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Supplemental Experimental Procedures 
 

Supplemental Note S1: Core Dataset 
We constructed our datasets using two Informa® databases: Pharmaprojects and Trialtrove, two separate 
relational databases organized by largely different ontologies. We extracted drug-specific features and 
drug–indication development status from Pharmaprojects, and clinical trial features from Trialtrove. 

First, we identified all drug–indication pairs with known outcomes in Pharmaprojects. Next, we dropped 
pairs that did not have any trials captured in Trialtrove. (We note that the disease coverage in 
Pharmaprojects and Trialtrove is slightly different.) Because missingness is present in both Pharmaprojects 
and Trialtrove, we imposed several additional filters to make sure that all samples collected were usable 
for analysis. 

We summarize the steps in Table S1 and Figure S1. It is important to note that the drug, indication, and 
trial relationships in the databases are surjective and non-injective: different drugs may target the same 
indication, and some trials may involve multiple drug–indication pairs. This is to be expected since one drug 
can be indicated for multiple diseases, a disease can have more than one treatment, and it is not uncommon 
for a trial to involve two or more related primary investigational drugs. In Figure S2, we plot the probability 
of phase 2 to approval over time in the dataset. 

We extracted drug compound attributes and clinical trial characteristics from Pharmaprojects and Trialtrove, 
respectively (see Table S2). In addition to structured features readily available in the databases, we created 
an augmented set of variables that captured sponsor track record and investigator experience. To quantify 
a particular trial sponsor’s track record in successfully developing other drugs, we used the number of prior 
approved and failed drug–indication developments; and for past trials for phases 1, 2, and 3 separately, we 
used the total number of trials sponsored, the number of trials sponsored with positive and negative results, 
and the number of trials sponsored to completion and termination. We used the end date of the last trial of 
the drug–indication pair under consideration as the cutoff for considering prior experience since the last 
end date will be the time of prediction. We abstracted investigator experience in the same manner. 

Lastly, we also constructed a binary drug–indication pair feature that indicates whether a drug has 
previously been approved for another indication. Similarly, we used the end date of the last trial as the 
cutoff for considering prior approval. 

 

Table S1. Filters for constructing P2APP. 
 Rationale 
Drug–indication Pairs in Pharmaprojects  
Trials observed in Trialtrove We excluded pairs for which we do not observe any trials 

in Trialtrove. 
Known approval date (if approved) We defined the approval date as the earliest date a drug–

indication pair was approved in any market. We require 
these dates to perform time-series analysis. 

Known failure date (if failed) We defined the failure date as one year after the end-date 
of the last phase 2 or phase 3 trial (if any), whichever is 
latest. 

Clinical Trials in Trialtrove  
Phase 2 trials P2APP focuses on phase 2 trial data 
Known end date We required these dates to create sponsor track record 

and investigator experience, and to perform time-series 
analysis. 

Known sponsors and disease types Trials not tagged with sponsor/disease types are typically 
out of Trialtrove commercial coverage and not 
maintained. 

 



 

Figure S1. Sample sizes at each step of data pre-processing. 
 

 

Figure S2. Probability of phase 2 to approval in the dataset plotted using expanding windows. 
 

  



Table S2. Features extracted from Pharmaprojects and Trialtrove. We define multi-class features as 
categorical features that have mutually exclusive categories, i.e., features can belong to only one 
category at any time; and multi-label features as features that have non-mutually-exclusive 
categories, i.e., features can belong to more than one category simultaneously. 

 Examples Type 
Drug–
indication Pair   

Biological target Cytokine/Growth factor; Enzyme; Ion channel; Receptor; Transporter Multi-label 
Country China; India; Japan; United States Multi-label 
Drug–indication 
development 
status 

Approved; Failed Binary 

Indication Cancer, lung, small cell; Cancer, lung, non-small cell; Cancer, brain Multi-class 
Mechanism of 
action 

Cell cycle inhibitor; DNA inhibitor; Ion channel antagonist; Protein kinase inhibitor Multi-label 

Medium Capsule, hard; Capsule, soft; Powder; Solution; Suspension; Tablet Multi-label 
Name Free text String 
Origin Biological, protein, antibody; Biological, protein, recombinant; Chemical, synthetic Multi-label 
Prior approval of 
drug for another 
indication 

True; false Binary 

Route Inhaled; Injectable; Oral; Topical Multi-label 
Therapeutic 
class 

Anti-viral, anti-HIV; Anti-cancer, immunological; Anti-epileptic Multi-label 

Trial   
Attribute Biomarker/Efficacy; Biomarker/Toxicity; Pharmacogenomic - Patient Preselection/Stratification Multi-label 
Actual accrual Integer Numerical 
Disease type Bladder; colorectal; ovarian Multi-label 
Duration Integer Numerical 
Exclusion criteria Free text String 
Gender Male, female, both Multi-class 
Investigator 
experience 

Refer to sponsor track record Numerical 

Location Canada; Europe; United Kingdom; United States Multi-label 
Number of 
identified sites 

Integer Numerical 

Outcome Completed, Negative outcome/primary endpoint(s) not met; Completed, Outcome 
indeterminate; Completed, Positive outcome/primary endpoint(s) met; Terminated, 
Safety/adverse effects 

