A The electrical resistance of a given material will decrease with increasing height.

Pouillet's law

$$R = \rho \frac{\ell}{A}$$

where

R is the electrical resistance of a uniform specimen of the material (measured in ohms, Ω);

 ρ is the electrical resistivity of a uniform specimen of the material (measured in ohms-meter, Ω ·m);

 $\boldsymbol{\ell}$ is the length of the piece of material (measured in metres, m);

A is the cross-sectional area of the specimen (measured in square metres, m^2).

 $A = H \cdot W$

where H is the height of chamber; W is the width of chamber.

sFigure 3 Both electric currents and Joule heating will increase proportionally with thickness of chamber/tissue. (A) By Pouillet's law, the electrical resistance of a given material will decrease with increasing the height. Therefore, **(B)** electric currents will increase proportionally with thickness of chamber/tissue, and **(C)** Joule heating will increase proportionally with thickness of chamber/tissue.