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Figure S1. Proteins exhibit different sensitivities to 1,6-HD treatment.
A.MEDI1/FUS distribution at 1,6-HD concentration from 1-10% in K562 cells. Incubation time: 20min. Blue: DAPI,
green: MEDI1/FUS. Scale bar: 10um. B. Quantification of nuclear/cytoplasmic fluorescence signal for MED1/FUS
upon 1,6-HD treatment (n = 100), as in (A). C. Nuclear-cytoplasmic distribution of MED1, FUS, EZH2 and
H3K4me3 after 10% 1,6-HD treatment for 20 mins in hypotonic condition. D. Quantification of cytoplasmic/nuclear
fluorescence signal for MED1, FUS, EZH2 and H3K4me3 upon 1,6-HD treatment (n = 100), as in (B).
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Figure S2. Reproducibility of Hi-MS and AICAP.
A. Clustering of replicated Hi-MS samples using Spearman correlation of protein content (iBAQ signal). (-): wild type
samples, (+): 1,6-HD treated samples and control: undigested control samples. B. Functional enrichment of proteins
with AICAP values <1 or > 1. C. Spearman correlation of AICAP values of two independent experiments. They were
prepared from different batches of cells, different types of digestion (in gel or in solution) and different types of mass
spectrometers. D. Correlation of AICAP values of proteins in nuclear domains between two independent replicates. E.
Clustering of replicated 2,5-HD treatment Hi-MS samples using Spearman correlation of protein content (iBAQ
signal). F. Correlation of AICAP values of proteins in nuclear domains between 1,6-HD and 2,5-HD treatment

samples.
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Figure S3. Correlation between AICAP and protein residue composition.

The Spearman correlation between AICAP and corresponding residue percentage in proteins with AICAP < 1. Each
column panel refers to residue percentage in different regions(whole sequence, whole sequence without IDR, IDR and
PLD). ***: p-value < 0.01, **: p-value < 0.05, * p-value <0.1.
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Figure S4. Quality control of BL-Hi-C and gene ontology enrichment analysis of proteins.

A. Clustering of replicated BL-Hi-C samples. B. Genome-wide Hi-C interaction frequency changes before (-) and
after (+)1,6-HD treatment. C. BL-Hi-C interaction matrices for chr2 at IMb resolution. D. Data quality of BL-Hi-C
and liquid chromatin Hi-C in K562 cells (Belaghzal et al., 2019). Cis: intra-chromosomal interaction, trans: inter-chro-
mosomal interaction. Trans interactions was generally considered to be the noise. E. and F. Gene ontology molecular
function and cellular component enrichment analysis of all captured proteins in each group.
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Figure SS5. Compartment change-types and neighborhood relationship.

A. Examples of stable, strengthened, weakened and flipped compartments before (-) and after (+)1,6-HD treatment.
The y axis shows PC1 values. B. Percentage of neighbor compartments of each compartment change-types. Neighbor-
hood was defined as compartments within 3Mb as usual. C. Examples of weakened/flipped A(left) and B(right)
compartments and corresponding nuclear speckle/lamina TSA-seq[45] plots.
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Figure S6. Chromatin TAD and loop changes after 1,6-HD treatment.

A. Identified TAD boundaries before (-)and after (+)1,6-HD treatment. B. DNA loop anchor interaction changes after
1,6-HD treatment. C. Identified DNA loops before (-) and after (+)1,6-HD treatment. More than 60% of loops can not
be identified again after 1,6-HD treatment.
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