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Supplementary Figure 1. An overview of TMT proteomics and label-free phosphoproteomics.

(a) Workflow of the EC proteomic study. 124 paired tumor and non-tumor esophageal tissues
(Cohort 1) were subjected to TMT proteomic analysis, of which 31 paired tissues were selected
for label-free phosphoproteomic analysis. EC genomic alterations from the literature were
collected for integrated proteogenomic analysis. Molecular subtype, S1 and S2, and subtype
diagnosis model was defined based on proteomic analysis. Furthermore, molecular subtype
was combined with immunohistochemistry of 295 patients (Cohort 2) to validate subtype
diagnostic model. Potential drugs for treating patients in subtype S2 were predicted based on
differentially expressed proteins between subtype S1 and S2. EC cell lines were used to
validate the therapeutic effects of candidate drugs. (b) Workflow of TMT 11-plex proteomic and
label-free phosphoproteomic analysis. EC tumor and non-tumor tissues were subjected to dry
pulverization, protein extraction and trypsin digestion. For TMT 11-plex quantification, a total of

248 tumor and non-tumor esophagus tissues from 124 patients were analyzed in 25 TMT 11-



plex experiments with 5 paired tumor and adjacent non-tumor tissues and the internal reference
sample. The reference sample contained 60 pairs of tumor and adjacent non-tumor tissues
mixed in equal protein amount. The labeled peptides were combined for RP-HPLC fractionation.
For label-free phosphoproteome quantification, 62 tumor and non-tumor esophagus tissues

from 31 patients were analyzed.
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Supplementary Figure 2. Quality assessment for TMT proteomic and label-free

phosphoproteomic data.

(a) Proteins detected by proteomic analysis at different levels as indicated. (b) The distribution

of the number of proteins with different confidence levels identified in each group of samples.



12,393 (86.96%) proteins were quantified with high confidence. (c) Distribution of protein
expression ratios (tumor vs non-tumor) of 14,252 proteins in the Prot1 dataset (n = 10125,
10704, 11026, 11170, 11384, 11503, 11560, 11606, 11704, 11788, 11856, 11902, 11969, 12113,
12140, 12169, 12188, 12231, 12243, 12256, 12298, 12338, 12372, 12378, 12393 for the
groups 1-25, respectively). (d) Distribution of protein expression ratios (tumor vs non-tumor) of
6,468 proteins in the Prot5 dataset (n = 6,468 for each group). In the box plots (c and d), the
middle bar represents the median, and the box represents the interquartile range; bars extend
to 1.5x the interquartiie range. (e) Phosphorylation sites detected by label-free
phosphorproteomics experiment in triplicates for one pair of EC tumor and the adjacent non-
tumor tissues are shown by venn diagram. (f) Pearson correlation coefficiency of the intensity
of phosphopeptides identified in biological replicates of the pair of EC tumor and the adjacent
non-tumor tissues as shown in (e). (g) Phosphorylation sites and phosphoproteins detected by
phosphoproteomic analysis at different levels as indicated. (h) Cumulative number of
phosphosites quantified as a function of the number of samples. (i) Cumulative number of
phosphoproteins quantified as a function of the number of samples. (j) Number of phosphosites
quantified in tumor (red) and non-tumor (blue) samples. The paired samples are annotated by
grey lines. The dashed curves with 95% confidence intervals were fitted by local polynomial
regression. The number of phosphosites quantified in tumor samples are larger than those in
non-tumor samples (Mean: 51942 versus 51203; P = 0.047, one-sided Wilcox signed rank test).
(k) Number of phosphoproteins quantified in tumor (red) and non-tumor (blue) samples. The
paired samples are annotated by grey lines. The dashed curves with 95% confidence intervals
were fitted by local polynomial regression. The number of phosphoproteins quantified in tumor
samples are larger than those in non-tumor samples (Mean: 6,447 versus 6,349; P = 0.001,

one-sided Wilcox signed rank test).
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Supplementary Figure 3. Dysregulated proteins, hallmark gene sets and pathways in EC

detected by proteomic analysis.