Multi-label 

Patient age Integer Numerical 
Patient 
population 

Free text String 

Patient segment Stage I; stage III; stage IV; second line; pediatric Multi-label 
Phase 2 end 
date 

Date Date 

Primary endpoint Free text String 
Sponsor Duke University Medical Center; National Institutes of Health; Celgene Multi-label 
Sponsor track 
record 

Number of prior approved drug–indication pairs; Number of prior failed pairs; Total number of 
phase 1 trials sponsored; Number of phase 1 trials with positive results; Number of phase 1 
trials with negative results; Number of completed phase 1 trials; Number of terminated phase 
1 trials; Total number of phase 2 trials sponsored; Number of phase 2 trials with positive 
results; Number of phase 2 trials with negative results; Number of completed phase 2 trials; 
Number of terminated phase 2 trials; Total number of phase 3 trials sponsored; Number of 
phase 3 trials with positive results; Number of phase 3 trials with negative results; Number of 
completed phase 3 trials; Number of terminated phase 3 trials 

Numerical 

Sponsor type Academic; Industry, all other pharma; Industry, Top 20 Pharma Multi-label 
Status Completed; terminated Binary 
Design Free text String 
Design 
keywords 

Cross over; Double blind/blinded; Efficacy; Multiple arm; Open label; Pharmacodynamics; 
Pharmacokinetics; Placebo control; Randomized; Single arm 

Multi-label 

Target accrual Integer Numerical 
Therapeutic area Autoimmune/Inflammation; Cardiovascular; CNS; Infectious Disease Multi-label 

 
  



Supplemental Note S2: Detailed Overview of Top-Performing 
Team 
 

High-level Overview 
A high-level overview of the solution by the team in top performing place is shown as a flowchart in Figure 
S3. The solution uses an ensemble of three different predictions followed by some post-processing. (Source 
code available at https://github.com/bjoernholzhauer/DSAI-Competition-2019.) 

 

 
Figure S3. High-level flowchart of top performing team. 

 

Extreme gradient boosting (XGBoost) was found to perform very well, as to be expected on tabular data.1 
Therefore the final solution included two XGBoost models that were fit on trial-level data. To obtain a single 
prediction per drug–indication pair, the predictions for each phase 2 trial for the drug–indication pair were 
summarized using 3 features (the mean, minimum, and maximum of the predicted probabilities on the logit-
scale) and combined into a single prediction using a ridge regression model. The ridge regression models 
were fit to the predictions of the validation-fold of each of the 26 cross-validation splits (out-of-fold 
predictions). Hyperparameters for the ridge regression model were chosen based on the one-standard-
error rule via a 10-fold cross-validation. The ridge regression model had the desirable additional effect of 
improving the calibration of predicted probabilities, which we expected to improve the binary log-loss on the 
unseen test set data. 

In contrast, the third model in the ensemble was a hierarchical Bayesian logistic regression (BLR) model fit 
on the drug–indication level using features summarized across the trials for the drug–indication pair. The 
rstanarm R package (see https://mc-stan.org/rstanarm/) that uses the Stan modelling language and 
Markov Chain Monte Carlo sampler (https://mc-stan.org) in the background were used to fit the model. 



For the Bayesian model, somewhat informative (i.e., expressing considerable uncertainty about the prior 
judgements) prior distributions were chosen based on judgments on the likely effects of different features. 
While this model performed slightly worse than the XGBoost models as assessed by cross-validation (CV), 
it substantially improved the performance of our final model ensemble. 

The observations used in fitting the BLR model were given weights based on covariate balancing propensity 
scores (CBPS) for being in the leaderboard test set. This had the motivation that there appear to be notable 
differences in the predictors of the training data and predictors of the leaderboard test set. While we did not 
know the outcomes to be predicted for the test samples and how exactly these might be influenced by this 
distribution shift in predictors, we assumed that it would be important to address this. CBPS weights are 
one of the possible techniques for addressing such a distribution shift.2 

There is a notable decline in approval rates over time in the training data. Some of this trend may be due 
to an increasing difficulty in obtaining approval for a new drug. However, we were concerned that this might 
be the result of failed projects missing from the database for the years before trials had to be registered on 
clinicaltrials.gov in 2007. We tested this theory by discarding some of the training data both via cross-
validation and in terms of leaderboard score, and obtained improved results. Thus, we did not use data 
before 2008 in our XGBoost models and, in the case of the BLR, even discarded data from 2008 and 2009. 

 

Hyperparameter Tuning for XGBoost 
Hyperparameter tuning was based on a 26-fold past-vs.-future CV scheme.  

• For the first XGBoost model it was done manually using the rule of thumb that one should tune 
hyperparameters separately using relatively high learning rate (eta=0.1) in the following order: 1) 
max_depth, 2) subsample, 3) min_child_weight, 4) colsample_bytree.  

• For the second XGBoost model, hyperparameters were tuned at a high learning rate using the 
differential evolution algorithm3 implemented in the DEoptim R package for global optimization of 
the leader-board metric as assessed by CV. 

For both XGBoost models the final learning rate was 0.05 and the number of trees (learning rounds) for 
refitting with the whole data was identified using the CV-log-loss (with the optimal number of trees increased 
by 10% for refitting on the whole dataset to account for the larger dataset).  

