Title

Characterization of an *in vitro* 3D intestinal organoid model by using massive RNAseq-based transcriptome profiling

Authors/Affiliations

Jing Lu¹, Anna Krepelova¹, Seyed Mohammad Mahdi Rasa¹, Francesco Annunziata¹, Olena Husak¹, Lisa Adam¹, Suneetha Nunna¹, Francesco Neri^{1*}

1 Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany;

* Correspondence: francesco.neri@leibniz-fli.de

Supplementary information

Supplementary Figures

Figure S1. *In vitro* culturing of intestinal crypts as organoids does substantially affect their transcriptional program. Related to Figure 1.

a, b, c, d, e) Boxplots of PC2-PC6 (a-e) shown in different groups by age, compartment and gender separately *in vivo* and *in vitro*. P-value is calculated by Welch's two-tail t-test for age groups and gender groups while one-way anova test for compartment groups. ns: $p \ge 0.05$, *: $p \le 0.05$, *: $p \le 0.01$, ***: $p \le 0.001$.

f) Density plot of gene contributions on PC1-PC6. Cutoff of highly contributing genes was defined as log2(contribution on PC) more than -3.32 shown as dashed line in x axis.

g) Bar chart of number of highly contributing genes to PC1-PC6 indicated balanced selection. These genes were used for biology progresses enrichment analysis in Table 1.

h) Heatmap of the expression level (scaled counts) of the top 10 highly-contributing genes for PC1-PC6 (top panel).

Figure S2. *In vitro* culturing of intestinal crypts as organoids does substantially affect their transcriptional program. Related to Figure 1.

a, b, c, d, e, f) Bubble plot of significantly enriched biology processes by highly-contributing genes of PC1-PC6 (a-f). Gene size was defined how many genes in our input were enriched in one function, gene ratio was defined as gene size divided by size of overlap of input genes with database genes' collection. P-value was calculated by Fisher exact test.

Figure S3. *In vitro* culturing of intestinal crypts as organoids does substantially affect their transcriptional program. Related to Figure 1.

a) Box plots of Z-score from gene sets of immune system process (left panel) and cholesterol biosynthesis pathway (right panel) across sample types (crypts and organoids). P-value is calculated by Welch's two-tail t-test. The gene sets used here were drawn from the Molecular Signatures Database (MSigDB).

b) Box plots of Z-score from gene sets of retinol metabolic process (top panel) and oxidation reduction process (bottom panel) across compartments (oral, inter, aboral). P-value was calculated by one-way anova test. The gene sets used here were drawn from the Molecular Signatures Database (MSigDB).

c) Box plots of Z-score from gene sets of immune system process across aging (young and old). P-value was calculated by Welch's two-tail t-test. The gene sets used here were drawn from the Molecular Signatures Database (MSigDB).

Figure S4. Meta-analysis on specific biology features (compartment, gender, aging) respectively revealed how biology features changed in culture. Related to Figure 3.

a) Bar charts indicating the number of significantly differentially expressed genes (DEGs) found in different detailed conditions from *in vivo* and *in vitro*.

b) Venn diagrams of the DEGs in the condition of compartment (oral and aboral) with other biology variables unfolded between *in vivo* and *in vitro* as in a.

c) Venn diagrams of the DEGs in the condition of gender (male and female) with other biology variables unfolded between *in vivo* and *in vitro* as in a.

d) Venn diagrams of the DEGs in the condition of aging (young and old) with other biology variables unfolded between *in vivo* and *in vitro* as in a.

Figure S5. Meta-analysis on specific biology features (compartment, gender, aging) respectively revealed how biology features changed in culture. Related to Figure3.

a, b) Hierarchical clustering and heatmap of the gene overlap correlation of pathways significantly enriched in compartment differences *in vivo* (a) and *in vitro* (b). Pathways sharing common genes could be clustered to super functional categories.

Figure S6. Meta-analysis on specific biology features (compartment, gender, aging) respectively revealed how biology features changed in culture. Related to Figure3. a, b) Hierarchical clustering and heatmap of the gene overlap correlation of pathways significantly enriched in gender differences *in vivo* (a) and *in vitro* (b). Pathways sharing common genes could be clustered to super functional categories.

Figure S7. Meta-analysis on specific biology features (compartment, gender, aging) respectively revealed how biology features changed in culture. Related to Figure3.

a, b) Hierarchical clustering and heatmap of the gene overlap correlation of pathways significantly enriched in aging differences *in vivo* (a) and *in vitro* (b). Pathways sharing common genes could be clustered to super functional categories.

Figure S8. Meta-analysis on specific biology features (compartment, gender, aging) respectively revealed how biology features changed in culture. Related to Figure3.

Bubble plots of candidate upstream regulators inducing the changes of compartment, gender and aging *in vivo* (left panel) and *in vitro* (right panel).

