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Reduced off-target effect of NG-BE4max
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Recently, a rationally engineered SpCas9 variant (SpCas9-NG)
that can recognize a minimal NG protospacer adjacent motif
(PAM) was reported to expand the targeting scope in genome
editing. However, increased genome-wide off-target muta-
tions with this variant compared with SpCas9 were reported
in previous studies. In addition, lower base editing fre-
quencies and higher unintended off-target mutations were
also found in Hoxc13-ablated rabbits generated by NG-BE4-
max in our study. Here, a high-fidelity base editor, NG-
HiFi, in comparison to NG-BE4max, showed retention of
on-target activity while exhibiting significantly decreased
off-target activity in Hoxc13-ablated rabbits. Collectively,
the improved specificity and reduced off-target effect of
SpCas9-NG assisted in cytidine base editing with the NG-
HiFi system, providing a promising tool to precisely model
human diseases in rabbits.

INTRODUCTION
CRISPR/Cas9-based cytosine base editors (CBEs) can mediate the
direct conversion of C to T (or G to A), which does not induce dou-
ble-stranded DNA breaks (DSBs) or require a donor template.1

CBEs enable C-to-T conversion at a target genomic locus with the
requirement of a protospacer adjacent motif (PAM), such as
NGG, possessing limited activity at noncanonical NGH (H = A,
C, and T) PAM sites, which restricts the targetable genomic loci
in applications.2

To address the PAM limitation, a rationally engineered SpCas9
variant (SpCas9-NG)3 that can recognize the more relaxed NG
PAM, which broadens PAM compatibility and significantly expands
the target scope, has been used in Arabidopsis4 and rice.5 In addition,
the NG-BE4max and NG-ABEmax systems are highly efficient tools
for targeted base editing and have been used to precisely mimic hu-
man pathogenic mutations in rabbits.6 However, a previous study
showed that SpCas9-NG not only targeted the genome but also poten-
tially increased off-target risk by generating new single-guide RNAs
(sgRNAs).7 In addition, a higher frequency of off-target editing events
was also observed in Hoxc13 mutant rabbits generated by the NG-
ABEmax system in our previous study.6
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In this study, significantly reduced off-target events and similar on-
target effects in Hoxc13 mutant rabbits were generated by NG-HiFi,
which greatly improved the base editing specificity and expanded
the genome targeting scope of base editing in human disease
modeling and gene therapy in the future.
RESULTS
Significantly increased off-target effects in Hoxc13 (Q87Stop)

rabbits generated by the NG-BE4max system

First, the more relaxed NG PAM in the NG-BE4max vector was con-
structed in our previous study6 (Figure 1A). An sgRNA targeting the
second exon of rabbit Hoxc13 was designed (Figure 1B). Then, the
base editing frequencies were evaluated by Sanger sequencing using
EditR, a robust base editing quantification software.8 The results
showed that four (#2, #3, #4, and #5) of five pups (80%) carried a
desired nonsense mutation (Q87Stop) at the target site. However,
there was no obvious phenotype (hairlessness) (Figure 1C) because
of the low base editing frequencies for C-to-T conversion, ranging
from 14.3% to 47% in these rabbits (Figures 1D and 1E; Table S1).
In addition, the four base-edited rabbits died within a week (Fig-
ure 1F), which is not consistent with our previous study.9

To confirm the increased off-target effect of SpCas9-NG, the sites of
EMX1, DNMT1, HEK293 site4, FANCF site2, and VEGFA site2 were
predicted according to Cas-OFFinder.10 The results showed signifi-
cantly increased off-target effects in SpCas9-NG compared with
wild-type SpCas9 (Figure S2). Consistent results were found in
Hoxc13 (Q87Stop) rabbits, which showed 8.35%–47.68% off-target
effects (Figure 1G; Figure S1). It was reported that OT1 (GALK1,
p.Q259Stop) is a major enzyme for galactose metabolism11, defects
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Figure 1. NG-BE4max-mediated C-T base editing of

the Hoxc13 locus in rabbits

(A) Plasmid schematic of the NG-BE4max cytosine base

editor used in this study. The D10A mutation inactivates the

nuclease activity of the RuvC domain in SpCas9-NG. NLS,

nuclear localization signal. (B) Schematic of sgRNA design

at the rabbit Hoxc13 locus. (C) Photograph of F0 Hoxc13

(Q87Stop) rabbits generated by the NG-BE4max system.