The selected final hyperparameters are shown in Figure S3. 

In contrast to the XGBoost models, the modelling decisions for the Bayesian logistic regression were taken 
based on the team judgments, because this resulted in substantially better public leaderboard performance 
than attempts to automatically tune the hyperparameters of prior distributions. 

 

Cross-validation 
An appropriate validation set-up is critical for making modelling choices in a principled way that avoids 
overfitting4 – i.e., for arriving at a solution that generalizes well to the unseen leaderboard outcomes. The 
CV approach for hyperparameter tuning followed known general principles for CV (see also 
https://www.fast.ai/2017/11/13/validation-sets/ accessed 6 April 2021) by 

1) attempting to approximate the actual prediction task as closely as possible by splitting the time 
series of data by past-versus-future (while still offering multiple splits that are as independent as 
possible for evaluation) and 

2) ensuring that studies from the same drug–indication pair are never in the training data and the 
validation data of a split. 

We mixed several possible ways of doing past-vs.-future splits in the 26 different folds we created. These 
ideas included: 

• overlapping past-vs.-future splits (e.g., <2012 vs. >= 2012, <2013 vs. >= 2013, etc.),  



• splitting the same future into several bits (e.g., fold 1 = 1/5 of >= 2012, folds 2 = the next 1/5 of >= 
2012, etc.), and  

• variants where you either try to emulate predicting for the same drug and/or predicting for previously 
unseen drugs (one could look at those two tasks separately). 

As to be expected, random splits correlated less with the public leaderboard score than splitting past-vs.-
future. 

For the ridge regression, a 10-fold CV scheme on the out-of-fold predictions was used. This CV scheme 
always grouped all records for a drug–indication pair for any of the 26-validation folds into the same fold. 

 

Feature Engineering 
A wide range of additional features (or predictors) was derived in addition to those already provided by the 
competition organizers. The definition of each of the 263 features used by two XGBoost models is 
summarized in Table S3. How these features were summarized into features at the drug–indication pair 
level for the BLR model is summarized in Figure S3. 

We highlight a few key features that had high variable importance in the XGBoost models and had 
somewhat more complex derivations. 

One set of key features captured the relative size (on the log-scale) of the phase 2 program 
(rel_log_size_dis: rel_ph2_size_ta) for the drug–indication pair relative to other drug–indication pairs within 
the same therapeutic area and for the same disease type. Size was either in terms of the patient number 
or in terms of the number of phase 2 trials. 

Prior approvals for a drug, but also for other similar drugs that share a mode of action is clearly a potentially 
useful feature. However, for the latter, important information is lost if we focus on just the proportion of prior 
approvals for similar drugs: 1 approval for one drug is not the same as 20 approvals for 20 drugs—in the 
latter case our confidence about a mode of action should be increased compared to the first scenario. 
Similarly, one failure with a previous drug may not be very informative, but repeated failures of many drugs 
would be. To capture this information, we used two approaches: 

1) Approval counts: The simpler of the two approaches was to count the number of approvals for a 
mode of action up to and including the year of the phase 2 end of a drug–indication pair. 

2) Target encoding: We used a form of target encoding5,6 adapted to the time series nature of the 
data by creating a target encoding based only on data up to and including the year of the phase 2 
end of a drug–indication pair.  

We did this for any approval, approvals in the same therapeutic area and for the same disease type. A drug 
may have multiple modes of action, in which case we averaged the target encodings for the different modes 
of action. The derived variable is “prior_approval” in Table S3. A more sophisticated way of dealing with 
different modes of action could be a direction for future research. 

While only limited information on the outcomes of phase trials was available, we created a trial end score 
to summarize this information (termreason:trailendscore4). Within each trial, one feature was the mean of 
these scores, while another feature was the worst score. 

Other important features included whether a drug is a monoclonal antibody (is_mab), a generic 
(is_a_generic), an insulin (insulin), or a flu vaccine (fluvacc), and whether an international non-proprietary 
name (INN) (unwilling_to_pay_12k) is on the dataset for a drug (based on regular expression to distinguish 
brand names and/or company internal project codes from official INNs). 

 

Table S3. Definitions of the trial-level features used in XGBoost models. 
[See Excel file.] 

 



Fitted Models 
 

 
Figure S4. Odds ratios for non-disease area variables from the Bayesian logistic regression used 

in the final submission. 
 

Figure S4 and Figure S5 show the marginal posterior odds-ratios for each feature obtained from the BLR 
model. These figures are split according to whether model terms are fixed effects (Figure S4) or random 
disease area effects (Figure S5). The shown point estimates are posterior medians, the inner intervals are 
50% credible intervals, and the outer intervals are 95% credible intervals. 

Firstly, a phase 2 program with more trials compared with other drugs for the same disease is associated 
with a higher probability of approval. This may partially reflect that larger phase 2 programs could result in 
better decisions about phase 3, but to a considerable extent reflects that projects that fail early in phase 2 
will tend to have fewer phase 2 trials than projects that succeed in initial trials. That is, this variable may 
reflect a decision by companies to terminate a project. 

