
CoCoA-diff: Counterfactual inference for single-cell gene expression

analysis

13:23:26, Jul 15, 2021

Author names and affiliations

Yongjin P Park1,2, Manolis Kellis3,4

1. Department of Pathology and Laboratory Medicine, Department of Statistics, University of British

Columbia, Vancouver, BC, Canada

2. Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada

3. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cam-

bridge, MA, United States of America

4. Broad Institute of MIT and Harvard, Cambridge, MA, United States of America

Contact:

• Yongjin P. Park: ypp@stat.ubc.ca

• Manolis Kellis: manoli@mit.edu

1



Supplementary Figures

Fig S1.
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Simulation experiments with the invalidating collider bias.

(a) Data generation scheme for simulation experiments. We simulate 50 causal and 9,950 non-causal genes

with or without disease-causing mechanisms (an edge between 𝑊 and 𝜆). 𝑊𝑖: disease label assignment for

an individual 𝑖. 𝑋𝑖: confounding effects for an individual 𝑖. 𝜆𝑔𝑖: unobserved gene expression for a gene 𝑔
of an individual 𝑖 as a function of 𝑋 and 𝑊 . 𝑌𝑔𝑗: realization of cell-level gene expression of a gene 𝑔 with

a cell 𝑗-specific sequencing depth 𝜌𝑗 (stochastically sampled from Gamma distribution). Here, we simulated

total five covariates consisting of confounding (𝑋) and batch effect variables (𝐵).

(b) Empirical false discovery rates of the differential expression methods when there were no confounding

effect, but the 30% of individual-level expression variation is attributed to the disease effect (𝑊 → 𝜆; 𝜎2
𝑊→𝑌 )

on 50 causal genes. Y-axis: empirical false discovery rate, the frequency of the non-causal among genes with

the estimated q-value below 0.01.

(c) Simulation results when all the five covariates are confounding disease label assignment and gene ex-

pression values, accounting for 50% of mean expression variation (𝜎2
𝑋,𝐵→𝑌 ). Different subpanels correspond

to different configurations of the number of individuals and cells per individual. Y-axis (AUPRC): area

under precision recall curve (numerically integrated by DescTool1 implemented in R); x-axis: the proportion

of variation contributed by the disease label (𝜎2
𝑊→𝑌 ). The following methods were considered: CoCoA:

Wilcoxon’s ranksum test using individual-specific confounder-adjusted gene expression values 𝛿𝑔𝑖 (the step 3

of Fig. 1c); Total: pseudo-bulk expression aggregated within each individual; Bayesian: Bayesian estimate

of pseudo-bulk expression averaged over cells within each individual; Mean: pseudo-bulk expression averaged

over cells within each individual; MAST : Model-based Analysis of Single-cell Transcriptomics2 implemented

in R (cell-level differential expression analysis); Confoudner: the estimated confounding effect 𝜇𝑔𝑖 (the step

2 of Fig. 1c).
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Fig S2.
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Simulation experiments with two types of covariates–confounding factors and batch effects.

(a) Data generation scheme for simulation experiments. We simulate 50 causal and 9,950 non-causal genes

with or without disease-causing mechanisms (an edge between 𝑊 and 𝜆). 𝑊𝑖: disease label assignment for

an individual 𝑖. 𝑋𝑖: confounding effects for an individual 𝑖. 𝜆𝑔𝑖: unobserved gene expression for a gene 𝑔
of an individual 𝑖 as a function of 𝑋 and 𝑊 . 𝑌𝑔𝑗: realization of cell-level gene expression of a gene 𝑔 with

a cell 𝑗-specific sequencing depth 𝜌𝑗 (stochastically sampled from Gamma distribution). Here, we simulated
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total five covariates consisting of confounding (𝑋) and batch effect variables (𝐵).

(b) Simulation results with different numbers of confounding factors and batch effect variables (horizontal

subpanels) and different number of individuals (vertical subpanels). Y-axis (AUPRC): area under precision

recall curve (numerically integrated by DescTool1 implemented in R); x-axis: the proportion of variation

contributed by the disease label (𝜎2
𝑊→𝑌 ). The following methods were considered: CoCoA: Wilcoxon’s

ranksum test using individual-specific confounder-adjusted gene expression values 𝛿𝑔𝑖 (the step 3 of Fig. 1c);

Total: pseudo-bulk expression aggregated within each individual; CoCoA + PC : CoCoA followed by PCA

on the resulting gene by individual matrix, where the PCs were selected if they are not correlated with the

disease labels; Total + PC : pseudo-bulk expression followed by PCA, where the PCs were selected if they

are not correlated with the disease labels.
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Fig S3.
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Fig S4.
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Fig S5.
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Fig S6.
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The annotations of the excitatory neuron types are not biased by known biological variables.
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Fig S7.
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The annotations of the inhibitory neuron types are not biased by known biological variables.
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Fig S8.

apoe.e4
cog

m
sex

pathoA
D

Astro Ex−L2or3 Ex−L4 Ex−L5or6 Ex−L5or6−CC In−PV In−SST In−SV2C In−VIP Microglia Oligo OPC

−0.4

0.0

0.4

0.8

−0.4

0.0

0.4

0.8

−1.0

−0.5

0.0

0.5

−0.4

0.0

0.4

celltype

S
D

 in
 c

as
e 

−
 S

D
 in

 c
on

tr
ol

CoCoA (delta)

apoe.e4
cog

m
sex

pathoA
D

Astro Ex−L2or3 Ex−L4 Ex−L5or6 Ex−L5or6−CC In−PV In−SST In−SV2C In−VIP Microglia Oligo OPC

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

celltype

S
D

 in
 c

as
e 

−
 S

D
 in

 c
on

tr
ol

log(1+ pseudo−bulk)

CoCoA algorithm does not create a skewed distribution of variance.

11



Fig S9.
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Fig S10.
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Top: Correlations between the average disease effects (ADE) and gene-level associations with the confound-

ing factors. Bottom: Correlations between the average disease effects computed on the disease cohort

(ADD) and the average disease effects computed on the control cohort (ADC).
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