(D) On-target base editing frequency in F0 Hoxc13

(Q87Stop) rabbits generated by the NG-BE4max system.

(E) Chromatograms of wild-type (WT) and mutant se-

quences showing C-T substitution in Hoxc13 (Q87Stop) by

the NG-BE4max system. (F) Survival curves of F0 Hoxc13

(Q87Stop) rabbits generated by the NG-BE4max system.

(G) On- and off-target base editing frequency in F0 Hoxc13

(Q87Stop) rabbits generated by the NG-BE4max system.
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in which are known to cause cataracts in infants and galactosemia
type 2 (Table S2),12 while OT2 (SPTB, p.Q727Stop) plays an impor-
tant role in the stability of the erythrocyte membrane,13 which is asso-
ciated with hereditary spherocytosis (HS). Thus, we hypothesized that
the high death rate of Hoxc13 (Q87Stop) rabbits may have been
caused by the significantly increased off-target effect generated by
the NG-BE4max system.

Improved specificity of NG-BE4max obtained by using NG-HiFi

CRISPR/Cas9 enables highly efficient genome editing in a variety of
organisms but can also cause unwanted mutations at off-target sites
that resemble the on-target sequence.14,15 To date, Cas9 variants
have been used to reduce genome-wide off-target mutations, such
as eSpCas9(1.1),16 SpCas9-HF1,17 Sniper-Cas9,18 HiFi-Cas9,19 and
Opti-Cas9.20 Thus, to reduce the off-target base editing effect of the
NG-BE4max system, five high-fidelity base editors were used to
reduce off-target editing events in this study (Figure 2A).

Then, five endogenous genomic loci were chosen to test the on-target
(Figure S4) and off-target (Figure S5) effects of the high-fidelity base
Molecular Thera
editors in 293T cells. The results showed signifi-
cantly reduced off-target editing by using high-fi-
delity base editors compared with NG-BE4max,
and the base-editing specificity of NG-Sniper
and NG-HiFi was comparable to that of NG-BE4-
max (Figure S5). To test whether NG-Sniper and
NG-HiFi could be used to generate Hoxc13
(Q87Stop) with reduced off-target effects, in-
jected rabbit blastocysts were collected and sub-
jected to analysis of the on-target effects and the
off-target effects (on OT2 and OT3). The results
showed that there was no significant difference
in on-target effects and the off-target effects of
NG-Sniper and NG-HiFi decreased significantly
compared with those of NG-BE4max (Figure 2B).
Moreover, NG-HiFi maintained on-target base
editing while eliminating detectable off-target
base editing. Therefore, NG-HiFi was used to generate Hoxc13
(Q87Stop) in the following study.

As shown in Figures 2D and 2E and Table S1, four (+2,+3,+4, and
+5) of five pups (80%) carried a desired nonsense mutation at the
target site of Hoxc13 (Q87Stop), generated by using NG-HiFi. The
base editing frequency was significantly increased compared with
that of the NG-BE4max system (58.73% versus 25.55%) (Figure 2G).
In addition, the desired hairless phenotype was detected in pups +4
and +5 (Figure 2C). Moreover, the normal survival rate and lack of
off-target effects were observed inHoxc13 (Q87Stop) rabbits generated
by the NG-HiFi system (Figures 2F and 2G), and Hoxc13 (Q87Stop)
could also be stably transmitted to the F1 offspring (Figure S6).

