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Supplementary Figures  

 

Supplementary Figure 1. (a) Molecular dynamics simulation system. A typical simulation system 
consists of a slab of water (transparent cyan) and a surface (black). (b) Typical hexagonal ice (pink) 
and rhombic ice (cyan) close to the surface from different angles. Only one layer of rhombic ice 
can form due to the lack of dangling H-bonds, thus water (purple) above the rhombic ice remains 
in the liquid state. The H-bonds are represented by the magenta dashed lines. 
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Supplementary Figure 2. Illustration of the five selected representative collective variables (CVs). 
The five CVs represent the numbers of ice molecules in the corresponding configurations as 
colored in purple: the largest ice nucleus, rhombic ice in the largest ice nucleus, and hexagonal ice 
in the 2nd, 3rd, and upper layers of the largest ice nucleus, respectively. 
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Supplementary Figure 3. Markov State Model (MSM) at T=230 K. (a) Lumping microstates into 
eight macro-states using PCCA+. Each dot projected on two major CVs represents a microstate, 
and each color indicates a macro-state. (b) The implied timescales plotted against lag time for the 
1000-microstate MSMs. The curves level off at about 5 ns, suggesting that the MSMs reach 
Markovian at lag time greater than or equal to ~5ns. 
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Supplementary Figure 4. Validation of Markov State Models (MSMs) by comparing the 
residence probabilities of the system remaining in the same microstates for the ten most populated 
microstates obtained from MSMs. This is done by propagating the transition matrix and the original 
molecular dynamic trajectories, T=230 K. The error bars represent the standard errors with the 
original molecular dynamic trajectories sampled by bootstrapping. 
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Supplementary Figure 5. Typical molecular dynamics trajectories of the classical one-step 
nucleation pathway at T =230 K. (a). Schematic of the free energy profile for the classical ice 
nucleation pathway.  (b)-(c). Evolutions of the number of hexagonal ice molecules in the largest 
ice nucleus, exhibiting one activation process. The gray regions are extended simulations showing 
that ice grows continuously after entering the growth stage. (d)-(e). Typical configurations of the 
largest ice nucleus for the trajectories in (b) and (c), respectively. The purple and green spheres 
denote the rhombic and hexagonal ice, respectively. The gray surfaces represent the substrate. 
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Supplementary Figure 6. Typical molecular dynamics trajectories of the non-classical two-step 
nucleation pathway at T =230 K. (a). Schematic of the free energy profile for the non-classical 
two-step ice nucleation pathway.  (b)-(c). Evolutions of the number of hexagonal ice molecules in 
the largest ice nucleus, exhibiting two activation processes. The gray regions are extended 
simulations showing that ice grows continuously after entering the growth stage. (d)-(e). Typical 
configurations of the largest ice nucleus for the trajectories in (b) and (c), respectively. The purple 
and green spheres denote rhombic and hexagonal ice, respectively. The gray surfaces represent the 
substrate. 
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Supplementary Figure 7. Percentages of complete flux for heterogeneous ice nucleation at T=230 
K. The numbers on the left give the total number of ice molecules. The pathways following the 
purple and yellow arrows depict the classical one-step and nonclassical two-step nucleation 
pathways, respectively. The numbers in brackets next to each arrow represent the flux as a 
percentage (shown in blue) for each transition between each pair of states. The mean first passage 
time of some transitions are listed in black in the top-left corner. After macro-states IV or V, the 
system enters the stage of ice growth. 
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Supplementary Figure 8. Average potential energy per molecule for the 1st layer of hexagonal ice 
and rhombic ice in TS II at T=230 K. (a). Total potential energy for the 1st layer of hexagonal ice 
and rhombic ice. (b). Ice-surface interaction energy for the 1st layer of hexagonal ice and rhombic 
ice. The error bars represent the standard errors with samples obtained by bootstrapping. 
