from Day
29 antibody markers, Day 57 antibody markers, and baseline factors. For
these analyses both baseline-subtracted and non-baseline subtracted versions
of the Day 29 and Day 57 markers are used, in a broader unbiased analysis
to build models most predictive of outcome.

9.5.2 Input variable sets

Day 57 antibody markers are classified into the following three antibody
marker variable sets, with individual variables listed within categories:

1. Binding antibody anti-Spike (S-bAb)

a Day 57 anti-Spike IgG concentration

b delta (Day 57 - Day 1) anti-Spike IgG concentration

c indicator 2FR anti-Spike IgG concentration

d indicator 4FR anti-Spike IgG concentration

2. Binding antibody anti-RBD (RBD-bAb)

a Day 57 anti-RBD concentration

b delta (Day 57 - Day 1) anti-RBD concentration

c indicator 2FR anti-RBD concentration

d indicator 4FR anti-RBD concentration

3. Pseudovirus neutralizing antibody anti-Spike (pseudovirus-nAb)

a Day 57 anti-Spike cID50

b Day 57 anti-Spike cID80
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c delta (Day 57 - Day 1) anti-Spike cID50

d delta (Day 57 - Day 1) anti-Spike cID80

e indicator 2FR anti-Spike cID50

f indicator 4FR anti-Spike cID50

g indicator 2FR anti-Spike cID80

h indicator 4FR anti-Spike cID80

A second set of antibody marker variable sets is defined by replacing Day
57 above with Day 29. In addition, a third set of antibody marker variable
sets is defined by replacing Day 57 antibody markers with both Day 29 and
Day 57 antibody marker variables. Inclusion of these sets allow comparing
classification accuracy of Day 29 markers vs. Day 57 markers, and whether
including both time points improves classification accuracy.

The baseline factors without any marker data constitutes another set of vari-
ables to include in the superlearner modeling.

9.5.3 Missing data

We expect a very small amount of missing data from the four antibody marker
types (bAb Spike, RBD; pseudovirus-nAb cID50, cID80). However, there
may be a small amount of missing data, with possibly different participants
missing data for different markers. We take the following approach to handle
any missing data that occurs.

First, we define the two-phase sampling indicator ε as taking value of one if
a participant has Day 1 and Day 29 and Day 57 bAb data for both Spike
and RBD, where here we assume that the MSD platform is highly robust
such that it will have nearly 100% complete data for sampled participants.
Second, for the other two marker types (pseudovirus-nAb cID50, cID80), for
participants with ε = 1 but the Day 1 and/or Day 29 and/or Day 57 marker
value is missing, we use single imputation to fill in any missing values, ignoring
the uncertainty in the imputations in the analysis, because it should have
negligible impact on results given the (very) small amount of missing data.
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Multiple linear regression will be used to impute missing values, separately
for each antibody marker, based on the set of individuals with that antibody
marker measured at Day 1, Day 29, and Day 57. Accurate imputations
are possible given the high correlations of the markers, especially between
cID50 and cID80 within the same immunoassay. This process means that the
two-phase data set has a simple ‘all-or-nothing’ missing data pattern where
participants with ε = 1 have all markers with Day 1 and Day 29 and Day 57
data, and are included in IPWCC analyses, and participants with ε = 0 have
some or all markers missing and are excluded from IPWCC analyses. This
means that all IPWCC data analyses can use the same empirical frequency
(IPS) sampling weights, separately for correlates analyses of Day 29 markers
and of Day 57 markers.

For analysis methods that use the whole cohort (phase-one plus phase-two
data), the same phase-two data as described above are used. If some of
the phase-one baseline factors that are adjusted for variables are missing
with only a small amount of missing values, then single imputation will be
used to fill in the values, and, as for the immunologic marker imputations,
the uncertainty in the imputations will be ignored in the analyses. Simple
average values will be used to fill in baseline covariate missing values of the
baseline factors.

9.5.4 Implementation of superlearner

For baseline risk score development, Superlearner is applied to the placebo
arm only, as mentioned in Section 7. For multivariable immune correlates
of risk/estimated optimal surrogate development, Superlearner is applied to
the vaccine arm only. The following details are used in the implementation
of superlearner of the vaccine arm only:

• Pre-scale each quantitative and ordinal variable to have empirical mean
0 and standard deviation 1.

• For the immune correlates analysis, the final library of learners is se-
lected accounting for the number of phase-two endpoint cases in the
vaccine arm. If the number of cases is limited, at or near 25 evaluable
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endpoint cases, then the modeling will only allow learning algorithms
to have a maximum of 5 antibody marker variables, and will use leave-
one-out cross-validation and the negative log-likelihood loss function, a
combination that tends to provide good performance in small sample size
settings. This approach was used for the Moderna COVE trial given the
numbers of endpoints.

• Include learning algorithms with and without screening of variables.
Screens used will be: 1) glmnet (lasso) pre-screening (with default tun-
ing parameter selection), 2) logistic regression univariate 2-sided p-value
screening (at level p < 0.10), and 3) high-correlation variable screening
(described below). The adaptive algorithms (SL.randomForest, SL.xgboost,
SL.gam, SL.polymars) are only used with these screens, given that the
limited number of endpoint cases may challenge use of these methods
with no variable screening. Moreover, the adaptive algorithms are not
used if there are only 25 (or close to it) endpoint cases, which is the case
for the Moderna COVE trial. All of the selected learners are coded into
the SuperLearner R package available on CRAN.

• Include high-correlation variable screening, not allowing any pair of input
variables to have Spearman rank correlation r > 0.9. When a pair of
variables has r > 0.9, the variable with the highest ranked signal-to-
noise ratio (i.e., biological dynamic range) is selected; if these data are
not available (they are not for Moderna COVE) or there is a tie then
variables are selected in the following order of priority: first pseudovirus-
nAb, then bAb. Given than the Spike and RBD variables have r > 0.95
at each time point Day 29 and Day 57, any model that would consider
both Spike and RBD includes only Spike. Similarly, given than the PsV
cID50 and PsV cID80 variables have r > 0.95 at each time point Day 29
and Day 57, any model that would consider both PsV cID50 and PsV
cID80 includes only PsV cID50.

• The superlearner is conducted averaging over 10 random seeds, to make
results less dependent on random number generator seed.

• All of the learners are implemented with IPS weighting, using the weights
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ŵ57.x defined in Section 9.3.1 to account for the two-phase sampling de-
sign. Note that these weights are used even for models that include Day
29 markers but not Day 57 markers, because only Post Day 57 cases
(starting 7 days post Day 57 visit) are included in the multivariable CoR
analyses.

• Two levels of cross-validation are used:

– Outer level: CV-AUC computed over 5-fold cross-validation repeated
10 times to improve stability

– Inner level: leave-one-out CV used to estimate ensemble weights (if
nv is near 25) and 5-fold CV if nv is larger. (For Moderna COVE
leave-one-out is used.)

• Results for comparing classification accuracy of different models are
based on point and 95% confidence interval estimates of cross-validated
area under the ROC curve (CV-AUC) and difference in CV-AUC as a
predictiveness metric (Hubbard et al., 2016; Williamson et al., 2020).
Results are presented as forest plots of point and 95% confidence inter-
val estimates similar to those used in Neidich et al. (2019) (Figure 3) and
Magaret et al. (2019). CV-AUC is estimated using the R package vimp
available on CRAN, including the IPS weights that are used for other
data analyses.

For the baseline risk score SuperLearner analysis of the placebo arm (Sec-
tion 7), the same approach is used, with the following modifications: (1)
5-fold cross-validation will be used with no more than max(20, floor(np/20))
input variables included in each model, where np is the number of evaluable
placebo arm cases; (2) no IPS weighting is needed; (3) the adaptive learning
algorithms are included.

Table 4 lists the learning algorithms that are applied to estimate the condi-
tional probability of the outcome based on the input variable sets considered
above. Most of the algorithms are non-data-adaptive type learning algo-
rithms, such as parametric regression models (e.g., generalized linear models
[glms]), which are simple, stable, and advantageous for an application with
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a limited number of endpoint events. Data-adaptive type algorithms are
also included if the number of endpoint events is high enough, for increas-
ing flexibility of modeling and reducing the risk of model misspecification:
SL.ranger, SL.gam, and SL.xgboost. All of the selected learners are coded
into the SuperLearner R package.

Before fitting the superlearner models to the vaccine arm data, a decision is
made on how to define the “baseline risk factors” input variable set, based
on prediction-accuracy results of the Superlearner analysis that built the
baseline behavioral risk score based on the placebo arm, as well as on external
knowledge of important individual risk factors. For Moderna COVE the
baseline factors are defined as the baseline risk score, the indicator of being
at heightened risk for COVID (a randomization factor), and the indicator of
being a member of community of color.