 

 
Figure S5. Odds ratios for disease area variables from the Bayesian logistic regression used in 

the final submission. 
 

Prior approvals for other indications increase the probability of approval. This is logical: A prior approval 
shows that a drug has at least some clinical effect and makes unexpected safety findings less likely. 

If there is a well-understood mode of action and regulatory pathway—such as, for flu vaccines and 
insulins—the probably of approval is higher, too. 

On the negative side, innovative drugs have a lower probability of success than generics. This reflects that 
the uncertainty about them is greater. 



As would be expected, the mean trial outcome score (MTOS) we created is a major predictor of success: 
projects with studies stopped due to pipeline re-prioritization, strategy shift, safety issues, or lack of efficacy 
rarely lead to an approval. Similarly, when a company does not obtain an INN for a drug, it does not intend 
to start a phase 3. 

We also note that oncology projects tend to fail more often than drugs in other therapeutic areas. 

Three different feature importance metrics for the two XGBoost models are shown in Table S4 for the top-
25 predictors in the XGBoost models. As can be seen, no single feature dominates the feature importance, 
but several features that capture the relative size of the phase 2 program, the target encodings for modes 
of action, and the trial outcomes scores dominate this list. The lack of a single feature having much higher 
importance is partially due to the high correlation between the large number of related features. 

  



Table S4. Feature importance for top 25 predictors in XGBoost models. 
 XGBoost model #1 XGBoost model #2 
Feature Gain Cover Freq. Gain Cover Freq. 
rel_ph2_size_ta: Relative size (number of 
trials) of phase 2 for TA 

0.095 0.056 0.046 0.221 0.118 0.075 

rel_ph2_size_dis: Relative size (number of 
trials) of phase 2 for disease 

0.090 0.053 0.048 0.078 0.062 0.061 

meanclu50: Avg. target encoding for MoAs of 
drug (UCrL of 50% CrI) 

0.065 0.052 0.051 0.046 0.049 0.055 

class_approvals: Total # of MoAs of drug with 
previous approvals 

0.044 0.042 0.033 0.043 0.063 0.047 

meancll50: Avg. target encoding for MoAs of 
drug (LCrL of 50% CrI) 

0.031 0.032 0.035 0.049 0.055 0.062 

dtmeancll50: Avg. targ. enc. for MoAs of drug 
for disease type (LCrL of 50% CrI) 

0.052 0.033 0.039 0.066 0.036 0.038 

dtmeanclu50: Avg. targ. enc. for MoAs of 
drug for disease type (UCrL of 50% CrI) 

0.059 0.037 0.040 0.049 0.038 0.033 

tameancll50: Avg. target encoding for MoAs 
of drug for TA (LCrL of 50% CrI) 

0.062 0.041 0.048 0.022 0.024 0.036 

tameanclu50: Avg. target encoding for MoAs 
of drug for TA (UCrL of 50% CrI) 

0.034 0.037 0.038 0.028 0.036 0.045 

class_counts: # of prev. approvals with MoAs 
of drug 

0.026 0.028 0.036 0.023 0.030 0.040 

rel_log_size_ta: Relative size (number of 
patients) of phase 2 for TA 

0.021 0.027 0.040 0.024 0.022 0.047 

rel_log_size_dis: Relative size (number of 
patients) of phase 2 for disease type 

0.022 0.034 0.039 0.016 0.030 0.033 

intduration: phase 2 duration 0.014 0.028 0.031 0.017 0.029 0.042 
taclass_counts: Total # of approvals for MoAs 
of drug for TA 

0.026 0.026 0.037 0.015 0.014 0.028 

dtclass_counts: # of prev. approvals with 
MoAs of drug for disease type 

0.024 0.025 0.029 0.019 0.023 0.026 

time_since_first_outcome: Years since first 
approval or failure for the drug? 

0.019 0.023 0.016 0.024 0.030 0.022 

pct_accrual: Proportion of target accrual that 
was actually enrolled in trial? 

0.011 0.021 0.030 0.009 0.015 0.029 

intactualaccrual: Number of patients actually 
enrolled in trial 

0.010 0.022 0.027 0.010 0.018 0.025 

inttargetaccrual: Number of patients planned 
to be enrolled in trial 

0.010 0.019 0.028 0.012 0.015 0.024 

phaseendyear: phase 2 end year 0.013 0.015 0.021 0.019 0.015 0.023 
termreason: Worst out of ranking of trial 
termination reasons 

0.009 0.011 0.009 0.025 0.042 0.013 

unwilling_to_pay_12k: Does the drug have an 
INN? 

0.017 0.016 0.005 0.021 0.033 0.008 

taclass_approvals: Total # of MoAs of drug 
with previous approvals in TA 

0.015 0.018 0.024 0.008 0.005 0.012 

dtclass_approvals: Total # of MoAs of drug 
with prev. approvals for disease 

0.014 0.013 0.015 0.006 0.005 0.008 

mean_trialendscore: Mean score for trial 
outcome reasons 

0.014 0.013 0.010 0.007 0.012 0.004 

 

Post-processing 
The post-processing described below was the part of the overall solution that had the largest impact on the 
leaderboard score. We failed to obtain a satisfactory correlation of model performance estimated via cross-
validation and the leaderboard scores until we introduced the post-processing of predictions for projects 
with an end of phase 2 in 2018 and 2019.  