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Supplementary Figure 9. Construction and validation of the Markov State Model (MSM) at 
T=240 K. The microstates are generated by projecting the molecular dynamic (MD) trajectories 
onto the original microstates for T=230 K. Using the same k-centers-generated microstates allows 
us to directly compare the flux along different pathways. (a) The microstates taken by the 
trajectories at T=240 K. Each dot projected on two major features represents a microstate and each 
color indicates a macro-state. (b) Implied timescales plotted against lag time for the projected 
microstate MSM.  The MSMs reach Markovian at a lag time greater than or equal to ~4ns. (c) 
Validation of the MSM by comparing the residence probabilities of the system remaining in the 
same microstates for the ten most populated microstates obtained from MSM by propagating the 
transition matrix and the original MD trajectories. The error bars represent the standard errors with 
the original molecular dynamic trajectories sampled by bootstrapping. 
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Supplementary Figure 10. Construction and validation of the Markov State Model (MSM) at 
T=250 K. (a) The microstates taken by the trajectories at T=250 K. The microstates are generated 
by projecting the molecular dynamic (MD) trajectories onto the original microstates for T=230 K. 
Each dot projected on two major features represents a microstate and each color indicates a macro-
state.  (b) Implied timescales plotted against lag time for the projected-microstates MSM. The 
MSMs reach Markovian at a lag time greater than or equal to ~1.5ns. (c) Validation of the MSM 
by comparing the residence probabilities of the system remaining in the same microstates for the 
ten most populated microstates obtained from MSM by propagating the transition matrix and the 
original MD trajectories. The error bars represent the standard errors with the original molecular 
dynamic trajectories sampled by bootstrapping. 
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Supplementary Figure 11. Kinetics of HIN at T=240 K. (a) Percentages of complete flux for HIN. 
The pathways following the purple and yellow arrows depict the classical one-step and 
nonclassical two-step nucleation pathways, respectively. The number in brackets next to each 
arrow (shown in blue) represents the flux as a percentage for each transition between each pair of 
states. (b) The mean first passage time (MFPT) (shown in black, in unit of μs) for the classical 
pathway between each pair of macro-states. 
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Supplementary Figure 12. Kinetics of HIN at T=250 K. (a) Percentages of complete flux for HIN. 
The pathways following the purple and yellow arrows depict the classical one-step and 
nonclassical two-step nucleation pathways, respectively. The number in brackets next to each 
arrow (shown in blue) represents the flux as a percentage for each transition between each pair of 
states. (b) The mean first passage time (MFPT) (shown in black, in unit of μs) for the classical 
pathway between each pair of macro-states. 
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Supplementary Figure 13. Contributions of the CVs to the timescales. To evaluate the 
contributions, we took the three leading eigenvectors that correspond to the three slowest 
timescales, and then normalized them based on the squared sum of their components. The 
normalized square of each component in each eigenvector, V2, is plotted as the relative 
contribution. A higher V2 value indicates a stronger contribution to the slowest timescales. The 
leading eigenvectors were obtained from the time-lagged correlation matrix from the Spectral-
oASIS analysis with the five chosen CVs as shown in Fig. 1c in the main text. 
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Supplementary Figure 14. Variational cross-validation for the selection of the number of 
microstates with a generalized matrix Rayleigh quotient (GMRQ). Boxes indicate median and quartiles, 
while whiskers follow the default definition in matplotlib package. The scattering dots indicate 
outliers. 1000 was chosen as the optimal number of microstates, achieving the highest GMRQ 
score for the testing data. 
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Supplementary Figure 15. Timescales for the dynamics of the system with various numbers of 