For the immune correlates objective the superlearner model is fit to each of
the following 28 variable sets, with immunological variables listed in Section
9.5.2:

1. Baseline risk factors

2. Baseline risk factors and the Day 57 bAb anti-Spike markers

3. Baseline risk factors and the Day 57 bAb anti-RBD markers

4. Baseline risk factors and the Day 57 pseudovirus-nAb cID50 markers

5. Baseline risk factors and the Day 57 pseudovirus-nAb cID80 markers

6. Baseline risk factors and the Day 57 bAb markers and the pseudovirus-
nAb cID50 markers

7. Baseline risk factors and the Day 57 bAb markers and the pseudovirus-
nAb cID80 markers

8. Baseline risk factors and the Day 57 bAb markers and the combina-
tion scores across the four markers [PCA1, PCA2, FSDAM1/FSDAM2
(the first two components of nonlinear PCA), and the maximum signal
diversity score He and Fong (2019)].
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9. Baseline risk factors and all individual Day 57 marker variables

10. Baseline risk factors and all individual Day 57 marker variables and all
combination scores (full model of Day 57 markers)

11. Baseline risk factors and the Day 29 bAb anti-Spike markers

12. Baseline risk factors and the Day 29 bAb anti-RBD markers

13. Baseline risk factors and the Day 29 pseudovirus-nAb cID50 markers

14. Baseline risk factors and the Day 29 pseudovirus-nAb cID80 markers

15. Baseline risk factors and the Day 29 bAb markers and the pseudovirus-
nAb cID50 markers

16. Baseline risk factors and the Day 29 bAb markers and the pseudovirus-
nAb cID80 markers

17. Baseline risk factors and the Day 29 bAb markers and the combina-
tion scores across the four markers [PCA1, PCA2, FSDAM1/FSDAM2
(the first two components of nonlinear PCA), and the maximum signal
diversity score He and Fong (2019)].

18. Baseline risk factors and all individual Day 29 marker variables

19. Baseline risk factors and all individual Day 29 marker variables and all
combination scores (full model of Day 29 markers)

20. Baseline risk factors and the Day 29 and Day 57 bAb anti-Spike markers

21. Baseline risk factors and the Day 29 and Day 57 bAb anti-RBD markers

22. Baseline risk factors and the Day 29 and Day 57 pseudovirus-nAb cID50
markers

23. Baseline risk factors and the Day 29 and Day 57 pseudovirus-nAb cID80
markers

24. Baseline risk factors and the Day 29 and Day 57 bAb markers and the
pseudovirus-nAb cID50 markers

25. Baseline risk factors and the Day 29 and Day 57 bAb markers and the
pseudovirus-nAb cID80 markers
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26. Baseline risk factors and the Day 29 and Day 57 bAb markers and
the combination scores across the eight markers [PCA1, PCA2, FS-
DAM1/FSDAM2 (the first two components of nonlinear PCA), and the
maximum signal diversity score He and Fong (2019)].

27. Baseline risk factors and all individual Day 29 and Day 57 marker vari-
ables

28. Baseline risk factors and all individual Day 29 and Day 57 marker vari-
ables and all combination scores (full model of Day 29 and Day 57 mark-
ers)

Therefore in total, 28 variable sets are studied. The reason to include the
baseline risk factors only variable set is to investigate how much incremental
improvement in predicting outcome is obtained by adding antibody marker
variables on top of baseline demographic/exposure factors. The other variable
sets are designed to compare the three immunoassay types by their predic-
tiveness, to compare the two pseudovirus neutralization readouts cID50 and
cID80 for their predictiveness, to compare the two time points of marker mea-
surement for their predictiveness, and to investigate incremental predictive
value in using multiple immunoassays and time points. The final variable
set is included as the full model that considers all variables together, which
serves as another reference model.
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Table 4: Learning Algorithms in the Superlearner Library of Estimators of the Conditional Prob-
ability of Outcome, for Building the Baseline Risk Score Based on the Placebo Arm1.

Screens/
Algorithms Tuning Parameters

SL.mean None
SL.glm Low-collinearity and (All, Lasso, LR)2

SL.glm.interaction Low-collinearity and (Lasso, LR)
SL.glmnet (alpha=1; All)
SL.gam Low-collinearity and (Lasso, LR)
SL.xgboost3 All and (maxdepth,shrinkage,balance)= (4, 0.1, no)
SL.ranger3 All and balance = no

1All continuous and ordinal covariates are pre-standardized to have empirical mean 0 and
standard deviation 1.

2All = include all variables; Lasso = include variables with non-zero coefficients in the standard
implementation of SL.glmnet that optimizes the lasso tuning parameter via cross-validation;
Low-collinearity = do not allow any pairs of quantitative variables with Spearman rank

correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value < 0.10.
3Covariate balancing (if requested) is done using option scale pos weight in SL.xgboost and

option case.weights in SL.ranger.

Table 5: Learning Algorithms in the Superlearner Library of Estimators of the Conditional Prob-
ability of Outcome: Simplified Library in the Event of Fewer than 50 Vaccine Breakthrough Cases
for an Analysis, for Use in Multivariable CoR Analysis of Moderna COVE1.

Screens/
Algorithms Tuning Parameters

SL.mean None
SL.glm Low-collinearity and (All, Lasso, LR)2

SL.glmnet alpha=0, 1
SL.xgboost (maxdepth,shrinkage,balance3)= (2, 0.1, yes) (2, 0.1, no) (4, 0.1, yes) (4, 0.1, no)
SL.ranger balance = (yes, no)

1All continuous and ordinal covariates are pre-standardized to have empirical mean 0 and
standard deviation 1.

2All = include all variables; Lasso = include variables with non-zero coefficients in the standard
implementation of SL.glmnet that optimizes the lasso tuning parameter via cross-validation;
Low-collinearity = do not allow any pairs of quantitative variables with Spearman rank

correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value < 0.10.
3Covariate balancing (if requested) is done using option scale pos weight in SL.xgboost and

option case.weights in SL.ranger.
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Given the class-imbalance issue, with many more non-case than case records,
all of the cross-validation for the multivariable immune CoR objective is done
stratified by case/non-case status.

In order to evaluate the relative performance of the superlearner estimated
models for each of the 28 variable sets, derived using the learning algorithms
specified in Table 4, the CV-AUC is estimated with a 95% confidence interval
(Hubbard et al., 2016; Williamson et al., 2020). The point and 95% confidence
interval estimates of CV-AUC are reported in a forest plot, which provide
a way to discern which antibody assays and readouts/markers provide the
most information in predicting COVID or other outcomes. As noted above
CV-AUC is estimated using the R package vimp available on CRAN, which
uses augmented inverse probability weighting to properly estimate CV-AUC
accounting for the two-phase sampling design.

If there are fewer than 50 vaccine breakthrough cases included in a correlates
analysis, then the libary of learners will be simplified to that specified in
Table 5.

In addition, for selected variable sets, similar forest plots will be made com-
paring performance of the various estimated models (e.g., by individual learn-
ing algorithm types such as lasso), including discrete superlearner and super-
learner models. The plot will be examined to determine which individual
learning algorithm types are performing the best. If there is an interpretable
algorithm that has performance close to the best-performing algorithm (which
is most likely to be the superlearner), then it will be fit on the entire data
set of vaccine recipients and the estimated model presented in a table.

Cross-validated ROC curves are plotted for the superlearner estimated models
for each of the input variable sets. In addition, boxplots of cross-validated
estimated probabilities of outcome by case-control status (as estimated from
the superlearner models) are plotted.
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10 Correlates of Protection: Generalities

In general, for all of the correlate of protection analyses, the same antibody
markers are assessed that were analysed as correlates of risk: the Day 29
and Day 57 antibody markers not subtracting for the Day 1 baseline readout
are used. Each of the eight Day 29 and Day 57 antibody biomarkers are
separately studied as CoPs by the different analysis approaches summarized
below.

We describe the CoP methods for Day 57 antibody markers; the same meth-
ods are applied to Day 29 antibody markers.

11 Correlates of Protection: Correlates of Vaccine Efficacy Anal-
ysis Plan

For each of the Day 57 antibody markers, the method of Gilbert, Blette,
Shepherd, and Hudgens (2020) will be used to estimate V E(1), V E(0), and
V E(1) − V E(0), each with a 95% confidence interval and a 95% estimated
uncertainty interval (EUI), where V E(1) is vaccine efficacy for the subgroup
of vaccine recipients with Day 57 marker if assigned vaccine S(1) above a
specified cut-point value scut, and V E(0) is vaccine efficacy for the subgroup
of vaccine recipients with Day 57 marker if assigned vaccine S(1) not greater
than scut. That is,

V E(1) = 1− P (Y (1) = 1|S(1) > scut)

P (Y (0) = 1|S(1) > scut)

V E(0) = 1− P (Y (1) = 1|S(1) ≤ scut)

P (Y (0) = 1|S(1) ≤ scut)

The analysis will be done under the NEH assumption (“no early harm”)
of Gilbert et al. (2020). The cut point is defined as the percentile equal to
one minus the estimated vaccine efficacy in the primary analysis, with logic
that a maximally simple version of a perfect CoP would have binary marker
with S = 1 corresponding to protection and S = 0 corresponding to no
protection. If the estimated vaccine efficacy is high (say 90% or higher), it is
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possible that this cutpoint will not yield stable results, because of sparse cells;
in this situation we will repeat the analysis using two additional cut-points
that creates greater balance in frequencies of S = 1 and S = 0 in the vaccine
group immunogenicity subcohort: 20th and 40th percentiles. If the estimated
vaccine efficacy is moderate (between 50% and 80%), we will also use the two
additional cut-points the 20th and 40th percentiles. This analysis method
does not require closeout placebo vaccination (CPV) (Follmann, 2006) or a
good baseline immunogenicity predictor of the Day 57 antibody marker. The
method is implemented using Bryan Blette’s R package “psbinary” posted at
his Github repository. Based on the Moderna COVE data, the analyses are
done using the 8th, 20th, and 40th percentiles of markers.

