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Supplementary Text 

 

A rate equation model for co-existence of two or more C. elegans colonies 

In Fig. 1 we observed co-existence of multiple C. elegans colonies on the same plate. Here we 

provide a rate equation model to describe the phenomenon. For simplicity, we first examine a 

three compartment system consisting of solitary worm (w), colony 1 (w1*), and colony 2 (w2*).  

Similar to the single-colony scenario described in the main text, rate equations for w1* and w2* 

can be written as: 

 

 
𝑑𝑤1∗

𝑑𝑡
=  𝑘1(𝑤𝑡𝑜𝑡 −  𝑤1∗ − 𝑤2∗)(𝑤1∗)

1

2 − 𝑘−1(𝑤1∗)
1

2 , and (12) 

 
𝑑𝑤2∗

𝑑𝑡
=  𝑘1(𝑤𝑡𝑜𝑡 −  𝑤1∗ − 𝑤2∗)(𝑤2∗)

1

2 − 𝑘−1(𝑤2∗)
1

2, (13) 

 

where we used the conservation relationship 𝑤𝑡𝑜𝑡 =  𝑤 +  𝑤1∗ + 𝑤2∗. 

At steady state, the time derivatives in both Eq. 12 and Eq. 13 must equal zero. There are two 

solutions: 

 𝑤𝑆𝑆
1∗ = 0 and 𝑤𝑆𝑆

2∗ = 0, or (14) 

 𝑤𝑆𝑆
1∗ + 𝑤𝑆𝑆

2∗ = 𝑤𝑡𝑜𝑡 −  
𝑘−1

𝑘1
⁄ , (15) 

 

For 0 ≤ wtot ≤ k-1/k1 there is a single steady state given by Eq 14, and it is stable. When wtot >  

k-1/k1, there are two steady states given by Eqs 14 and 15. The 𝑤𝑆𝑆
1∗ = 𝑤𝑆𝑆

2∗ = 0 steady state is 

unstable and corresponds to the dispersed worms being supersaturated. The steady state given by 

Eq 15 is stable. Note that the total of the worms in colonies 1 and 2 is given by the right hand 

side, but there is no constraint upon how many worms are in one colony versus the other. This is 

a consequence of having both the joining and leaving rates be proportional to the colony 

diameter. As was seen in the single-colony scenario analyzed in the main text, there is a 

transcritical bifurcation at a threshold of k-1/k1.  

 

Therefore, the model’s predictions are the same irrespective of whether there are one or two 

colonies. One can apply a similar treatment to systems of colony number greater than two and 

obtain similar results. 

 

A rate equation model for Ostwald ripening in C. elegans colony formation 

To account for the Ostwald ripening phenomenon in C. elegans colony formation, we suppose 

that there are three compartments—a small colony (w*), a large colony (w**), and out-of-colony 

worms (w) (Fig. 5c)—and we assume that large colonies are more stable than small colonies due 

because worms at the boundary are more exposed when the curvature is higher. We used a 

function of the form of the Gibbs-Thomson equation41 to account for this difference in stability: 

 

 
𝑘−1

𝑘1
[𝑟] =

𝑘−1

𝑘1
[∞]𝑒𝑎/𝑟, (16) 

 

where a is a parameter that determines how steeply the vapor pressure, chemical potential, or 

solubility of a substance falls as r increases, in an ideal system. Dividing Eq 6 through by k1, and 

substituting in Eq 16 for k-1/k1, we get: 
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 0 = (𝑤𝑡𝑜𝑡 −  𝑤∗)(𝑤∗)
1

2 −
𝑘−1

𝑘1
[∞]𝑒𝑎 (𝑤∗)

1
2⁄ (𝑤∗)

1

2. (17) 

 

 

Supplementary Fig. S3a, b shows the steady state values of w* and w as functions of wtot. As was 

the case with the model shown in Fig. 5c, there is a critical value of wtot below which no colony 

forms—there is a single steady state with w* = 0. As wtot passes through this value, the system 

goes through a saddle-node bifurcation, with a stable w* > 0 state appearing and then splitting 

into a stable and an unstable steady state; the system is bistable. The stable steady state with w* 