CVs at T =240 K (a) and 250 K (b), respectively. The left panels present timescales analyzed by 

spectral-oASIS and the right panels are the timescales when using the CVs obtained at T =230 K. 
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Supplementary Table 

Supplementary Table 1. List of potential collective variables (CVs) for Nyström-oASIS 
analysis to choose the representative CVs.  

 

  

No. candidate  No. candidate 

0 Size of largest hexagonal ice (Ih) nucleus 9 No. of ice in the upper layer of LIN 

1 Size of largest rhombic ice (Ir) nucleus 10 No. of Ih in the 1st layer of LIN 

2 Size of largest ice nucleus (LIN) 11 No. of Ih in the 2nd layer of LIN 

3 No. of Ir in LIN 12 No. of Ih in the 3rd layer of LIN 

4 No. of Ih in LIN 13 No. of Ih in the upper layer of LIN 

5 Spherical parameter as defined in ref.30 14 No. of Ir in the 1st layer of LIN 

6 No. of ice in the 1st layer of LIN 15 No. of Ir in the 2nd layer of LIN 

7 No. of ice in the 2nd layer of LIN 16 No. of Ir in the 3rd layer of LIN 

8 No. of ice in the 3rd layer of LIN 17 No. of Ir in the upper layer of LIN 
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Supplementary Methods  

Supplementary Method 1. System setup and all-atom MD simulations 

The all-atom NVT molecular dynamics (MD) simulations1 were performed using LAMMPS 

packages2 with a time step of 2 fs. The system consisted of a slab of water (4940 water molecules) 

sitting on top of a wurtzite-structured surface in a periodic box with dimensions: x=5.43 nm, y= 

5.89 nm, and z= 7.0 nm; and periodic boundary conditions (PBC) were employed in the xyz 

directions, respectively. To minimize the undesired water-surface interactions caused by the PBC, 

a void space (around 3nm) was maintained above the water in the z-direction. Additionally, the 

surface atoms were fixed in the wurtzite structure3 with unit cell parameters of a=4.519 Å and 

c=7.357 Å. To simplify the modelled surface, the charge effect of the surface atoms was not 

considered. Furthermore, the TIP4P/Ice4 water model was applied to simulate the water molecules, 

whose bonds and angles were maintained by the SHAKE algorithm5,6. The water-surface 

interactions were modelled by the 12-6 Lennard-Jones (LJ) potential7, which was cut off at 1.0 nm 

with interaction strength 𝜀୵ୱ=4.98829 kJ mol-1 and σ=2.9034 Å. The water-surface interaction 

strength is close to, but a bit less than, that of gold-water interactions8, i.e., 𝜀୓ି୅ =5.2362576 kJ 

mol-1. The Columbic interactions among the water molecules were cut off at 0.85 nm, whose long-

range interactions were considered by the Particle-Particle Particle-Mesh (PPPM)9. 

The system was initially heated up to 300 K for 2ns before being cooled down to a target 

temperature, i.e., 230 K and 240 K. The temperature was controlled by the Nosé-Hoover 

thermostat10–13, and the data was collected for production after relaxation. The hexagonal ice 

nucleates and then grows mainly on its first prism plane. To account for the possibility of both the 

one-step and two-step pathways, unbiased MD simulations were run in parallel with different 

initial velocities at T=230 K and 240 K. The simulations were terminated once the total number of 

ice molecules (𝑛୧ୡୣ) reached about 1400, or the simulation time exceeded 1000 ns. In total, the 

simulation length was about 15 μs for each temperature.  

At T=250 K, two rounds of seeded unbiased MD simulations were performed. In the first 

round, 200 initial seeds were randomly chosen as the starting structures from the cluster centers of 

the most populated microstates at T =240 K. Unbiased MD simulations were then carried out with 

different initial velocities while T was maintained at 250 K. After 5 ns of relaxation, data was 
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collected for 140 ns (unless 𝑛୧ୡୣ reached 1400), after which a second-round of 500 30-ns parallel 

seeded unbiased MD simulations were performed. In this round, we randomly selected the seeds 

used as the initial structures from the first round of simulations. 