A limitation of the Gilbert et al. method is that it only assesses a bi-
nary biomarker. Other analyses will be considered to estimate V E(s) over
biomarker values s over the entire range, treating S as a quantitative or cate-
gorical variable, and gaining efficiency by incorporating CPV and/or putative
baseline immunogenicity predictors (BIPs). Based on earlier simulation stud-
ies (Follmann, 2006; Huang et al., 2013, e.g.,), methods that only leverage
CPV data tend to have low power relative to methods that leverage BIP data
alone (BIP-only methods) or both BIP and CPV data (BIP+CPV methods).
Therefore, the key for improving efficiency will be the availability of a BIP.
VE curve analysis for continuous S will thus be conducted contingent on the
availability of a BIP that satisfies the R2 criterion outlined in Table 7. It
is anticipated that post-crossover immune response marker data will not be
available in early correlates analyses, and so BIP-only methods will be used
in these initial analyses. When CPV data becomes available, new BIP+CPV
analyses will be conducted that incorporate this new information. Details of
the BIPs used can be found at the end of this section.

Let Y (a) denote the potential binary outcome of interest if receiving inter-
vention a, with a = 1, 0 standing for assignment to vaccine and placebo,
respectively. Let S(a) denote the potential biomarker value if receiving inter-
vention a. The vaccine efficacy curve (Follmann, 2006; Gilbert and Hudgens,
2008) is defined as the curve of vaccine efficacy as a function of the immune re-
sponse biomarker if assigned vaccination (i.e., S(1)): V E(s) = 1−P (Y (1) =
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1|S(1) = s)/P (Y (0) = 1|S(1) = s). It characterizes the percentage re-
duction in clinical risk under vaccine assignment compared to under placebo
assignment conditional on S(1) and informs about the magnitude of potential
immune response associated with certain levels of VE. Consider the existence
of BIPs X correlated with S(1) and/or a CPV component in the trial where
a subset of placebo recipients free of the outcome are vaccinated and have
their immune response biomarkers measured as substitutes for S(1). Under
the NEE assumption and assuming the set of participants with S(1) available
is nested within the set of participants with BIP measures, the pseudo-score
estimation method (Huang et al., 2013; Zhuang et al., 2019) based on discrete
BIP measures allowing for adjustment of X will be adopted for estimating the
risk model P (Y (z) = 1|S(1), X) and subsequently V E(s) = 1−

∫
P (Y (1) =

1|S(1), x)dFX(x|S(1))/
∫
P (Y (0) = 1|S(1), x)dFX(x|S(1)). Hypothesis test-

ing will be conducted for testing the null hypothesis that the VE curve is
constant (Zhuang et al., 2019). Estimated parametric (Gilbert and Hudgens,
2008), semiparametric (Huang and Gilbert, 2011), or nonparametric (Li and
Luedtke, 2020) likelihood estimators of VE curves will be applied to contin-
uous BIPs. In scenarios where some BIPs are not measured from all trial
participants, VE curve estimators accounting for this monotone missingness
in X and S(1) will be adopted (Huang, 2018). If the data support positive
vaccine efficacy before Day 57, sensitivity analysis approaches will be con-
ducted for VE curve estimation under the NEH assumption. In the presence
of multiple candidate biomarkers and when a CPV component is present, a
multiple imputation approach as proposed in Dasgupta and Huang (2019) will
be utilized to impute missing S(1) data for selecting markers from multiple
candidates and deriving a univariate marker score for VE curve estimation.

Finally, for scenarios with very rare events such that methods described above
lack precision even with a CPV component but where the available BIP still
satisfies the R2 criterion outlined in Table 7, we will adopt sensitivity analysis
methods that model the placebo risk conditional on the counterfactual S(1)
based on a sensitivity parameter that varies over some pre-specified range.

Among different strategies to identify BIPs, the following will be tried. First,
for vector vaccines, we will study Day 1 bAb or nAb response to the vec-
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tor as a BIP for the Day 57 markers of interest (not relevant for Moderna
COVE). Second, we will check whether Day 1 bAb or nAb to Nucleocapsid
protein is a BIP for the anti-Spike/anti-RBD Day 57 markers of interest.
The rationale for this latter analysis is that some studies have shown cross-
reactive responses to Nucleocapsid protein and to common circulating human
coronaviruses.

We will also evaluate using a multivariate BIP that corresponds to all of
these aforementioned candidate univariate BIPs, which may help to achieve
the target R2 (see Table 7). When doing this, a separate BIP W will be
used for each vaccine-induced immune response marker S(1). Let Y (a) be
the counterfactual outcome of interest — e.g., a COVID disease endpoint by
a prespecified time — if randomization assignment had been set to A = a.
The analyses conducted will provide unbiased estimates of the estimands of
interest when Y (a) ⊥ W |S(1) for a ∈ {0, 1}. The BIP W will be a learned
function of baseline covariates L — that is, W = f(L) for a function f that
will be learned based on the available data. All available baseline covariates
will be considered for inclusion in L, including age, BMI, and Day 1 bAb
or nAb to Nucleocapsid protein. If available, measurements of prior immune
response to the vaccine vector will always be included in L.

If the trial has more than 100 events on the vaccine arm in the subgroup of
interest, then f will be chosen to be an estimate of the following population-
level optimization problem:

minimize E[{S − f(L)}2|A = 1]

subject to f(L) ⊥ Y |A = 1, S.

The rationale for choosing f to (approximately) solve this optimization prob-
lem is that the BIP should be maximally predictive of S, while also satisfying
the needed conditional independence assumption Y (a) ⊥ W |S(1) when a = 1.
Moreover, the needed conditional independence assumption Y (a) ⊥ W |S(1)
for the case that a = 0 is most plausible when this assumption is also satis-
fied for the case that a = 1. Also, because W = f(L) for some function f ,
Y (0) ⊥ W |S(1) is always more plausible than Y (a) ⊥ L|S(1).
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The solution to the above optimization problem is given by:

f(`) := θ(`)− E[θ(L)r(L)]

E[r(L)2]
r(`)

where θ(`) := E{S|A = 1, L = `}, r(`) := m(`)
E[m(L)] −

1−m(`)
1−E[m(L)] and m(`) :=

E[Y |A = 1, L = `]. The following strategy is used to estimate this solution:

1. Obtain an estimate θ̂ of the function θ by running a Superlearner of
S against L in the vaccine arm, where inverse probability of sampling
weights are used to account for two-phase sampling of the marker.

2. Obtain an estimate m̂ of m by using Superlearner to regress Y against
L in the vaccine arm.

3. Obtain an estimate r̂ via a plug-in estimator, where E[m(L)] is estimated
by taking the empirical mean of m̂(L).

4. The final estimate f̂ of f is given by

f̂(`) := θ̂(`)− Ê[θ̂(L)r̂(L)]

Ê[r̂(L)2]
r̂(`),

where Ê denotes an empirical expectation.

Each Superlearner will be run using the same library and settings described
in Table 6. If the trial has fewer than 100 events on the vaccine arm, then
the function f will be learned via Step 1 above only — that is, we will take
f̂ = θ̂. All standard errors will be obtained via the bootstrap, with the above
fitting of f̂ redone within each bootstrap sample.

12 Correlates of Protection: Interventional Effects

In these analyses, we seek to understand whether, how, and to what ex-
tent Day 57 antibody markers impact vaccine efficacy in causal ways. We
describe three approaches to this problem. Each involves consideration of
a binary counterfactual outcome Y (a, s) (e.g., indicator of the COVID dis-
ease endpoint by a pre-specified time) under a hypothetical intervention that
both sets randomization assignment A = a and sets the Day 57 immunologic
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marker S to a fixed value or based upon a random draw from a analyst-
specified distribution. Below, we assume that S is scalar-valued, but some
of the approaches below naturally extend to the case where a vector of im-
munologic markers are considered (currently such analyses are not planned).
Given the central goal to develop a parsimonious surrogate endpoint based
on a single immunoassay, the main analysis will use each of the methods to
assess each of the four quantitative readouts (not baseline-subtracted) sepa-
rately as CoPs, adjusting for the same set of baseline covariates as used in
the CoR analyses previously described in Section 9.

The current COVE immune correlates manuscript does not include correlates
of vaccine efficacy analyses, given the number of vaccine breakthrough cases.

12.1 CoP: Controlled Vaccine Efficacy

We first describe the controlled vaccine efficacy curve defined as

CVE(s) = 1− P (Y (1, s) = 1)

P (Y (0) = 1)
.

