Fishing for Contact: Modeling Perivascular Glioma Invasion in the Zebrafish Brain

Robyn A. Umans¹, Mattie ten Kate², Carolyn Pollock², & *Harald Sontheimer^{1,2}

Center for Glial Biology in Health, Disease, and Cancer, The Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, 24016, United States ¹

School of Neuroscience, Virginia Tech, Sandy Hall, 210 Drillfield Dr., Blacksburg, Virginia, 24061, United States ²

*Email: sontheim@vt.edu

Table of Contents:

Data	Page Number
Figure 1	6
Figure 2	7
Figure 3	7
Figure 4	7
Figure 5	8
Figure 6	8
Figure S-1	6
Figure S-2	7
Movie S-1	7

Figure S-1. Tumor-vessel interactions are maintained in non-specific pathogen

free zebrafish lines. (A) A maximum intensity projection of a 7dpf Tg(glut1b:mCherry) larvae (red) implanted with D54-MG-eGFP tumor cells (green). (B) An area (dotted white box in A) of a representative Z-plane from the confocal stack showing the corresponding orthogonal planes, between the vessel (red) and glioma cell (green) signals. *n*=18 animals. Scale bar= 10µm.

Figure S-2. Labeling glioma cells with lipophilic dyes is not ideal for visualizing perivascular glioma invasion. (A) A maximum intensity projection of the whole brain of a 4dpf $Tg(fli1a:eGFP)^{y1}$; casper (green) larvae with GBM22 cells (red) loaded with a lipophilic dye 24 hours post-injection. (B) A maximum intensity projection image of the red channel displaying the punctate staining of the human glioma cells. Scale bar= 100µm.

Movie S-1. Human glioma cells expand within in the periphery of the developing zebrafish larvae. A 3D rendered volume view movie of a 10dpf $Tg(fli1a:eGFP)^{y1}$;casper zebrafish, 1 week post tumor implantation. Note that the tumor cells (red) do not interact with any pre-existing vasculature (green) and have migrated towards the rostral end of the animal, from the dorsal fin area past the swim bladder.

Figure S-2.