Supplementary Method 2. Ice detection 

We used the average bond order parameter14,15 to characterize the local structures of the water 

molecules. Specifically, the average bond order parameter calculates the local order of an atom 

with its neighbors as follows: 
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  r r  represent the spherical harmonics, position vectors of j, and its 

neighbor k, respectively. For bulk water, 6 0.45q   is applied to differentiate hexagonal ice3 from 

liquid water when 4iN  . For water at the interface, within 0.45 nm (one layer of water) above 

the surface, the regions ( 6 0.5q  , 4 0.6q  ) and ( 4 0.6q  ) with 3iN   are employed to characterize 

hexagonal ice and rhombic ice3, respectively. Note that the quadrilateral structure with high four-

fold symmetry is termed as “square ice” in the reference3, whereas here we use the term “rhombic 

ice” since the quadrilaterals are buckled and not always in a perfectly square shape, as shown in 

Fig. 1a in the main text. 

Supplementary Method 3. Construction and validation of MSMs for T=230 K 

 Markov State Models (MSMs) constructed from many simulations provide a promising 

approach to elucidate the kinetic ensemble of ice nucleation pathways. The basic concept of MSMs 

is to model the continuous dynamics as Markovian transitions among discrete partitions of 

configuration space. For ice nucleation, the MSMs first partition the configurational space of 

interest into a discrete number of states, and then compute the transition probability between pairs 

of the states at a discretized lag time τ from the parallel MD simulations. If the lag time τ is long 

enough to allow full relaxation within each state, the fast motions are integrated out and the model 
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becomes Markovian, i.e., the probability for the system to visit a given state at time t + τ depends 

only on its current position at time t. Under this condition, the long-timescale dynamics can be 

modelled by a sequence of Markovian transitions among the discrete states based on the transition 

probability.  

We constructed MSMs to study the kinetics of heterogeneous ice nucleation (HIN) at 

T=230 K through the following procedures: (i) From a pool of 18 candidates obtained based on 

physical intuition (as listed in Supplementary Table 1), we utilized Spectral-oASIS16,17 to 

automatically select five collective variables (CVs) that could precisely describe the kinetics of 

HIN (see Supplementary methods 3.1); (ii) We grouped the MD configurations with the five 

optimal CVs into 1000 microstates based on the k-centers clustering algorithm18. The 

hyperparameter for clustering, i.e., the number of microstates, was determined by conducting 

variational cross-validation with a generalized matrix Rayleigh quotient (GMRQ)19 

(Supplementary methods 3.2); (iii) We validated our microstate MSMs by implied timescale 

analysis and the Chapman-Kolmogorov test20 (see Supplementary methods 3.3); (iv) To better 

visualize the nucleation kinetics, we further grouped the 1000 microstates into eight macro-states, 

using the Robust Perron Cluster Clustering Analysis (PCCA+) algorithm21, as illustrated in 

Supplementary Fig. 3a. Note that when constructing MSMs, we chose a cut off value (in number 

of hexagonal ice molecules) when partitioning the configuration space sampled by the MD 

trajectories into a discrete set of micro-states. As shown in Supplementary Fig. 5 and 6, after the 

number of hexagonal ice reaches about 800, the system has already entered the stage of continuous 

ice growth, as indicated by the linear increase in the number of hexagonal ice. Thus, we believe 

that the MSM with a cut-off at 1200 hexagonal ice molecules is sufficient to analyze the ice 

nucleation events. 

3.1 Selections of representative collective variables  

In practice, reducing the feature dimensions by selecting representative CVs that can 

accurately describe the kinetics of HIN is crucial before constructing the MSMs. Spectral-

oASIS16,17 provides a powerful approach to fulfil this task as it can automatically choose 

representative CVs that can reconstruct the slowest dynamics relevant to ice nucleation. Starting 

from a random initial CV, we used Spectral-oASIS to add the CVs one-by-one from the pool of 

18 CVs until the time-lagged correlation matrices generated by the selected subset of CVs could well 
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approximate the leading eigenvalues and eigenvectors of the full matrix of 18 CVs (see 

Supplementary Table 1). The lag-time was pre-determined as 5 ns, which will be further verified 

in subsequent Sections. As shown in Fig. 1c in the main text, with the five optimal CVs (i.e., the 

number of ice molecules in the largest ice nucleus, rhombic ice in the largest ice nucleus, and 

hexagonal ice in the 2nd, 3rd, and upper layers of the largest ice nucleus), the slowest timescales 