The post-processing reflects that the database provided to competitors was a snapshot taken in mid-2019. 
For phase 2 studies that ended at some point in 2019, the team considered it highly unlikely that the drug 
could be approved by mid-2019, because of regulatory approval timelines. Thus, we limited the predicted 
probability for those studies to be, at most, 0.05%.  

For an end of phase 2 in 2018, an approval by mid-2019 is at least possible, but would likely only occur for 
rare cases that justify approval based on phase 2 data. Thus, we scaled predicted probabilities to lie 
between 0.1% and 10%. These limits were based on using the discrete mixture distribution of the prior 
distributions elicited from 4 of the 5 team members. Individual judgments were elicited using the roulette 
method7 as shown in Figure S6. A decision analysis using the mixture distribution was then conducted 
using the log-loss metric used in the competition as the utility function. 

 

 
Figure S6. Elicited team prior opinions on the number of approvals by mid-2019 with end-of-phase 

2 year 2018 (N=438) conditional on the outcome being known by mid-2019. 
 

From the information communicated on how data were split into training data vs. data for the leaderboard, 
it seemed that a project could only have an end-of-phase 2 before 2014 and part of the leaderboard data, 
if a phase 3 program was initiated. For such projects we scaled the probability of approval up to be in line 
with phase 3 success rates. 

We also avoided overly confident predictions. Given the limited available information, it appeared 
questionable whether predicted probabilities of approval should be above 80%, so we scaled high predicted 
probabilities downwards.  

Additionally, we avoided (except for cases of end-of-phase 2 in 2019) predicted probabilities below 0.1%, 
because the binary-log-loss competition metric only rewards being right about such predictions to a very 
limited extent, but severely penalizes being wrong about them. 

 



Ensemble 
Figure S7 illustrates why an ensemble of the BLR with the two XGBoost models was effective. While the 
BLR performed slightly less well in CV and on the public leaderboard, the performance difference was 
relatively small and the test set predictions of the two model classes had a quite low correlation of about 
0.5, which will generally help the performance of an ensemble.4  

 

 
Figure S7. Correlation and distribution of predicted probabilities per drug–indication pair on the 

test set (overall and for pre-2018 vs. 2018 onwards). 
  



Supplemental Note S3: Detailed Overview of Second Place 
Team 
 

Overview 
The overview of the E2C model development workflow is outlined in Figure S8. The team spent the first 
week in exploratory data analysis, focusing on visualizing the data and understanding the meaning of each 
given feature. This stage was critical for discovering artifacts in the data, as well as generating ideas for 
feature engineering. In the second week, the team carried out extensive feature engineering, explored two 
training-validation splitting strategies, and constructed the first decent-performing model. In the third week, 
the team focused on hyperparameter tuning and then further improved the model with two post-processing 
ideas: (1) bias correction for 2018–2019 samples; and (2) test-time augmentation across trials within the 
same drug–indication group. The remaining time was mostly invested in gaining insights from the model. 
We will highlight the key learnings from each step of the workflow. (Source code available at 
https://github.com/data2code/DSAI-Competition-2019.) 

 

 
Figure S8. Overview of the E2C model development workflow. 

 

Exploratory Data Analysis 
 

Machine Learning Framework 
We locked on using the XGBoost machine learning method early on, as it had been most frequently adopted 
by winning teams in Kaggle competitions on similar structured datasets. Deep learning framework was 
excluded, because the probability-of-success training dataset size was likely too small to train a high-
performance neural network model without overfitting. 

 

Time-decoupling 
Many features were known to demonstrate strong coupling with time, as described in previous studies (e.g., 
Lo et al. 2019). We were able to validate those, e.g., the phase 2 trials tend to run longer and longer over 
the years (Figure S9). 

XGBoost utilizes a decision tree structure, which is inefficient to capture such a coupling effect. Pretending 
trials within the top quantile of each year have a higher probability of success, as this upper quantile 
threshold drifts over the years. XGBoost would need multiple tree levels to handle the different thresholds 
across years (Figure S10). Therefore, to facilitate model training, we decided to remove the coupling 
between features and year through a normalization process. Normalization produced two additional 
features based on each raw input feature. Take feature “abc” as an example: (1) “abc_norm_by_year” was 
the normalized version using the mean and standard deviation of all feature values within that particular 



year; (2) “abc_rank_norm_by_year” was its non-parametric quantile counterpart within the year, which was 
not sensitive to the underlying distribution. 

 

 
Figure S9. Phase 2 trial duration vs year. 

 

 
Figure S10. Modeling of the coupling between trial duration and year using a tree model would 

have required many tree levels. 
 

Figure S11 shows the interaction between trial duration and year was largely decoupled after normalization. 
The new normalized features were expected to ease the model training process. 

 



 
Figure S11. The time-effect on trial duration was minimized (compared to Figure S9) after mean-

stdev normalization. 
 

Normalization also tripled the number of feature counts. To avoid feature redundancy, only one of these 
three correlated feature versions (“abc”, “abc_norm_by_year”, and “abc_rank_norm_by_year”) was 
retained based on a feature ranking algorithm described later. Among the final list of retained features, 
normalized versions were generally favored over their original version, which verified the importance of 
normalization. 