The value CVE(s) takes represents the relative decrease in endpoint frequency
achieved by administering vaccine and setting Day 57 immunologic marker
level to s compared to the placebo control intervention. Under our approach,
the value of CVE(s) is assumed to be monotone non-decreasing in s; in other
words, vaccine efficacy can only potentially be improved by setting greater
marker levels. The extent to which the marker plays a role in determining
vaccine efficacy can be determined by the degree of flatness of the graph of
CVE(s) versus s.

In addition, because the primary study cohort for correlates analysis is naive
to SARS-CoV-2, each of the Day 57 markers S has no variability in the
placebo arm [all values are ‘negative,’ below the assay lower limit of detection
(LLOD)]. Therefore, advantageously in this setting CVE (s) has a special
connection to the mediation literature, where CVE (s = LLOD) is the natural
direct effect, and vaccine efficacy is 100% mediated through S if and only if
CVE (s = LLOD) = 0. Thus inference on CVE (s = LLOD) evaluates full
mediation.
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Since P (Y (0) = 1) = P (Y = 1 |A = 0) in view of vaccine versus placebo ran-
domization, the controlled vaccine efficacy CVE(s) at level s can be identified
using the fact that

P (Y (1, s) = 1) = E [P (Y = 1 |S = s, A = 1, X)]

whenever Y (1, s) and S are independent given A = 1 and a vector X of
covariates, and P (S = s |A = 1, X) > 0 almost surely. In other words,
identification of the controlled vaccine efficacy requires that a rich enough
set of covariates be available so that deconfounding of the relationship be-
tween endpoint Y and marker S is possible in the subpopulation of vaccine
recipients, and that marker level S = s may occur within each subpopulation
defined by values of the covariates X (positivity).

12.1.1 Conservative (upper bound) inference and sensitivity analysis for the Cox
model correlates of risk analysis

We apply the same Cox modeling approach described in Section 9.3.2, aug-
mented with a sensitivity analysis, which harmonizes with the CoR analysis,
and sensitivity analysis is generally warranted when a no unmeasured con-
founders assumption is made. The sensitivity analysis quantifies the rigor of
evidence for a controlled VE CoP after accounting for potential bias from
unmeasured confounding.

Gilbert et al. (2021) details the inferential and sensitivity analysis approach,
which was applied to the CYD14 and CYD15 dengue phase 3 data sets
(Moodie et al., 2018); we plan to apply it in the same way to the COVID-19
data sets (as the structure of the problem is the same). We summarize here
the essential details needed for application to the COVID-19 data sets.

We define S to be a controlled risk CoP if P (Y (1, s) = 1) is monotone non-
increasing in s with P (Y (1, s) = 1) > P (Y (1, s′) = 1) for at least some s < s′,
where point and 95% confidence interval estimates of P (Y (1, s) = 1) versus
s, with built in robustness to unmeasured confounding, describe the strength
of the CoP in terms of the amount and nature of decrease. Suppose the CoR
analysis based on the Cox model is conducted as described in Section 9.3.2.
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Let marginalized conditional risk

rM(s) = risk1(tF |s)

and controlled risk
rC(s) = P (Y (1, s) = 1).

Given that CoR analysis is based on observational data — the biomarker
value is not randomly assigned — a central concern is that unmeasured or
uncontrolled confounding of the association between S and Y could render
rM(s) 6= rC(s), biasing estimates of the controlled risk curve rC(s) and of
controlled risk ratios of interest

RRC(s1, s2) = rC(s2)/rC(s1) .

Because we can never be certain that confounding is adequately adjusted
for, sensitivity analysis is warranted, as considered in extensive literature —
see, e.g., VanderWeele and Ding (2017) and references therein. Sensitivity
analysis is useful to evaluate how strong unmeasured confounding would have
to be to explain away an observed causal association, that is, to determine the
strength of association of an unmeasured confounder between S and Y needed
for the observed exposure-outcome association to not be causal, rM(s) 6=
rC(s). We follow the recommendation of VanderWeele and Ding (2017) to
report the E-value as a summary measure of the evidence of causality, or,
in our application, evidence of whether S is a controlled risk CoP based on
variation in the controlled risk curve. We also include other closely related
measures of sensitivity.

The E-value is the minimum strength of association, on the risk ratio scale,
that an unmeasured confounder would need to have with both the exposure
(S) and the outcome (Y ) in order to fully explain away a specific observed
exposure–outcome association, conditional on the measured covariates [Van-
derWeele and Ding (2017); VanderWeele and Mathur (2020)]. If, as in CoP

analyses, the estimated marginalized risk ratio R̂RM(s1, s2) = r̂M(s2)/r̂M(s1)
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for s1 < s2 is less than one, then the E-value for R̂RM(s1, s2) is calculated as

eRR(s1, s2) =
1 +

√
1− R̂RM(s1, s2)

R̂RM(s1, s2)
. (3)

We include the argument (s1, s2) in the notation, with s1 < s2 by convention,
to be clear that the E-value depends on specification of two specific marker-
level subgroups.

To illustrate the interpretation of an E-value, suppose S is binary and re-
gression analysis yields an estimate R̂RM(0, 1) = r̂M(1)/r̂M(0) = 0.40 with
95% confidence interval (CI) (0.14, 0.78). An E-value e(0, 1) of 4.4 means
that a marginalized risk ratio RRM(0, 1) at the observed value 0.40 could be
explained away (i.e., RRC(0, 1) = 1.0) by an unmeasured confounder associ-
ated with both the exposure and the outcome by a marginalized risk ratio
of 4.4-fold each, after accounting for the vector X of measured confounders,
but that weaker confounding could not do so.

In addition, we follow the recommendation of VanderWeele and Ding (2017)

to also report the E-value eUL(s1, s2) for the upper limit ÛL(s1, s2) of the

95% CI for the observed marginalized risk ratio R̂RM(s1, s2), computed as 1

if ÛL(s1, s2) ≥ 1 and, otherwise, as

1 +

√
1− ÛL(s1, s2)

ÛL(s1, s2)
,

which in the example equals eUL(0, 1) = 1.88. This E-value for the upper
limit indicates, for given s1 < s2, the strength of unmeasured confounding at
which statistical significance of the inference that RRC(s1, s2) < 1 would be
lost. The two E-values above are useful for judging how confident we can be
that an immunologic biomarker is a controlled risk CoP, with E-values near
one suggesting weak support and evidence increasing with greater E-values.

RRC(s1, s2) = (1−CV E(s2))/(1−CV E(s1)), evidence for RRC(s1, s2) < 1 is
equivalently evidence for CV E(s1) < CV E(s2). Thus in a placebo-controlled
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trial RRC(s1, s2) can be interpreted as the multiplicative degree of superior
vaccine efficacy caused by marker level s2 vs. marker level s1, and E-values
equivalently quantify evidence for whether CV E(s1) differs from CV E(s2).

It is also useful to provide conservative estimates of controlled risk ratios
and of the controlled risk curve, accounting for unmeasured confounding.
We approach these tasks based on the sensitivity analysis, or bias analysis,
approach of Ding and VanderWeele (2016). We give their main result and
refer readers to the paper for details. We begin by defining two (possibly
context-specific) fixed sensitivity parameters. First, we set RRUD(s1, s2) to
be the maximum risk ratio for the outcome Y comparing any two categories
of the unmeasured confounders U , within either exposure group S = s1 or
S = s2, conditional on the vector X of observed covariates. Second, we set
RREU(s1, s2) to be the maximum risk ratio for any specific level of the un-
measured confounder U comparing individuals with S = s1 to those with
S = s2, with adjustment already made for the measured covariate vector X.
Thus, RRUD(s1, s2) quantifies the importance of the unmeasured confounder
U for the outcome, and RREU(s1, s2) quantifies how imbalanced the expo-
sure/marker subgroups S = s1 and S = s2 are in the unmeasured confounder
U . The values RRUD(s1, s2) and RREU(s1, s2) are always specified as greater
than or equal to one. We suppose that RRM(s1, s2) < 1 for the fixed values
s1 < s2 — this is the case of interest for immune correlates.

Define the bias factor

B(s1, s2) =
RRUD(s1, s2)RREU(s1, s2)

RRUD(s1, s2) +RREU(s1, s2)− 1

for s1 ≤ s2, and define RRU
M(s1, s2) the same way as RRM(s1, s2), except

marginalizing over the joint distribution of X and U . Then, RRU
M(s1, s2) ≤

RRM(s1, s2) × B(s1, s2), where RRU
M(s1, s2) = E{r(s2, X

∗)}/E{r(s1, X
∗)}

with X∗ = (X,U) and r conditional risk defined near equation (??).Ding
and VanderWeele (2016)

Translating this result to our problem context, under the positivity assymp-
tion, we have that RRU

M(s1, s2) = RRC(s1, s2) and so, it follows that

RRC(s1, s2) ≤ RRM(s1, s2)×B(s1, s2) . (4)
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This inequality states that the causal risk ratio is bounded above by the
marginalized risk ratio multiplied by the bias factor. It follows that a conser-
vative (upper bound) estimate of RRC(s1, s2) is obtained as R̂RM(s1, s2) ×
B(s1, s2), and a conservative 95% CI is obtained by multiplying each con-
fidence limit for RRM(s1, s2) by B(s1, s2). These estimates for RRC(s1, s2)
account for the presumed-maximum plausible amount of deviation from the
no unmeasured confounders assumption specified by RRUD(s1, s2) and
RREU(s1, s2). An appealing feature of this approach is that the bound (4)
holds without making any assumption about the confounder vector X or the
unmeasured confounder U .