(which correspond to eigenvalues of the time-lagged correlation matrix) are close to those of the 

complete 18 CVs, indicating that the reconstructed time-lagged correlation matrix is sufficient to 

reproduce the slowest dynamical information of the whole set with minimal errors. Furthermore, 

we have elucidated the contributions of five chosen collective variables (CVs) to the three slowest 

timescales (see Supplementary Fig. 13) via their relative contributions to three leading 

eigenvectors from our spectral-oASIS analysis, as shown in Fig. 1c in the main text. Interestingly, 

we find that the three slowest timescales are strongly correlated with the formation of ice in 

different layers. For instance, as shown in Supplementary Fig. 13 (top panel), the slowest timescale 

is mainly related to the CVs that represent the number of rhombic ice molecules in the largest ice 

nucleus and the total number of ice molecules. These two CVs can well describe the formation of 

ice in the first layer in contact with the surface, as rhombic ice mainly forms in the first layer and 

the number of hexagonal ice molecules can be obtained by deducting the number of rhombic ice 

molecules from the number of total ice molecules. Consistently, the formation of ice patches in 

the first layer indeed corresponds to the rate limiting step (the slowest timescale process) in both 

of our classical (formation of purely hexagonal ice mainly in the first layer) and non-classical ice 

nucleation pathways (formation of the mixture of rhombic ice and hexagonal ice mainly in the first 

layer). The second-slowest timescale and third-slowest timescale are mainly related to the 

formation of hexagonal ice in the third layer and second layer of the largest ice nucleus, 

respectively. Notably, the timescale for the formation of hexagonal ice in the third layer (middle 

panel, Supplementary Fig. 13) is found to be slower than that in the second layer (bottom panel, 

Supplementary Fig. 13). This observation underlines the second step in our two-step non-classical 

nucleation pathway, where the rhombic ice needs to be converted into hexagonal ice. This 

conversion process mainly involves the first two layers of ice, as the transformation of the rhombic 

ice molecule in the first layer will free one of its -OH bonds to quickly form a hydrogen bond with 

a hexagonal ice molecule in the 2nd layer.  As a result, the growth of the 3rd layer of hexagonal ice 
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is contingent upon the completion of this conversion process, rendering it to be the second-slowest 

timescale.   

3.2 Determination of hyperparameters and clustering 

We first determined an appropriate number of microstates by conducting variational cross-

validation with GMRQ19. In the cross-validation, the MD trajectories were randomly divided into 

five folds, in which four folds were used as a training set, and one fold was used as a testing set. 

The optimal number of microstates was determined to be 1000 since it had the highest test score 

before entering the overfitting regime, as indicated by the progressively decreasing score shown in 

Supplementary Fig. 14. Then, the MD configurations were grouped into 1000 microstates based 

on the k-centers clustering algorithm18. The GMRQ cross-validation and clustering were performed 

by using in-house python codes in MSMbuilder Packages22. 

3.3 Validations of MSMs 

We constructed our microstate MSMs using a lag-time of 5 ns, as the implied timescale 

plateaued at this lag-time (see Supplementary Fig. 3b), indicating that our microstate MSMs reach 

Markovian. To further verify our MSMs, we conducted Chapman-Kolmogorov test20 by 

comparing the residence probabilities of the ten most populated microstates predicted by our 

MSMs with those directly counted from original MD data. This comparison showed that our 

MSMs are consistent with the original MD simulations when predicting the dynamics, as displayed 

in Supplementary Fig. 4.   

Supplementary Method 4. Construction and validation of MSMs at higher temperatures  

We also constructed MSMs at T=240 K and 250 K. Before the MSM construction, we have 

also conducted spectral-oASIS analysis at T=240 K and 250 K. As shown in Supplementary Fig. 