 

Additional Observations 
We observed there were only 30 samples with “intphaseendyear” before 2001, including 14 samples with 
year 1900 (presumably representing missing data). We overwrote the year to 2001 for all these samples. 
We also noticed the age units could be in days, weeks, months, and years, therefore, the age value columns 
need to be standardized to decimal years.  

We observed an interesting clustering structure, when “Sponsor p2 positive” was plotted against “Sponsor 
p2 total” (Figure S12). Sponsors were clearly divided into two clusters, where those sponsors in Cluster B 
seemed to perform rather poorly for their first 2000 trials, but later were able to boost performance, albeit 
with slightly lower success rates (smaller slope). Eight-nine percent of the sponsors maintained a relatively 
high phase 2 success rate throughout the years. This phenomenon remained true when the test dataset 
was merged. We decided to engineer a binary cluster label as a new feature based on this observation, 
nevertheless, the new feature did not contribute significantly in the end. 

 



 
Figure S12. Sponsors fell into two intriguing clusters. 

 

Feature Engineering 
 

Categorical Feature Encoding 
There are many categorical features in the PoS dataset, e.g., drug key, indication key, indication group key, 
sponsor ID, person ID, etc. These are integer identifiers, i.e., their numerical ordering carry no meaning. 
These features could seriously mislead XGBoost into creating nonsense tree splits, if they were treated as 
integers. Due to their high cardinality, they should not be treated with one-hot encoding either, otherwise, 
the resultant large sparse matrices would be hard to learn. Our strategy was to replace these features by 
their statistics. Considering an example drug key d (Figure S13) of a given trial sample completed in year 
k, we collected all trials where d was studied and then counted the percentage of successful trials (Figure 
S13). Success rate was calculated only using samples with year k-1 and earlier to avoid any data leaking. 
As the result, drug key d could be encoded with this prior success rate, a continuous and meaning number 
for XGBoost to split and sort. Similarly, we also encoded drug keys based on phase 3 success rate, 
completion rate, progress rate, etc. 

 



 
Figure S13. A drug key id 1234 occurred in year k can be replaced by its success rate calculated 

within all records until year k - 1. 
 

This encoding technique led to many effective new features. Among all the features provided by the 
organizer, the feature most correlated with the outcome is called “intpriorapproval” with a Pearson 
correlation coefficient of 0.28 (p = 0.04). Among our engineered new features, “drug prior trial positice.pct” 
has a Pearson correlation coefficient of 0.31 (p < 10-10), presumably better than all other raw features 
(Figure S14). Retrospectively, among the top 20 most important features, 7 came from normalization, 9 
were newly engineered, and only 4 were from the raw given features (Figure S14). These counts might 
vary between runs but it showed the value of feature normalization and categorical feature encoding. 

 

 
Figure S14. (a) Features most correlated with outcome based on absolute Pearson correlation 

coefficients. (b) Sources of top 20 features, where the majority came from our feature engineering 
efforts. 

 

For those multi-label features with fewer discrete values, such as “diseaseType,” we used one-hot encoding. 
Binary features that were identical for more than 99% of samples were ignored. A total of 607 categories 
were extracted from 13 multi-label features. Free text columns were transformed into features based on 
TFIDF (term frequency-inverse document frequency). However, text features did not add much value to our 
model in terms of score improvement. 

 



Feature Selection 
Our experience showed XGBoost could handle several hundred features without problem, we nevertheless 
applied a feature reduction workflow to remove obviously redundant features generated by normalization 
or the large number of less informative features derived from text features. The process is illustrated in 
Figure S15. 

 

 
Figure S15. Feature reduction workflow. 

 

We first ranked features by their importance, based on which highly correlated but less important features 
(Pearson r2 > 0.95) were removed. For feature ranking, we started from all n candidate features, and used 
them to train a random forest model. We computed the total_gain of each feature and dropped out the 
feature with the least total_gain. For the remaining n - 1 features, we repeated the previous process to drop 
out one more feature and n - 2 retained. We iterated until only 1 feature was left. The n features, therefore, 
were ranked based on the order of their drop out, with the most important features surviving the longest. 

For the group of three normalized features, the one with the longest survival was retained. Text features 
also went through the same triaging process and combined with surviving numerical features for final 
modeling. We excluded features that might be considered as a leak, e.g., we did not include “generic name,” 
however, post-competition research showed it would have been acceptable. The final model used 275 
features. Be aware that random forest, instead of XGBoost, was used in the feature selection process, as 
its total_gain was considered more reliable since all its tree members were equally important. 

 

Model Evaluation 
 

Cross-validation Strategy 
We tested two training-validation splitting strategies. The first strategy was a random five-fold cross 
validation. The splitting was done in a way that ensured trials sharing the same drug–indication key pair 
always resided within the same fold and never spanned across training and validation sets. This was to 
avoid data leaking. The second strategy was to use all drug–indication pairs that did not appear before year 
2013 as validation records. Although the second method was a more authentic split mimicking the 
architecture in the competition (use past to predict the future), it did not perform well compared to the first 
approach. Presumably, losing the many 2013–2014 records in the training made it hard for the model to 
capture rules that better described records in the more distant future 2015–2017, as one would expect rules 
to evolve over the years. Therefore, our final solution adopted the five-fold cross-validation scheme. 