= 0 persists, but it becomes metastable. When a = 0, Eq 17 is equivalent to Eq 6, the saddle-node 

bifurcation reduces to a transcritical bifurcation, and the critical value of wtot = k-1/k1. When a > 

0, the critical value of wtot becomes greater than k-1/k1, and the larger the value of a, the greater 

this discrepancy becomes. As described below, from the experimental agreement between 

(wtot)crit and 𝑤
𝐿𝑒𝑎𝑣𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

𝐽𝑜𝑖𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
 we can infer that a is unlikely to be greater than 0.1. 

 

Note also that in this model, the maximum “solubility” of w—the concentration of w when wtot is 

above the critical value—is no longer constant. Instead w falls as wtot increases, asymptotically 

approaching a minimal constant value of k-1/k1. Given experimental variability, this decrease in w 

with increasing wtot would probably be discernible if a were greater than ~0.2 or 0.3. Since no 

decrease was observed experimentally (Fig 1e,g), this again argues for a relatively low value of 

the scaling factor a. 

 

We can derive a formula for the position of the saddle-node bifurcation by noting that it occurs 

when the steady-state response curve is vertical. First, we write the equation for the relationship 

between wtot and w* at steady state. Rearranging Eq 17 yields: 

 

 𝑤𝑡𝑜𝑡 =
𝑘−1

𝑘1
𝑒

𝑎/√𝑤𝑆𝑆
∗

+ 𝑤𝑆𝑆
∗ , (18) 

 

for 𝑤𝑆𝑆
∗ ≠ 0. Note that this equation reduces to Eq 8 when a = 0. Next, we take the derivative of 

wtot with respect to 𝑤𝑆𝑆
∗ : 

 

 
𝑑𝑤𝑡𝑜𝑡

𝑑𝑤𝑠𝑠
∗ = 1 −

𝑎𝑘−1

2𝑘1𝑤𝑠𝑠
∗ 𝑒

𝑎/√𝑤𝑆𝑆
∗

. (19) 

 

 

When this derivative equals zero, the 𝑤𝑆𝑆
∗  curve is vertical. Setting the derivative to zero 

produces a transcendental equation, and solving for 𝑤𝑆𝑆
∗  yields: 

 

 𝑤𝑆𝑆
∗ =

𝑎

9𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐿𝑜𝑔[
1

3
(

2𝑎2𝑘1
𝑘−1

)
2/3

]

, (20) 
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where ProductLog denotes a Lambert W function. The corresponding value for wtot can then be 

calculated from Eq 18. The critical value of wtot as a function of a, for k1 = k-1 = 1, is shown in 

Supplementary Fig. 3c; over this range, it is nearly a straight line. 

 

Note also that unless a is close to 0, we can no longer obtain the either k-1/k1 or the critical value 

of wtot directly from Eq 11. Now we have: 

 

 𝑤
𝐿𝑒𝑎𝑣𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

 𝐽𝑜𝑖𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
=

𝑘−1

𝑘1
𝑒

𝑎/
√

𝑎

9𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐿𝑜𝑔[
1
3

(
2𝑎2𝑘1

𝑘−1
)

2/3

]

. (21) 

 

When a = 0.1, 𝑤
𝐿𝑒𝑎𝑣𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

𝐽𝑜𝑖𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
 is ~11% below the actual critical value of wtot, and when a = 1, it is 

~32% low. Since experimentally the critical value of wtot predicted from 𝑤
𝐿𝑒𝑎𝑣𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

𝐽𝑜𝑖𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
 was 

higher than the observed value for dauer worms, and only ~12% lower for adult worms, the 

value of a for the worm systems appears to be no larger than 0.1 or so. Thus the effects of 

curvature appear to be weak. 