DISCUSSION
In this study, we successfully generated a high-fidelity base editor,
NG-HiFi, and demonstrated the significantly reduced off-target effect
of NG-BE4max by using the NG-HiFi system. The desired hairless
phenotype was obtained in Hoxc13 (Q87Stop) rabbits by using the
NG-HiFi base editor, which greatly expanded the genome targeting
py: Nucleic Acids Vol. 25 September 2021 169
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Figure 2. Significantly reduced off-target effects in

Hoxc13 (Q87Stop) rabbits using NG-HiFi

(A) Plasmid schematic of the five high-fidelity base editors

NG-eSp, NG-HF1, NG-Sniper, NG-HiFi, and NG-Opti. (B)

NG-HiFi induces efficient C-to-T base editing in rabbit

blastocysts. (C) Photograph of F0 Hoxc13 (Q87Stop) rab-

bits generated by the NG-HiFi system. (D) On-target base

editing frequency of F0 Hoxc13 (Q87Stop) rabbits gener-

ated by the NG-HiFi system. (E) Chromatograms of WT and

mutant sequences showing C-T substitution in Hoxc13

(Q87Stop) rabbits by the NG-HiFi system. (F) Survival curves

of F0 Hoxc13 (Q87Stop) rabbits generated by the NG-HiFi

system. (G) On- and off-target base editing frequency of F0

Hoxc13 (Q87Stop) rabbits generated by the NG-HiFi sys-

tem.
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scope and reduced the risk of off-target effects, providing a promising
tool to precisely model human diseases in rabbits.

The possibility of creating off-target mutations with unknown conse-
quences is a major concern associated with the CRISPR/Cas9 system.
To date, numerous Cas9 homologs and variants have been used for
cytidine base editing, such as SaCas9,21 ScCas9,22 Spy-macCas9,23

Nme2Cas9,24 St1Cas9,25 and Cas12a.26 In addition to CBEs, addi-
tional base editing tools, such as adenine base editors (ABEs),27 gly-
cosylase base editors (GBEs),28 and prime editors (PEs),29 have
been developed to increase versatility. Combining these tools with
high-fidelity mutations may further improve the DNA specificity of
these genome editors, as shown in this study.

In addition to Cas9-dependent DNA off-target mutations, it has been
shown that CBEs may cause Cas9-independent off-target DNA and
170 Molecular Therapy: Nucleic Acids Vol. 25 September 2021
RNAmutations.30–33 These unexpected off-target
DNA and RNA mutations are mainly caused by
deaminase domains rather than Cas9 domains.
Additionally, off-target DNA and RNA editing
could be eliminated by rational mutagenesis of
the deaminase domain.34–36 Therefore, by further
rationally engineering both Cas9 and deaminase
domains, it is possible to produce a perfect base
editor without off-target mutations in the future.

In summary, this study demonstrates the great
value of a highly specific base editor in efficient
C-to-T conversion at sites containing the broad-
ened NG PAM, which greatly expands the
genome targeting scope of base editing in human
disease modeling and future gene therapy.

MATERIALS AND METHODS
Ethics statement

New Zealand white rabbits were obtained from
the Laboratory Animal Center of Jilin University
(Changchun, China). All animal studies were
conducted according to experimental practices and standards
approved by the Animal Welfare and Research Ethics Committee
of Jilin University.

Plasmid construction

The BE4max plasmid was obtained from Addgene (#112093). Seven
mutations (R1335A/L1111R/D1135V/G1218R/E1219F/A1322R/
T1337R) in CRISPR/Cas9 were introduced into BE4max to obtain
NG-BE4max. Five high-fidelity CRISPR/Cas9 systems were intro-
duced into NG-BE4max to obtain NG-eSp (K848A/K1003A/
R1060A), NG-HF1 (N497A/R661A/Q695A/Q926A), NG-Sniper
(F539S/M761I/K890N), NG-HiFi (R691A), and NG-Opti (R661A/
K1003H). Site-directed mutagenesis of the plasmid was performed
with the Fast Site-Directed Mutagenesis Kit (Tiangen, Beijing, China)
according to the manufacturer’s instructions. All primers used for
site-directed mutation are listed in Table S6.
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mRNA and gRNA preparation

All plasmids were linearized with NotI and transcribed in vitro with
the HiScribe T7 ARCA mRNA Kit (NEB). The RNeasy Mini Kit
(QIAGEN) was used for mRNA purification according to the manu-
facturer’s instructions.

The sgRNA oligos were annealed into pUC57-sgRNA expression
vectors containing a T7 promoter, transcribed in vitro with the
MAXIscript T7 Kit (Ambion), and purified with the miRNeasy
Mini Kit (QIAGEN) according to the manufacturer’s instructions.