 

Sampling Weighting in Loss Function 
We tried to assign weights to trials sharing the same drug–indication pair. We observed there could be 
many trials studying the same drug–indication simultaneously. For example, erlotinib was studied by about 



160 trials (indication 124) in the test set and oxaliplatin was stuided by over 60 trials (indication 141) in the 
training set (Figure S16). Therefore, we were concerned about overfitting due to some popular drug–
indication pairs exerting too much influence during model training. Three trial weighting strategies were 
tested. First, each trial was weighted by 1. This way a trial–indication pair with m trials contributed m times 
during the training, a potential bias we would like to supress. Second, each trial was weighted by 1/m, so 
each trial–indication pair was counted equally in the loss function. This enhanced the sample diversity. 
Third, each trial was weighted by 1 √𝑚𝑚⁄ , so each drug–indication pair had a weight of √𝑚𝑚, a compromise 
between the previous two strategies. The performance varied between training runs and we did not see a 
statistically consistent advantage of 1/m or 1 √𝑚𝑚⁄ , compared to the simple weighting scheme, therefore no 
weight was used. 

 

 
Figure S16. Many drug–indication pairs are heavily studied by multiple trials. Conceptually, this 

led to bias in training, as well as bias in the leaderboard scoring. 
 

Missing Value Imputation 
We also tried two imputation strategies, as this was largely described in the prior publication.8 The first 
strategy was to fill the missing value by means. The second was to impute the value using the XGBoost 
model itself, i.e., we used all other features to build a predictor to predict a target feature containing missing 
values. Such predictors would use independent features as observed in samples from both training and 
test datasets. As the XGBoost model can take missing values as its independent variables, unlike random 
forest models, all independent features other than our target prediction variable, regardless of whether there 
were missing values, were used in the model training. Although the second strategy had a conceptual 
advantage, we did not see a consistent difference compared to the first strategy, which was straightforward, 
thus we chose the first. 

 

Hyperparameter Tuning 
The optimal model hyperparameters were identified with grid search based on cross validation. It should 
be noted that the loss scores used in the search were implemented exactly the same as the final loss 
function, including all the post processing and augmentation tricks described below. 

 

 

 

 



Model Tuning 
 

Post-processing 
Log-loss score is the designated primary leaderboard score. This cross-entropy score heavily penalizes 
super-confident wrong predictions. For a positive record, improving the prediction probability from 0.99 to 
1-10-10 only increased the score by 0.01, but reducing the prediction probability from 0.01 to 10-10 would 
decrease the score by 27.6! In other words, there is little reward in making a super-confident correct 
prediction but there is a huge penalty in making a super-confident wrong prediction. Therefore we clipped 
all prediction values into range [0.01, 0.99] to avoid severe penalties for mispredictions. The cutoff was 
determined empirically based on cross validation. 

We noticed that 49% of the test records fell into the 2018–2019 period during the model refinement phase. 
With our domain knowledge, it was clear these samples were extremely unlikely to have positive outcomes, 
as the time left after the completion of phase 2 trials was too short for a non-trivial approval process. 
Therefore, we set their probabilities to 0.01. 

With feature engineering, five-fold cross validation, and hyperparameter tuning, we were able to build an 
XGBoost model with the public leaderboard score of 0.275. The text features only had very minor 
contributions. With the correction of the artifacts in the test set (2018–2019 records), we then obtained a 
model in the third week with score 0.236. 

 

Drug–indication Augmentation 
Our model predicted the probability of success for each trial, i.e., it assigned different probabilities for 
different trials. However, the truth, the approval/failure outcome, was assigned to each drug–indication pair 
instead of each trial. The many trials for the same drug–indication pair shared the same outcome truth 
(Figure S16). This implies we should consolidate the different predicted probabilities for the m related trials 
under the same drug–indication pair into one final probability value. 

Mathematically, there is an advantage in unifying the predictions. Considering two related trials share the 
same positive outcome, with predicted probability p+δ and p-δ. If we submit them as they are, the score is 
log(p2-δ2). If instead we submit their average value for both records, the score is log(p2), which is better (the 
larger, the better here). The conclusion does not change if the outcome is negative. 

We did not use average, though. Our reasoning was as long as one of the m trials yielded favorable results 
that successfully demonstrated the efficacy of a drug–indication pair and convinced the authority for an 
approval, all the remaining m-1 trials would take a free ride and be considered successful regardless of 
how poorly their trials were conducted. Therefore, our aggregation function was an aggressive max() 
function across the m underlying trials. One out of m shots was all it took for an approval. With this drug–
indication augmentation, our model score improved to 0.222. 

 

Insights 
The exact tree structures embedded in XGBoost models were sensitive to small adjustments in the 
modeling workflow. We hypothesized this was due to two factors: (1) many features are correlated, 
therefore, models could achieve very similar performance with different decision rules; and (2) the first few 
trees in the XGBoost models accounted for the most gain, therefore, there would be a signficant variation 
in the early tree structures in the XGBoost models. Therefore, we decided not to over-interpret the XGBoost 
model, but instead derived insights from a random forest model consisting of 200 trees. By averaging the 
decision rules across these equally-weighted trees, we hoped to extract more reliable insights compared 
to using XGBoost trees. 