 

Now to extend the analysis to three compartments, with a large colony (w**) as well as a small 

one (w*), we write two rate equations: 

 

 
𝑑𝑤∗

𝑑𝑡
=  𝑘1(𝑤𝑡𝑜𝑡 − 𝑤∗ −  𝑤∗∗)(𝑤∗)

1

2 − 𝑘−1[∞]𝑒𝑎 (𝑤∗)
1
2⁄ (𝑤∗)

1

2 (22) 

 
𝑑𝑤∗∗

𝑑𝑡
=  𝑘1(𝑤𝑡𝑜𝑡 −  𝑤∗ − 𝑤∗∗)(𝑤∗∗)

1

2 − 𝑘−1[∞]𝑒𝑎 (𝑤∗∗)
1
2⁄ (𝑤∗∗)

1

2. (23) 

 

The conservation equation now is wtot = w + w* + w**. Note that arbitrarily we have included the 

Gibbs-Thomson factor, which we used as a correction to k-1/k1 in the steady-state equation (Eq 

17), as being part of the k-1 term in these dynamical equations.  

 

In Ostwald ripening, a dominant colony grows and a smaller colony shrinks and eventually 

vanishes (Supplementary Fig. 3d, e). Although different initial sizes of the two colonies may 

result in identical steady states — the larger colony dominates and the smaller colony dissolves 

— the initial dynamics of the process of achieving the steady state may vary greatly. To illustrate 

the variation in the processes, here we show two examples with different initial conditions. In the 

first example, both w* and w** are small, and w** is only slightly greater than w* 

(Supplementary Fig. 3d). Both colonies grow initially (also reflected in our experimental 

observation in Fig. 1) but then diverge, with w** sustains to grow and w* starts to shrink. The 

system takes a long time to arrive at the steady state. However, in the second example, where the 

size of the colonies differs by a greater amount, w** grows and w* dissolves, and the system 

more quickly transits into the steady-state (Supplementary Fig. 3e).  
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Supplementary Fig. 1: Sparsely seeded worms showed no colonies after 12 h of incubation. 

Washed adult N2 C. elegans seeded at a low concentration (0.01 worms/mm2) and incubated for 

12 h. Scale bar  
  

2 mm 
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Supplementary Fig. 2: Colony formation in other developmental stages also depends on 

density. 

a, b Example micrographs of dauer-stage worms on agarose pads, which (a) did not form 

colonies when the population density was low (0.26 worms/mm2, n = 7) and (b) formed a colony 

when the population density was high (3.90 worms/mm2, n = 10). c, d Example micrographs of 

asynchronized worms on agarose pads. They (c) did not form colonies when the population 

density was low (0.03 worms/mm2, n = 9) and (d) formed a colony when the population density 

was high (1.30 worms/mm2, n = 9).  
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Supplementary Fig. 3: Model for Ostwald ripening in C. elegans colony formation. 

a, b The modeled steady-state densities of worms out of colonies (w), and in a colony (w*), as a 

function of the total density of worms wtot, based on numerical solutions to Eq. 15. The system 

has a single stable steady state until the concentration of worms reaches a critical value that is 

greater than k-1/k1. Beyond the critical density, the system undergoes a saddle-node bifurcation, 

and has an unstable steady state (dashed) and two stable steady states (solid). One stable steady 

state can be regarded as a supersaturated system; it lies close to the unstable branch, and so small 

perturbations would be expected to drive the system across the unstable branch and into the 

stable manifold of the other steady state. c Calculated values for the critical concentration of wtot 

(red) and the concentrations obtained from observation of the joining and leaving rates (blue), as 

a function of a. d, e Two examples of modeled time dependent processes based on Eqs. 20 and 

21. The parameters for system are: wtot = 4, greater than the critical density; k1 and k-1 are both 1; 

a = 0.1, showing size dependency. The initial size of the small colony is w*[0] = 0.218, a small 

value. We initiated the large colony colony size w**[0] to be either a very large colony (w**[0] 

= 2.4) (d) or one similar in size to w*[0] (w**[0] = 0.24) (e).  