(a) The expression of esophageal-specific proteins as indicated is shown by box plots (n = 124).
P values were calculated by two-sided Wilcoxon signed-rank test. The middle bar represents
the median, and the box represents the interquartile range; bars extend to 1.5x% the interquartile
range. (b) Hallmark get sets enriched for differentially expressed proteins as shown in Fig. 2a.
Pink and blue bars indicate pathways enriched by up- and down-regulated proteins,

respectively. (¢) Immunohistochemistry (IHC) score for three interferon-stimulated genes (ISGs)



in tumor and corresponding stroma cells is shown (MX1, n = 22; OAS3, n = 31; IFIT1, n=32).
Representative images are shown at the bottom. Scale bars, 50 yum. P values were calculated
by paired two-sided Student’s t-test. (d) Heat map of normalized enrichment scores (NES) of
phosphosite-specific signatures in 31 paired tumor and non-tumor samples. The color in row i
and column j indicates that the i-th phosphosite-specific signature is enriched (red; P < 0.05),
depleted (blue; P < 0.05), or non-significant (grey) in the j-th sample. The top boxplot shows
the number of enriched, depleted, and non-significant phosphosite-specific signatures for each
sample. P values (without correction for multiple testing) were calculated by one-sided
permutation test. (e) Heat map of NES of phosphosite-specific signatures that are significantly
dysregulated between the tumor and non-tumor samples (paired two-sided Student's t-test, BH
adjusted P < 0.01). (f) Proteomic analysis of genomic altered pathways. Changes in protein
expression and phosphorylation of EC mutant genes reported in the literature are shown.
Correlation between protein expression levels and patient risk was assessed by the “X-tile”
method, and the two-sided log-rank P value was calculated by a log-rank test on overall survival
difference of two groups divided by the optimal cut-point. The gene interactions were obtained
from the KEGG pathway. (g) Comparison of genomic alterations and protein expression
changes of genomic altered pathways in EC. Alteration frequencies are expressed as the
percentage of cases. SNV/indel is highlighted in dark grey, deletion in blue, and amplification
in red. For proteins, fold changes of protein expression levels are shown. No significant
difference is highlighted in dark grey, decrease in blue, and increase in red. (h) Proteomic
analysis of metastasis and immune response-related genes in Fig. 2g. Changes in protein
expression and phosphorylation, and correlation between protein expression levels and patient
risk are shown as in (f). The protein-protein interactions were obtained from the STRING
database. (i) Comparison of genomic alterations and protein expression changes of metastasis
and immune response-related genes in Fig. 2g. Genomic alterations and changes in protein
expression are shown as in (g). The protein-protein interactions were obtained from the

STRING database.
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Supplementary Figure 4. Molecular subtypes of EC defined by proteomic analysis.

(a) Consensus clustering of EC tumor samples. The upper panel shows consensus matrices of

the 124 EC samples based on clusters from 3 to 6 (k = 3, 4, 5 or 6). Consensus clustering was

performed on the top 25% most-variant proteins in Prot5. The bottom panel shows the

silhouette-width plots. (b) Comparison of the changes of phosphosite abundance (FC.Phos)

with those of the corresponding protein abundance (FC.Prot). The red dashed line indicates

the diagonal line. Green colors indicate significantly down-regulated phosphosites (BH adjusted

P value < 0.01 & FC.Phos < 0.5 & FC.Phos < FC.Prot). Red colors indicate significantly up-

regulated phosphosites (BH adjusted P value < 0.01 & FC.Phos = 2 & FC.Phos > FC.Prot).

Other phosphosites are colored in grey. P values were calculated by two-sided Wilcoxon rank-

sum test. (c) Comparison of differential proteins, phosphosites, and phosphoproteins between

tumor and non-tumor with those between S2 and S1. P values were calculated by

hypergeometric test. (d) Protein expression ratios (phosphosite abundance) in non-tumor

tissues, subtype S1, and S2 and their associations with survival outcome in dysregulated

pathways. For phosphoproteins, the abundance of phosphosite with the maximal fold change

(FC) is shown. Red indicates high expression and blue indicates low expression. (e) Heat map

of normalized enrichment scores (NES) of phosphosite-specific signatures in 15 patients

belonged to S1 and 16 belonged to the S2 subtype. Each row represents a phosphosite-specific

signature, and each column represents a sample. Phosphosite-specific signature can be

enriched (red; P < 0.05), depleted (blue; P < 0.05), or not significant (grey). The top barplot



shows the number of enriched, depleted, and insignificant phosphosite-specific signatures for
each sample. P values (without correction for multiple testing) were calculated by one-sided
permutation test. (f) Heat map of NES of phosphosite-specific signatures that are significantly

dysregulated between the S1 and S2 subtype (unpaired two-sided Student's t-test, P < 0.05).
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Supplementary Figure 5. Prognostic performance of molecular subtype we defined and that of

pTNM stage.