The above approach does not directly provide a conservative estimate of the
controlled risk curve rC(s), because additional information is needed for ab-
solute versus relative risk estimation. To provide conservative inference for
rC(s), we next select a central value scent of S such that r̂M(scent) matches
the observed overall risk, P̂ (Y = 1|A = 1). This value is a ‘central’ marker
value at which the observed marginalized risk equals the observed overall risk.
Next, we ‘anchor’ the analysis by assuming rC(scent) = rM(scent), where pick-
ing the central value scent makes this plausible to be at least approximately
true. Under this assumption, the bound (4) implies the bounds

rC(s) ≤ rM(s)B(scent, s) if s ≥ scent (5)

rC(s) ≥ rM(s)
1

B(s, scent)
if s < scent. (6)

Therefore, after specifying B(scent, s) and B(scent, s) for all s, we conserva-
tively estimate rc(s) by plugging r̂M(s) into the formulas (5) and (6). Because
B(s1, s2) is always greater than one for s1 < s2, formula (5) pulls the observed
risk r̂M(s) upwards for subgroups with high biomarker values, and formula (6)
pulls the observed risk r̂M(s) downwards for subgroups with low biomarker
values. This makes the estimate of the controlled risk curve flatter, closer to
the null curve, as desired for a sensitivity/robustness analysis.

To specify B(s1, s2), we note that it should have greater magnitude for a
greater distance of s1 from s2, as determined by specifying RRUD(s1, s2) and
RREU(s1, s2) increasing with s2 − s1 (for s1 ≤ s2). We consider one specific
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approach, which sets RRUD(s1, s2) = RREU(s1, s2) to the common value
RRU(s1, s2) that is specified log-linearly: logRRU(s1, s2) = γ(s2 − s1) for
s1 ≤ s2. Then, for a user-selected pair of values s1 = sfix1 and s2 = sfix2

with sfix1 < sfix2 , we set a sensitivity parameter RRU(sfix1 , sfix2 ) to some value
above one. It follows that

logRRU(s1, s2) =

(
s2 − s1

sfix2 − sfix1

)
logRRU(sfix1 , sfix2 ), s1 ≤ s2.

We anchor the sieve analysis by setting s1 = sfix1 at the 15th percentile of the
Day 57 antibody marker and s2 = sfix2 at the 85th percentile of the Day 57
antibody marker.

The sensitivity analysis is done for each of the two Cox model CoR analyses
described in Section 9.3.2, first for tertiles of the Day 57 marker and sec-
ond for the quantitative marker. For the former, E-values are reported for
both the point estimate and the upper 95% confidence limit for RRC(0, 1),
where category 1 is the upper tertile, category 0 is the lower tertile, and the
intermediate middle tertile subgroup of vaccine recipients is excluded from
the analysis. In addition, setting RRUD(0, 1) = RREU(0, 1) = 2, such that
B(0, 1) = 4/3, we report conservative estimation and inference on the causal
risk ratio RRC(0, 1) and equivalently on the ratio of controlled vaccine efficacy
curves (1− CV E(1))/(1− CV E(0)).

Next we repeat the analysis treating S as a quantitative variable, where
P (T ≤ t|S = s,X,A = 1) is again estimated by two-phase Cox partial likeli-
hood regression and now RRM(s1, s2) is the marginalized risk ratio between
s1 and s2. We will plot point and 95% point-wise confidence interval esti-
mates of the observed marginalized risk and controlled risk curves, for the
latter using the sensitivity analysis described in Section 12.1.1.

For validity the method requires the positivity assumption, and thus the
method will only be applied if the data are reasonably supportive of the
positivity assumption. To check positivity, we study the antibody marker
distribution in vaccine recipients within each subgroup of the covariates X
that are adjusted for. For the tertiles analysis we require evidence that within
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each subgroup some vaccine recipients have lower tertile responses and some
vaccine recipients have upper tertile responses. For the quantitative S anal-
ysis, we look for evidence that S varies over its full range within each level
of the potential confounders that are adjusted for.

12.2 CoP: Stochastic Interventional Effects on Risk and Vaccine Efficacy

Another approach to studying correlates of protection involves estimating the
effect of shifting the immune response marker distribution in the vaccinated
individuals (Hejazi et al., 2020a). Specifically, we can consider the effect on
risk of a given endpoint of a controlled intervention that shifts the distribu-
tion of an immune response by δ units, where δ is an analyst-specified real
number. Considering a counterfactual scenario in which we are able to in-
tervene so as to modify the immune response induced by the vaccine (e.g., a
hypothetical change in dose or other re-formulation of the vaccine), we take
this hypothetical intervention to lead to an improved (if δ > 0) or lessened
immune response (if δ < 0) relative to the current vaccine (at δ = 0). Using
this framework, we can query the counterfactual risk of the endpoint under
this hypothetical vaccine. Using notation established above, this quantity
can be expressed as the mean of the counterfactual variable Y (1, S(1) + δ).

This approach is similar to the controlled effects approach described in Sec-
tion 12.3, but with an important distinction. In the controlled effects ap-
proach, one assumes that it is possible to set S = s for all individuals in
the population. For high values of s, this assumption may be unrealistic if
the vaccine fails to be strongly immunogenic for some subpopulations. On
the other hand, with the interventional approach, it is only required that
individuals’ immune responses be shifted relative to their observed immune
response, which may be more plausible for some vaccines.

Under assumptions (Hejazi et al., 2020a), the main two of which being no
unmeasured confounding and positivity (forms of both are also required
for the Controlled VE CoP analyses), the counterfactual risk of interest
E[Y (1, S(1) + δ)] is identified by

E[P (Y = 1 | A = 1, S = S + δ,X = x) | A = 1, X] .
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Examining this quantity across a range of δ provides insight into the relative
contribution of a given immune response marker in preventing the endpoint
of interest.

Hejazi et al. (2020a) proposed nonparametric estimators that rely on esti-
mates of the outcome regression (as described above) and the conditional
density of the immune response marker in vaccinated participants. Their es-
timators efficiently account for two-phase sampling of immune responses and
are implemented in the txshift package (Hejazi and Benkeser, 2020) for the
R language and environment for statistical computing (R Core Team, 2020),
available via both GitHub at https://github.com/nhejazi/txshift and
the Comprehensive R Archive Network at https://CRAN.R-project.org/

package=txshift.

These estimators will be applied to each of the five Day 57 antibody mark-
ers (without baseline adjustment) controlling for the same set of baseline risk
factors that are controlled for in other analyses previously discussed. As with
the mediation analysis approach described in Section 12.3, the procedure will
leverage low-dimensional risk factors alongside parametric regression strate-
gies and flexible conditional density estimators for endpoints with fewer than
100 observed cases (pooling over the randomization arms); however, more
flexible learning techniques will be employed for modeling the outcome pro-
cess for endpoints with a greater number of observed cases.

In particular, conditional density estimates of immune response markers will
be principally based on a nonparametric estimation strategy that reconstructs
the conditional density through estimates of the conditional hazard of the
discretized immune response marker values (Hejazi et al., 2020a,d,c); this
approach is an extension of the proposal of Dı́az and van der Laan (2011).
A Super Learner ensemble (van der Laan et al., 2007) of variants of this
nonparametric conditional density estimator and semiparametric conditional
density estimators based on Gaussinization of residuals will be constructed
using the sl3 R package (Coyle et al., 2020). In settings with limited numbers
of case endpoints, the outcome process will be modeled as a Super Learner
ensemble of a library of parametric regression techniques (as recommend by
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Gruber and van der Laan, 2010), while the library will be augmented with
flexible regression techniques — including, for example, lasso and ridge re-
gression (Tibshirani, 1996; Tikhonov and Arsenin, 1977; Hoerl and Kennard,
1970), elastic net regression (Zou and Hastie, 2003; Friedman et al., 2009),
random forests (Breiman, 2001; Wright et al., 2017), extreme gradient boost-
ing machines (Chen and Guestrin, 2016), light and efficient gradient boosting
machines (Ke et al., 2017), multivariate adaptive polynomial and regression
splines (Friedman et al., 1991; Stone et al., 1994; Kooperberg et al., 1997),
and the highly adaptive lasso (van der Laan, 2017; Benkeser and van der
Laan, 2016; Hejazi et al., 2020b) — as the number of endpoint cases grows.
These algorithm libraries will be coordinated to match those used in other
CoP analyses. For Moderna COVE the more flexible algorithms are not used
given the limited number of vaccine breakthrough COVID endpoints.