 



Single-feature Analysis 
The single-feature importance analysis was implemented in scikit-learn module (https://scikit-learn.org). 
The top ten features are shown in Figure S17. “Hopeful” is an engineered binary feature replacing 
“termination_reason.” “Drug_prior_trial_positive.pct” is an engineered feature described previously in our 
categorical feature encoding section, representing the historical (up to year k-1) success rate of a drug. 
“Indicationgrp_prior_trial_count” is the number of trials for that indication group up to year k-1. 
“Targetaccrual” (normalized by year) is a normalized version of “targetaccrual.” “Indication_prior_trial_count” 
is self explanatory. “Priorapproval” is a binary feature provided as it is, which had the highest Pearson 
correlation coefficient with outcome in the original feature set. “Sponsorid_total_drugkey_indicationkey” is 
the sum of approval and failure counts. “Minage” is the minimal age of patients. “Actualaccrual” is a feature 
provided. “Indication_prior_trial_positive.pct” reflects the historical success rate for that indication up to year 
k-1. 

 

 
Figure S17. Top 10 most important features based on a random forest model. 

 

As an example, Figure S18 illustrates why “drug_prior_trial_positive.pct” is an important feature. For those 
drugs with a prior positive rate below 0.48, there is only a 17% chance of a positive outcome versus a 
remarkable 63%, when the positive rate is above 0.48. The outer ring shows the percentage, if this prior 
positive rate were irrelevant. 

 

 
Figure S18. Effectiveness of drug prior positive rate in predicting outcomes. 



 

Figure S19 suggests those trials accepting younger patients (< age 14) tend to be more successful. This 
might be because companies are generally much more conservative, when it comes to drugs that will be 
used in kids and sometimes even in infants. 

 

 
Figure S19. Minimum age of patient in trials can be predictive. 

 

Informative Feature Pairs 
As single feature analysis mostly reproduced previously-published results, we aimed to analyze the effect 
of feature pairs. Similar to analyzing a single feature, we looked at the frequency and the loss contribution 
of an immedidate parent–child feature pair and compiled statistics based on their contributions to the model 
(as illustrated in Figure S20). This was an idea extended from but not yet implemented in scikit-learn. 

 

 
Figure S20. Similar to single feature analysis, a potentially interesting feature pair is parent–child 

nodes that appear frequently and make important contributions to the gain among a decision 
forest. The example pair occurs in three out of four trees with an average gain of 13.5. 

 

The network in Figure S21 provides a visual summary of our findings. This network includes all top ten 
features, as well as some additional features that were not the most important by themselves but became 
useful in combination with the top features. 

 



 
Figure S21. The network of important single features and feature pairs. The size of the node 
represents the importance of a single feature and the thickness of an edge represents the 

importance of a feature pair. 
 

Most important feature pairs are intuitive. For example, “hopeful” and “drug_prior_trial_positive.pct” can 
boost the confidence in a positive outcome. As shown in Figure S22, “drug_prior_trial_positive.pct” alone 
can predict a positive outcome with 63% accuracy (lower-left pie) and a negative outcome with 83% 
accuracy (mid-left pie) based on a cutoff of 0.49. However, if this feature were combined with the “hopeful” 
feature, the model could further improve the accuracy to 70% (lower-right pie) and 96% (center pie), 
respectively, albeit the percentage of records in these two groups are only 7% and 21% (shown in upper-
left corner), respectively. This shows that the combination of two correlated features can lead to higher 
prediction power. 

 



 
Figure S22. The combination of hopeful and drug prior positive rate can boost prediction. 

 

 
Figure S23. The combination of prior indication trial count and drug prior positive rate can give 
higher accuracy for applying historically successful drugs in indications that are less explored. 

 



Figure S23 shows that the indications with fewer prior trial counts tend to have a higher success rate (28% 
vs 19% in the top row). When this is coupled with “drug_prior_trial_positive.pct,” it boosts the accuracy from 
63% to 73%. 

Although not shown in Figure S21, the combination of “drug_prior_trial_positive.pct” and “anticancer” leads 
to interesting results summarized in Figure S24. Anti-cancer alone is not a powerful feature, as the positive 
outcome rate is about the same—21% for “anitcancer” and 22% for “other” indications (top row). However, 
when we combined it with “drug_prior_trial_positive.pct,” this feature became impactful. The positive 
outcome rate changes from 65% (lower-left pie) into 54% (lower-middle pie) and 71% (lower-right pie). 
There appears to be a strong coupling between the two features. Our interpretation is that drugs that have 
been approved in other indications tend to be more likely to be approved for a new indication, and this 
empirical rule seems to be more true for cancer than other indications. Presumably, chemotherapies that 
have already worked in a particular cancer type have a better chance to work in another cancer type. Past 
history is less likely to predict futrue success for non-cancer indications. 

 

 
Figure S24. Cancer indication alone is not predictive, but it helps boost accuracy when coupled 

with drug_prior_trail_positive.pct. This pair is not among the top, probably because the number of 
records benefiting from this rule is small. 
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