(a, b) Area under the time-dependent ROC curve (TDROC) for OS (a) or DFS (b) of the 124

patients in Cohort 1. Blue, yellow, and green represent the TDROC of pTNM, “Subtype+pTNM”,

and “Subtype+pTNM 3c¢” model, respectively. (¢, d) TDROC for OS (C) or DFS (D) at five years.

(e, f) Kaplan—Meier curves of OS (e) or DFS (f) for the three groups of patients stratified by

pTNM stage in Cohort 1. (g, h) Kaplan—Meier curves of OS (g) or DFS (h) for patients in the

three groups stratified by “Subtype+pTNM 3¢’ model from the 124 patients in Cohort 1. (i, j)

Kaplan—Meier curves of OS for patients in the three groups stratified by “Subtype+pTNM 3¢”



model (i) or pTNM stage (j) from the independent EC Cohort 2. (k, I) Kaplan—Meier curves of
DFS for the three groups of patients stratified by “Subtype+pTNM 3c¢” model (k) or pTNM stage

() in Cohort 2. All P values in (e-l) were calculated by two-sided log-rank test.
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Supplementary Figure 6. CMAP-based drug prediction for EC patients.

Regulation of cell migration

Cell differentiation

Carboxylic acid metabolic process
Immune response

(a) Workflow of drug prediction. Volcano plot indicates proteins that are differentially expressed

between tumor and non-tumor samples. Red and green represent proteins with fold change

larger than 2 and BH adjusted P < 0.01. Other genes are colored in grey. P values were



calculated by two-sided Wilcoxon rank-sum test. The 187 upregulated and 271 downregulated
proteins were used as the query signature to match the reference profiles of perturbagens in
CMAP to calculate connectivity scores. Perturbagens were sorted by connectivity score in
increasing order, and the top perturbagens were predicted as candidate drugs. (b) Protein-
protein interaction network of the query signature in (a). The protein-protein interactions were
obtained from the STRING database. The width of the line indicates the edge confidence.
Upregulated proteins are colored in red, and downregulated proteins in blue. Node size
represents the degree of the protein. Proteins involved in regulation of cell migration, cell
differentiation, carboxylic acid metabolic process, and immune response are marked with blue,

green, orange, and light green, respectively.
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Supplementary Figure 7. Consensus clustering and immunoblotting analysis of subtype
signature for EC cell lines.

(a) Consensus clustering of 124 EC tumor samples and six EC cell lines including KYSE30,
KYSE150, KYSE450, TE1, TE3, and TE5. (b) Western blotting analysis of ELOA and SCAF4
in the six EC cell lines as described in (a). Each experiment was repeated three times

independently with similar results.
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Supplementary Figure 8. Molecular subtypes of EC defined by consensus clustering using the
proteins in Prot3 shown in Supplementary Figure 2a.

(a) Consensus clustering of EC tumor samples. The left panel shows consensus matrices of
the 124 EC samples with two clusters (k = 2). Consensus clustering was performed on the top
25% of the most variable proteins in Prot3 as described in Supplementary Figure 2a. The right
panel shows the silhouette-width plot. (b) Average silhouette-width plot. The average silhouette
width takes the maximum value when number of clusters was 2 (k = 2). (c¢) Consensus matrices

of the 124 EC samples based on clusters from 3 to 6 (k = 3, 4, 5 or 6). The bottom panel shows



the silhouette-width plots. (d) Venn diagram of subtype S1, S2, S1_Prot3, and S2_Prot3. (e)
Kaplan—Meier curves of overall survival (left) and disease-free survival (right) for subtype

S1_Prot3 and S2_Prot3. P values are calculated by two-sided log-rank test.