Additionally, we recall that P (Y (0) = 1) = P (Y = 1 | A = 0) (in view of
vaccine versus placebo randomization, as stated previously in Section 12.1)
and may be estimated in the same way as for the analysis of controlled vaccine
efficacy, thus yielding an estimate of stochastic interventional VE defined by

SV E(δ) = 1− E[P (Y = 1 | A = 1, S = S + δ,X = x) | A = 1, X]

P (Y (0) = 1)
.

Output of the analyses will be presented as point and 95% point-wise confi-
dence interval estimates of E[Y (1, S(1)+δ)] and of SV E(s) over the values of
s for each of the Day 57 antibody markers, for each of a range of δ spanning
-2 to 2 on the standard unit scale for each antibody marker.

Lastly, just as for the controlled VE CoP analyses, these analyses will only
be performed if diagnostics support plausibility of the positivity assumption.
Importantly, however, the positivity assumption for the stochastic interven-
tional effects differs from that usually required. That is, where the positivity
assumption for effects defined by static interventions requires a positive prob-
ability of treatment assignment across all strata defined by baseline factors
(i.e., that a discretized immune response value be possible regardless of base-
line factors), the positivity assumption of these effects is

si ∈ S =⇒ si + δ ∈ S | A = 1, X = x
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for all x ∈ X and i = 1, . . . n. In particular, this positivity assumption does
not require that the post-intervention exposure density, q0,S(S−δ | A = 1, X),
place mass across all strata defined by X. Instead, it requires that the post-
intervention exposure mechanism be bounded, i.e.,

P{q0,S(S − δ | A = 1, X)/q0,S(S | A = 1, X) > 0} = 1,

which may be readily satisfied by a suitable choice of δ.

More importantly, the static intervention approach may require consideration
of counterfactual variables that are scientifically unrealistic. Namely, it may
be inconceivable to imagine a world where every participant exhibits high
immune responses, given the phenotypic variability of participants’ immune
systems. This too may be resolved by considering an intervention δ(X),
allowing the choice of δ to be a function of baseline covariates X (Hejazi
et al., 2020a; Dı́az and van der Laan, 2012; Haneuse and Rotnitzky, 2013;
Dı́az and van der Laan, 2018).

The current COVE immune correlates manuscript does not include stochastic
intervention vaccine efficacy analyses.

12.3 CoP: Mediation of Vaccine Efficacy

Using mediation methods, we can decompose the overall VE into so-called
natural direct and indirect effects. We will estimate this decomposition for
each Day 57 antibody marker individually (focusing on the non-baseline sub-
tracted markers as for the other CoP analyses described above), as well as
when considering all antibody markers together (although this SAP currently
restricts to analysis of the individual markers).

For simplicity, as before, we describe this approach using a binary outcome,
noting that extensions to time-to-event (with competing risks) are possible.
The total effect of the vaccine can be represented by one minus the risk ratio

RR =
P (Y (1, S(1)) = 1)

P (Y (0, S(0)) = 1)
.
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The natural direct and indirect effects are, respectively,

RRDE =
P (Y (1, S(0)) = 1)

P (Y (0, S(0)) = 1)
and RRIDE =

P (Y (1, S(1)) = 1)

P (Y (1, S(0)) = 1)
.

Note that RR = RRDERRIDE, showing that the total effect decomposes into
the direct times indirect effect. Another quantity of interest is the proportion
mediated, which we express as

PM = 1− log(RRDE)

log(RR)
.

We note that PM=1 if and only if RRDE = 1, i.e., no direct effect means that
the marker fully mediates VE. We will estimate PM defined in this way.

As above, we must assume all confounders X of S and Y have been mea-
sured. We also assume there are no confounders of the mediator-outcome
relationship that are affected by treatment. Moreover, we require an overlap
assumption that

P (S = s|A = 0, X = x) > 0 implies P (S = s|A = 1, X = x) > 0 (7)

for all subgroups X = x (i.e., a.e.). Under these assumptions, P (Y (a, S(a′) =
1) is identified by

E[P (Y = 1 | A = a, S,X)|A = a′, X] .

In our immune CoP application it is expected that, for analyses restricting to
baseline negative individuals, the conditional density of the immune response
marker in the placebo arm will be a point mass at 0, that is with S below
the LLOD. In other words, we do not expect any placebo recipients to have a
positive value of the immune response marker. This implies the identification
result that for a = 0, 1, P (Y (a, S(0)) = 1) = E[P (Y = 1 | A = a, S = 0, X)].
While P (Y (0, S(1) = 1) is not identified, it is not necessary to estimate this
term in order for estimation of the parameters of interest (natural direct
effect, natural indirect effect, PM).

For a highly immunogenic vaccine, it may be the case that the needed overlap
assumption (7) will be violated. This could happen, for example if each base-
line negative placebo recipient has antibody marker value below the assay’s
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LLOD (which is expected), and every vaccine recipient has antibody marker
value above the LLOD. We will only include antibody markers for mediation
analysis if at least 10% of vaccine recipients have marker value equal to the
value in placebo recipients.

Benkeser et al. (2021) provide a multiply robust targeted minimum loss-based
plug-in estimator of natural direct and indirect effects that is appropriate
for case-cohort sampling. The estimator requires estimation of several re-
gressions, which are used in an augmented inverse probability of treatment
weighted estimator. The propensity score will be estimated by a main terms
logistic regression model to account for chance imbalances across randomiza-
tion arms. The sequential outcome regressions used by the approach will be
based on a super learner with the 14 algorithms listed in Table 6.

Table 6: Learning Algorithms in the super learner Library for mediation methods1.

Screens2/
Algorithms Tuning Parameters

SL.mean All
SL.glm Low-collinearity and (All, Lasso, LR)
SL.glm.interaction (All, Lasso, LR)
SL.gam Low-collinearity and (Lasso, LR)
SL.glmnet All
SL.xgboost All
SL.ranger All

1 some nuisance parameters have binary outcomes, others quantitative. For the former, we used
family = binomial() input to the SuperLearner function; for the latter, we used family =

gaussian().
2All = include all variables; Lasso = include variables with non-zero coefficients in the standard

implementation of SL.glmnet that optimizes the lasso tuning parameter via 10-fold
cross-validation; Low-collinearity = do not allow any pairs of quantitative variables with

Spearman rank correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value
< 0.10.

The estimator is implemented in the natmed2 package available on GitHub
(https://github.com/benkeser/natmed2). The baseline covariatesX adjusted
for are the same as for the other analyses (e.g. of CoR and of controlled vac-
cine efficacy).
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13 Summary of the Set of CoR and CoP Analyses and Their Re-
quirements and Contingencies, and Synthesis of the Results,
Including Reconciling Any Possible Contradictions in Results

Table 7 summarizes all of the Stage 1 correlates analyses of Day 29 and Day
57 antibody markers that are done, including contingencies for whether and
when each analysis is done. All of the Day 29 and Day 57 markers are the
versions that are not baseline subtracted, given that the cohort for analysis is
baseline negative. Most of the analyses focus on univariate Day 29 and Day 57
markers. The primary reason to do this is the goal to identify a parsimonious
correlate based on a single marker without needing to run the set of assays,
and secondary reasons are: (1) the assay readouts are expected to be highly
correlated, especially for the cID50 and cID80 readouts, and (2) there is ample
precedent for univariate markers being accepted as immunological surrogate
endpoints for approved vaccines (Plotkin, 2010).
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Table 7: Summary of Stage 1 Day 57 Marker CoR and CoP Analyses with Require-
ments/Contingencies for Conduct of the Analysis (Same Considerations Apply for Day 29 Markers)

Structure Requirements/Contingencies
of Min No. Vaccine

Analysis Day 57 Marker(s) Endpoints Other

CoR Cox Model Tertiles of S1 25 None
Quant. S = s2 25 None
Quant. S ≥ s1 25 None

CoR Nonpar. threshold Quant. S ≥ s1 35 None

CoR GAM Quant. S = s2 35 None

CoR Superlearner3 Quant. S = s, 2FR, 4FR 35 None

CoP: Correlates of VE Binary S 50 None
Quant. S = s 50 BIP with R2 ≥ 0.25

CoP: Controlled VE Quant. S = s 50 Feasibility of positivity4

Tertiles of S = s 50 Feasibility of positivity4

CoP: Stoch. Interv. VE Quant. S = s 50 Feasibility of positivity4

CoP: Mediators of VE Quant. S = s 50 Feasibility of positivity4

1These analyses are harmonized in addressing the same scientific question of how does endpoint
risk vary over vaccinated subgroups defined by S above a threshold.

2These exploratory supportive analyses are harmonized in addressing the same scientific question
of how does endpoint risk vary over vaccinated subgroups defined by S equal to a given marker

value.
3Only this Superlearner analysis uses data from multiple assays and multiple readouts as input

features; the other analyses consider one Day 57 biomarker at a time. 4The positivity
assumptions are as follows. Controlled VE: P (S = s |A = 1, X) > 0 almost surely. Stochastic

Interventional VE: si ∈ S =⇒ si + δ ∈ S | A = 1, X = x for all x ∈ X and i = 1, . . . n. Mediators
of VE: P (S = s |A = 1, X) > 0 almost surely and

P (S = s|A = 0, X = x) > implies P (S = s|A = 1, X = x) > 0. The quantitative analysis will
require that the largest value S observed in the placebo is larger than the smallest value of S

observed in the vaccine recipients. This assumption would naturally be satisfied for the tertiles
analysis. For quantitative S, the assumption is weaker for the Stochastic Interventional VE

analysis, such that it is possible that only this analysis of the three will be done.