Microinjection of rabbit zygotes and embryo transfer

The protocol used for microinjection of pronuclear-stage embryos
has been described in detail in our previously published study.37

Briefly, a mixture of mRNA (200 ng/mL) and sgRNA (50 ng/mL)
was co-injected into the cytoplasm of pronuclear-stage zygotes. The
injected embryos were transferred into Earle’s Balanced Salt Solution
(EBSS) medium for short-term culture at 38.5�C, under 5% carbon
dioxide and 100% humidity. Then, ~30–50 injected zygotes were
transferred into the oviducts of recipient rabbits.

Single-embryo PCR amplification and rabbit genotyping

Single-embryo PCR amplification and rabbit genotyping were per-
formed according to our previous study.38 The base editing fre-
quencies were evaluated by EditR (baseEditR.com/). All primers
used for genotyping are listed in Table S4.

Off-target detection

The potential off-target sites (POTs) were predicted according to an
online design tool (http://www.rgenome.net/cas-offinder/). Selected
POTs (Table S3 and Table S5) were amplified by PCR and Sanger
sequencing. All primers used for the off-target assay are listed in Table
S3 and Table S5. Mutations were detected with deep sequencing and
Hi-TOM analysis according to a previous study.39

Cell culture and transfection

HEK293T cells were maintained in DMEM plus GlutaMax (Thermo
Fisher) supplemented with 10% (v/v) fetal bovine serum at 37�C with
5% CO2. HEK293T cells were seeded on 6-well collagen-coated Bio-
Coat plates (Corning) in an antibiotic-free medium and transfected at
~70% confluency. Then, BE and sgRNA plasmids were transfected
with Lipofectamine 3000 (Thermo Fisher) according to the manufac-
turer’s protocol.

Statistical analysis

All data are expressed as the mean ± SEM, with at least three individ-
ual determinations in all experiments. The data were analyzed with t
tests using GraphPad Prism software 6.0. p < 0.05 was considered sta-
tistically significant; *p < 0.05, **p < 0.01, ***p < 0.001.

Data availability

High-throughput sequencing reads were deposited in the NCBI
Sequence Read Archive under PRJNA725675.
SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.omtn.2021.05.012.
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Figure S1. The significantly increased off-target effect in Hoxc13 (Q87Stop) rabbits 

generated by SpCas9-NG. Representative sequencing chromatograms of off-target 

detection in WT (A) and Hoxc13 (Q87Stop) (B) rabbits. The 20 bp of the POTS and 

the PAM are represented in shadow. Red arrows, the off-target effect. 

 

 

Figure S2. The significantly increased potential off-target sites (POTs) by 

SpCas9-NG compared with wild-type SpCas9.The potential off-target sites (POTs) 

were predicted by using Cas-OFFinder. 
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Figure S3. The premature termination codon (PTC) mutation was determined in the 

OT1 (GALK1, p.Q258stop) and OT2 (SPTB, p.Q727stop) sites. Asterisk, PTC 

mutation. (A) OT1 (GALK1, p.Q258stop), (B) OT2 (SPTB, p.Q727stop). 

  

Figure S4. On-target base editing efficiency of five endogenous genomic loci using 

NG-BE4max and high-fidelity base editors in HEK 293T cells. 
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Figure S5. The off-target effect of NG-BE4max and five high-fidelity base editors 

were determined by deep sequencing. 

 

 

Figure S6. (A) Photographs of the F1 Hoxc13 (Q87Stop) rabbits generated by the 

NG-HiFi system. (B) The significantly reduced off-target effect for F1 generation 

Hoxc13 rabbits generated by the NG-HiFi system. 
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Table S1. Generation of Hoxc13 (Q87Stop) rabbits by NG-BE4max and NG-HiFi base editors.  

Table S2. The predicted phenotype of off-target mutation. 

Table S3. The primers used for identifying potential off-target sites of Hoxc13 (Q87Stop) rabbits. 

The mismatched nucleotides are shown in lower case. 

Table S4. Primers used for genotyping of mutation sites in this study. 

Table S5. The primers used for identifying potential off-target sites of NG-BE4max and five 

high-fidelity base editors in 293T cells. The mismatched nucleotides are shown in lower case. 

Table S6. Primers of the site mutation of high-fidelity CRISPR/Cas9 systems. 
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