15, we also need around five CVs to reproduce the slowest timescales of the completed sets of 

CVs.  Furthermore, we found that the selected CVs is largely overlapped with those selected at 

230K. For instance, in both T=240 K and 250 K, the five chosen CVs by Spectral-oASIS are: the 

number of ice molecules in the largest ice nucleus, number of hexagonal ice in the 2nd, 3rd, and 

upper layers of the largest ice nucleus, and the number of ice molecules in the largest hexagonal 

ice nucleus.  The most notable difference is that the CV that represents the number of rhombic ice 
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is no longer selected at 240K and 250K. This observation agrees well with one of our key 

conclusions that the non-classical two-step pathway (where the rate-limiting step involves the 

formation of rhombic ice) becomes less significant as temperature increases. In order to compare 

the flux of the classical and non-classical pathways at different temperatures, we adopted the same 

CVs and state-definition obtained at T=230K across all three temperatures.  In addition, we have 

also performed a control analysis to show that these five CVs chosen at 230K (largely overlapped 

with CVs chosen by Spectral-oASIS at 240K and 250K) can still reasonably reproduce the slowest 

timescales at these two higher temperatures (see right panels in Supplementary Fig. 15a and b for 

240K and 250K, respectively). Note that extra care should be taken since some of the microstates 

are missing at higher temperatures. The microstate MSMs were also validated by implied timescale 

analysis and the Chapman-Kolmogorov test. Supplementary Fig. 9b and 10b show that the implied 

timescales plateau for both cases at t=4 ns and 1.5 ns, respectively, implying that the MSMs reach 

Markovian. In addition, the residence probabilities for the most populated microstates in 

Supplementary Fig. 9c and 10c further validate the MSMs for T=240 K and 250 K, respectively.  

Supplementary Method 5. Obtaining long-time trajectories and nucleation rates by Markov 

Chain Monte Carlo Sampling based on microstate MSM  

When the probability of the system taking any of its 1000 microstates at time t is denoted as 

vector p(t), the probabilities at time t +τ can be given by p(t + τ) = p(t)T(τ), where T(τ) is the 

transition probability matrix with a lag time of τ. Thus, with the transition probability matrix 

obtained from microstate MSMs, Markov Chain Monte Carlo simulations can be performed to 

simulate the Markov jumps based on the function of p(t + τ) = p(t)T(τ) to correctly generate the 

long-time trajectories. 

  From the generated simulations, we can obtain the mean first passage times (MFPTs) by 

calculating the average transition times between pairs of states of interest. Subsequently, the 

nucleation rate J can be estimated by 
MFPT

1
J

t V
 , where 

MFPTt  is the MFPT for the system to enter 

the growth stage, and V is the volume of water in the system23,24. Specifically,
MFPT

MFPT

i
i

i

i
i

p t
t

p




, 

where pi is the percentage of flux i, and MFPT
it  is the MFPT for the system from macro-state I to 
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macro-states IV or V for flux i. Note that the heterogeneous nucleation rate should normally be 

evaluated using the surface area (for nucleation on a surface). Here, a volume-based nucleation 

rate is used to allow for a direct comparison with homogeneous nucleation23. 

Supplementary Method 6. Identification of the critical ice nucleus via committor probability 

analysis  

The flux of the nucleation pathways was analysed based on a mathematical framework of 

TPT25–28. We computed the flux of ensembled nucleation pathways along with their relative 

probabilities at the microstate level. For visualization purposes, the net flux of the transitions was 

assembled into coarse-grained macrostates29. To identify the critical ice nuclei along the classical 

and non-classical pathways, the saddle points along the two pathways were obtained using two 

independent TPT analyses based on the committor analysis at the microstate level. As the rate-

limiting step of the nucleation flux is proximal to where the flux bifurcates, the committor analyses 

were located around the bifurcation. For TS I and TS II, the transition microstates can be identified 

with a corresponding committor probability of 0.5, meaning they have a 50% probability to return 

to state I, while the other 50% corresponds to the probability to proceed to the microstates in state 

IV and III, respectively (see Fig. 3a in the main text).  
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