Some of the analyses include parametric assumptions for characterizing asso-
ciations (Cox model and threshold analyses, Cox model versions of Controlled
VE analyses) and others are nonparametric or approximately so (all other
analyses). If parametric and nonparametric analyses of the same type (e.g.,
Cox model vs. nonparametric CoR analysis of the same association param-
eter; Controlled VE Cox model vs. nonparametric monotone dose-response)
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suggest contradictory results, then the interpretation from the nonparamet-
ric analysis will be prioritized, given it is more robust and less likely to be
an incorrect result. The diagnostic testing of the parametric assumptions
will aid this interpretation. As noted above, if the nonparametric analysis
suggesting a contradictory result requires a positivity assumption, then its re-
sults will only be prioritized if diagnostics support feasibility of the positivity
assumption.

13.1 Synthesis Interpretation of Results

To structure the interpretation of the whole set of CoR and CoP results, we
consider the Bradford-Hill criteria for supporting causality assessments:

1. Temporal sequence of association (vaccination causes generation of an-
tibodies, which precede occurrence of the clinical disease outcome)

2. Strength of association (CoR magnitude)

3. Consistency of association (across studies and methods)

4. Biological gradient (may be interpreted as dose-response with greater
Day 57 antibody corresponding to lower risk and greater VE)

5. Specificity (that the antibody marker is induced by vaccination not nat-
ural infection, and the antibody impacts the particular clinical endpoint
being analyzed)

6. Plausibility [(supported by other COVID vaccines through study in effi-
cacy trials and challenge (animal or human) trials, and by other potential
studies such as natural history re-infection studies and monoclonal an-
tibody prevention efficacy studies that could be challenge (animal or
human) or field trials])

7. Coherence (the causality assumption does not appear to conflict with
current knowledge)

8. Experimental reversibility (if VE wanes to a low level then the antibody
marker also wanes coincidently; if the Day 57 marker is a strong correlate
for outcome during the period of high VE, then it becomes a weaker
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correlate against endpoints occurring during the later period of low VE;
also could be supported if vaccine breakthrough cases tend to occur early
in follow-up when antibody levels are known to be relatively low)

9. Analogy (supported by other respiratory virus vaccines, and natural his-
tory studies or challenge studies of other respiratory virus vaccines)

We discuss evaluation of these criteria for Day 57 markers, where the same
evaluations accounting for Day 29 markers are similarly relevant.

On temporal sequence, because the analyses are done in baseline negative
individuals, generally the Day 57 antibody responses must be generated by
the vaccine, and if the outcome occurs well after Day 57, then there is clear
temporal ordering of vaccination causing antibodies followed by outcome.
The nuance is outcome cases with event times near 7 days post Day 57, some
of which could have been infected with SARS-CoV-2 prior to Day 57 and have
relatively long incubation periods, possibly perturbing temporal ordering by
creating naturally-induced rather than vaccine-induced antibody. However,
the knowledge about the distribution of the time period between SARS-CoV-
2 acquisition and symptomatic COVID, and the time needed for an infection
to create an adaptive immune response, suggests that this issue could only
haves a minor impact, and overall the temporal sequence criterion readily
holds.

On strength of association, this is directly quantified in all of the analyses as a
core output of each method, quantified by point estimates and confidence in-
terval estimates of covariate-adjusted association parameters or causal effect
parameters.

On consistency of association, checking for similar estimates and inferences
across the multiple vaccine efficacy trials will be relevant. The fact that
all of the tested vaccines are designed to protect through induction of an-
tibody to Spike protein suggest that consistency is plausible. The vaccine
platform needs to be accounted for in this evaluation, where consistency may
be expected for vaccines of a given type (e.g., mRNA vaccines, Spike protein
vaccines, viral vector vaccines with a similar vector), whereas across types
a consistent body of evidence would be very helpful, but not a requirement.
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FDA guidance has stipulated that a surrogate endpoint for one vaccine plat-
form is not necessarily expected to hold for another, and that evidence for one
platform would not be seen on its own as support for a surrogate endpoint
for another.

Moreover, consistency of association may be assessed in another sense - by
studying whether the different CoR methods tend to reveal a consistent di-
rectionality and pattern of an antibody marker correlated with risk, and
whether the different CoP methods tend to reveal a consistent directionality
and pattern of an antibody marker connected to vaccine efficacy (as mea-
sured by the various causal effect parameters) and with different versions of
vaccine efficacy. A common core element of all of the CoR and CoP methods
is covariate-adjusted estimation of marker-conditional risk in vaccine recip-
ients, e.g. of marginal conditional risk EX [P (T ≤ tF |S = s, A = 1, X)] or
EX [P (T ≤ tF |S ≥ s, A = 1, X)]. Generally, if an estimate of this function
shows strongly decreasing risk with s, then likely all of the CoR analyses will
detect such a decrease, and the CoP analyses will detect a version of vaccine
efficacy increasing in s. A nuance in looking for consistency of results across
methods stems from the fact that different methods have different power to
detect the same effect; because of this fact, consistency in magnitude (point
estimate) and directionality are more important than consistency in infer-
ence/statistical significance.

The fact that all of the methods adjust for the same set of baseline covari-
ates X will aid the ability to compare the results across methods in an in-
terpretable manner. This discussion highlights the relevance of adjusting for
the same set of baseline covariates across the different efficacy trials, although
our choice to do covariate-adjustment through marginalization (rather than
through conditional association parameters) lends some resilience to this is-
sue.

Our comments on consistency of association have supposed a given study
endpoint, such as COVID. Another dimension of consistency evaluation could
include comparing results across endpoints. On the one hand, consistency in
evidence across endpoints could strengthen the case for a CoP, especially for
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endpoints in the same ‘class’ such as moderate disease and severe disease.
On the other hand, the greater the difference between endpoints, the less
relevant consistency may be, because the vaccine may protect through differ-
ent mechanisms against each endpoint (one potential example is prevention
of asymptomatic infection vs. prevention of severe disease). Thus evidence
for a CoP for a given endpoint should not necessarily be down-graded based
on evidence that the same marker does not appear to be a CoP for another
endpoint.

On biological gradient, many of the methods are flexible and designed to
detect a dose-response pattern of antibody with risk or antibody with vaccine
efficacy, with tabular and graphical output of point and confidence interval
estimates designed to reveal dose-response.

On specificity, as noted above antibodies generally are almost surely vaccine-
induced given the analysis is done in baseline negative individuals, although
with nuance that care is needed to evaluate whether some vaccine break-
through cases may have had SARS-CoV-2 acquisition unusually early in
follow-up (e.g., prior to second vaccination). In addition, the assays are val-
idated for measuring specific anti-SARS-CoV-2 antigen response. Moreover,
the Day 57 antibody markers can be verified to be negative in all or almost
all baseline negative placebo recipients. Therefore, the specificity criterion
should readily hold, with the proviso of the complication of the possible in-
clusion of unusually early infections as vaccine breakthrough cases in some
analyses.

On coherence, the results will be interpreted in the light of knowledge of im-
mune correlates of protection for the same vaccine in animal challenge stud-
ies (and human challenge studies as available), where multiple studies have
demonstrated that both binding and neutralizing antibodies are a correlate
of protection.

The results will also be interpreted in light of any knowledge available on
passively administered SARS-CoV-2 monoclonal antibodies for prevention of
SARS-CoV-2 infection or COVID disease, either in challenge studies (animals
or humans) or efficacy trials. In addition, the results will be interpreted in
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light of results on the antibody markers as correlates of re-infection in natural
history studies. Note we are cautious to not use correlates studies in already-
infected individuals, because the fact of infection may readily change the
nature of a correlate of protection.

On experimental reversibility, in future analyses we will evaluate whether
the strength of association of the Day 57 CoRs and CoPs weakens when
restricting to outcomes occurring more distal to vaccination. If the vaccine
efficacy is found to wane over time, and the antibody marker wanes over
time, then this decrease in the strength of association would be consistent
with antibody as a correlate of protection. In contrast, if vaccine efficacy and
antibody waned over time, but the strength of a Day 57 CoR and CoP was
the same regardless of the timing of outcomes, it might call into question the
role of the antibody marker as a CoP. The Stage 2 correlates analyses will
also be helpful, where experimental reversibility could be supported simply
by coincident waning of VE and waning antibody.

Experimental reversibility may also be supported by “population-level” cor-
relates analyses, a term sometimes used in reference to meta-analysis that
associates the level of VE with the population-level of a Day 57 marker across
subgroups or trials; e.g. the population-level Day 57 marker response may be
summarized by the geometric mean titer or geometric mean concentration.
Future analyses of multiple phase 3 trial data sets will apply meta-analysis
surrogate endpoint evaluation methods.

On analogy, perhaps the most relevant vaccines to consider are vaccines
against other respiratory viruses, including influenza vaccine and RSV vac-
cines. The fact that neutralizing antibodies are a CoR and CoP for both
inactivated and live virus vaccines supports that neutralizing antibodies can
be a CoP for SARS-CoV-2. In addition, there is ongoing correlates of protec-
tion analysis of Novavax’s Phase 3 RSV vaccine efficacy trial, that is evaluat-
ing binding antibody and neutralizing antibody CoRs and CoP correlates for
severe respiratory disease in infants of vaccinated pregnant mothers (submit-
ted). Once those results are available, they will aid in checking the analogy
(and coherence) criterion.

74



The univariate CoR analyses assess five Day 57 antibody biomarkers. The
questions arise as to how do we select which biomarker seems to be the
best-supported CoP, and do we need to be concerned about multiplicity ad-
justment issues? Given the multifactorial nature of the assessment involving
biology and statistics, we for the most part avoid an approach that tries to
pre-specify a quantitative ranking system; rather our approach presents the
results of each marker side by side and allows human synthesis and interpre-
tation. To guard against errors in this subjective process, we suggest that
consistent results across analyses of a given trial, and consistent results (and
predictive validation) across multiple trials, will provide particularly strong
guidance for interpreting results. For example, if a particular Day 57 an-
tibody marker shows remarkably consistent results in being a strong CoR
and supported CoP but the other readouts do not, it may emerge as the
best-supported CoP. In addition, the superlearning CoR estimated optimal
surrogate objective has a special place of importance, because it includes
variable importance quantification, providing some quantitative guidance on
ranking the predictivneness of markers. This variable importance will be de-
fined both internal to a given trial and based on external validation on the
other efficacy trials. The metrics of CV-AUC and AUC on new trials quan-
tifies evidence for signal in the data in a way that is protected from risk of
false positive results, by virtue of having two layers of cross-validation used to
estimate CV-AUC and hence avoid over-fitting. In addition, the CoR anal-
yses use multiple hypothesis testing adjustment to help ensure clear signals
and not false positive results (see Section 9.4.1). We also need a plan for
minimizing the risk of false positive results for CoP analyses, which we now
address.

13.2 Multiple Hypothesis Testing Adjustment for CoP Analysis

For the univariable CoP analyses of the prioritized set of Day 29 and Day
57 antibody markers among the four specified marker variables, the analysis
plan seeks evidence of a CoP through four different causal effect approaches.
Because of this looking for evidence through different lenses, for CoP anal-
ysis we do not focus on family-wise error rate adjustment, because FWER-
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adjustment aims to control the risk of making even a single false rejection.
Rather, in an effort to build a body of consistent evidence and to ensure that
a large fraction of that evidence is reliable, for CoP analysis we focus on false
discovery rate correction. To do this, we use the same permutation-based
method (Westfall et al., 1993) that is used for CoR analysis. The multiplic-
ity adjustment is performed across the Day 29 and Day 57 markers and across
the set of CoP methods that are applied, in a single suite of hypothesis tests
with calculation of q-values. As a guideline for interpreting CoP findings (but
not meant to be a rigid gateway), markers with unadjusted p-value ≤ 0.05
and q-value ≤ 0.10 are flagged as having statistical evidence for being a CoP.

14 Estimating a Threshold of Protection Based on an Established
or Putative CoP (Population-Based CoP)

For each antibody marker studied as a CoP, we will apply the Chang-Kohberger
(2003) / Siber (2007) method to estimate a threshold of the antibody marker
associated with the estimate of overall vaccine efficacy observed in the trial.

This method makes two simplifying assumptions: (1) that a high enough an-
tibody marker value s∗ implies that individuals with S > s∗ have essentially
zero disease risk (perfect protection) regardless of whether they were vacci-
nated; and (2) P (Y = 1|S ≤ s∗, A = 1)/P (Y = 1|S ≤ s∗, A = 0) = 1 (zero
vaccine efficacy if S ≤ s∗). Based on these assumptions, s∗ is calculated as
the value equating 1 − P̂ (S ≤ s∗|A = 1)/P̂ (S ≤ s∗|A = 0) to the estimate
of overall vaccine efficacy. This estimate is supplemented by estimating the
reverse cumulative distribution function (RCDF) of S in baseline negative
vaccine recipients and calculating a 95% confidence interval for the thresh-
old value s∗ as the points of intersection of the estimated RCDF curve with
the 95% confidence interval for overall vaccine efficacy (as in the figure in
Andrews and Goldblatt, 2014).

This method essentially assumes that S has already been established as a
CoP, and under that assumption estimates a threshold that may be consid-
ered as a benchmark / study endpoint for future immunogenicity vaccine trial
applications.

76



It is acknowledged that this approach makes simplifying assumptions that
are diagnosed to be violated in the COVE trial; nonetheless it may yield a
useful benchmark and complementary information on a threshold correlate
of protection.

15 Considerations for Baseline SARS-CoV-2 Positive Study Par-
ticipants

As stated above, if enough COVID cases in baseline positive vaccine and/or
placebo recipients occur, then additional correlates analyses may be planned
in baseline positive individuals. For example, the same or similar correlates
of risk analysis plan that is used to analyze Day 29 and Day 57 marker
correlates of risk in baseline negative vaccine recipients could be applied to
assess Day 1 marker correlates of risk in baseline positive placebo recipients.
In addition, analyses could be done to assess how vaccine efficacy in baseline
positive participants varies with Day 1 markers. It is straightforward to make
this analysis rigorous because Day 1 markers are a baseline covariate, such
that regression analyses are valid based on the randomization.

16 Avoiding Bias with Pseudovirus Neutralization Analysis due
to Use of Anti-HIV Antiretroviral Drugs

Because the lentivirus-based pseudovirus neutralization assay uses an HIV
backbone, the presence of anti-retroviral drugs in serum will give a false
positive neutralization signal. This can be easily screened for using an MuLV
pseudotype control. Therefore, Day 1, Day 29, and Day 57 samples of all
study participants with data included in correlates analyses will be tested
for presence of anti-retroviral drugs. Participants with any of the samples at
Day 1, 29, 57 positive for antiretroviral use are excluded from analyses, for
all analyses that include pseudovirus neutralization. Analyses that do not
consider pseudovirus neutralization are unaffected by this issue.
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17 Accommodating Crossover of Placebo Recipients to the Vac-
cine Arm

After the primary efficacy endpoint was met per the protocol-defined interim
analysis, supporting the issuance on December 18, 2020 of an Emergency Use
Authorization (EUA) from the FDA for the mRNA-1273 vaccine, mRNA-
1273 vaccination was offered to participants who originally received placebo
so that they could have the potential benefit of vaccination against COVID-19
[Moderna (2020)].

For crossed-over placebo recipients who have study visits and blood sample
storage on the same schedule as if they had originally been assigned to the
vaccine arm, follow-up data from the crossed over placebo recipients will be
included in the correlates of risk analyses, which is expected to yield improved
power and precision given the expanded sample size of vaccine recipients.

However, correlates of protection will only be assessed over follow-up through
to the point that there is no longer a placebo cohort under blinded follow-up.
Moreover, if immune marker data from crossed-over placebo recipients are
available, then correlate of VE CoP analyses will be conducted that leverage
the additional closeout placebo vaccination data.

The current manuscript restricts to the primary blinded follow-up period.
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Figure 1: A) Structural relationships among study endpoints in a COVID-19 vaccine efficacy trial
(Mehrotra et al., 2020). B) Study endpoint definitions.
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Figure 2: Example at-COVID diagnosis and post-COVID diagnosis disease severity and virologic
sampling schedule, in a setting where frequent follow-up of confirmed cases can be assured. Partic-
ipants diagnosed with virologically-confirmed symptomatic SARS-CoV-2 infection (COVID) enter
a post-diagnosis sampling schedule to monitor viral load and COVID-related symptoms (types,
severity levels, and durations).
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Figure 3: Case-cohort sampling design (Prentice, 1986) that measures Day 1, 29, 57 antibody
markers in all participants selected into the subcohort and in all COVID and COV-INF cases
occurring outside of the subcohort.
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Figure 4: Two-stage correlates analysis. Stage 1 consists of analyses of Day 29 and Day 57 markers
as correlates of risk and of protection of the primary endpoint and potentially also of some sec-
ondary endpoints, and includes antibody marker data from all COVID and SARS-CoV-2 infection
cases (COV-INF) through to the time of the data lock for the first correlates analyses. Stage 2
consists of analyses of Day 29 and Day 57 markers as correlates of risk and of protection of longer
term endpoints and analyses of longitudinal markers as outcome-proximal correlates of risk and of
protection, and includes antibody marker data from all subsequent COVID and COV-INF cases.
Stage 1 measures Day 1, 29, 57 antibody markers and COV-INF and COVID diagnosis time point
markers; Stage 2 measures antibody markers from all sampling time points and COV-INF plus
COVID diagnosis sampling time points not yet assayed. The same immunogenicity subcohort is
used for both stages.
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