Figure S9. Characterization of organoids as an *in vitro* model for aging research. Related to Figure 4.

a) Treemap overview of all significantly enriched pathways in aging *in vivo*, which were kept in culture in at least one condition.

b) Box plot of the number of conditions of each aging-enriched pathway kept in culture with line connected between the pathway *in vivo* and that *in vitro* by using the same datasets as in a.

c) Treemap overview of all significantly enriched pathways in aging *in vivo*, which were lost in culture.

Supplementary Tables

Table S1. *In vitro* culturing of intestinal crypts as organoids does substantially affect their transcriptional program. Related to Figure 1.

List of highly contributed genes to PC1-PC6 from PCA analysis (genes with log2(var_contrib) more than -3.3 were selected) and GO terms of PC-enriched biology processes (GO terms with p value less than 0.01 were selected).

Table S2. Cell population composition in all the conditions illustrated higher proportion of stem/TA cells *in vitro* than those *in vivo*. Related to Figure2.

Cell population composition analysis in crypts and organoids including DEGs between crypts and organoids, cell type markers used for GSEA, trained feature model for CIBERSORTx, cell type deconvolution results from simulated, real-world data and bulk RNA-seq data in this paper.

Table S3. Meta-analysis on specific biology features respectively revealed how biologyfeatures changed in culture. Related to Figure3.

Canonical pathway analysis of the differentially expressed genes in compartment, gender, aging with *in vivo* and *in vitro* separated.

Table S4. Detailed investigation for organoids as an *in vitro* model on aging demonstrated only a small proportion of aging pathways in some specific conditions could be studied *in vitro*. Related to Figure4.

Aging pathways kept or lost after culture in different conditions of compartment and gender. Pathways with adjusted p value less than 0.05 were selected.

С

📋 Young 🖨 Old

🖨 Oral 🖨 Inter 🖨 Aboral

pc2: GO_RETINOL_METABOLIC_PROCESS

С

Th1 and Th2 Activation Pathway		Leukocyte Extravasation Signaling		Natural Killer Cell Signaling		Role of NFAT in Regulation of the Immune Response		Sirtuin Signaling Pathway Intracellular and		Protein Ubiquitination Pathway Second		Molecular Mechanisms of Cancer		Wnt/3-catenin Signaling	Ax Si	Axonal Guidance Signaling	
Dendritic Cell Maturation	Production of Nitric Oxide and Reactive Oxygen Species in Macrophages		CXCR4 Signaling		Signaling	H D D D D D a	Crosstalk between ndritic Cells nd Natural	Messeng Protein Kinase Signaling	nase A α-Adr Sign		Signaling by Rhc Family GTPases	Cancer PI3K/Al			Neuro Nervo Op Sig	ransmitt ous Syst oid naling hwsy	ers and Other em Signaling GNRH Signaling
iCOS-iCOSL	Cellular Imr Phagosome Formation		nune All Re	Respon ograft jection	SC Macropinoo Signalii	Killer Cells cytosis NF-κB Signaling		Tec Kinase Signaling	e Cal Sigr	cium naling	Sphingosine- 1-phosphate Signaling	Glioblasto Glioblasto Hereditati Hereditati Cancer S		tary Brea r Signalir	Breast gnaling		Reelin Signaling in Neurons
Signaling in T Helper Cells	CTLA4 Signaling in Cytotoxic T		Signaling Communication between Innate and Adaptive		TREN Signa	/11 ling Di	granulocyte Thesion and apedesis	Role of Macro Fibroblasts an Endothelial Ce Rheumatoid A	phages, d ells in arthritis	Hui Dis Sig	ntington's ease naling	NRF2-mediated Oxidative Stress Response Cellular Stress and Initi		GP6 Signalin Pathway	ing ay ry INR/RXR A		ctivation
PKC0 Signaling in T Lymphocytes		Lymphocytes Granulocyte Adhesion and		une Cells of Pattern prition otors cognition of	Clathrin-media Endocytosis Signaling	Primary Immunodeflicien Signaling	Role of PKR in Interferon Inducti and Antiviral Reponse	Disease-Specific		Pathways Hepatic Fibrosis / Hepatic Stellate Cell Activation		Antioxidant Action of Vitamin C Signa		Type II Diabetes Mellitus Signaling	PPAF	List Pathways	
Th2 Pathway		CREB Signaling in Neurons		EIF2 Si	gnaling	L–7 Signal Pathway	on Sumoylatio Pathway	Hepatic Chol	estasis Endot	Syste Eryth Sign: helin-	emic Lupus nematosus aling S. B. Cardi	Nuclear Receptor Signaling		tor	Integri Signal Cell C Regula Cyclins a	Acute Pi Signaling Respons Signaling Signaling Cell Cycle Cytoki Regulation Signal yolins and Cell Kole of JAK yoling and Cell JAK3 in yoc	
Cellular Grow		owth, Proliferatio Cdc42 Signaling		n and Developm AMPK Signaling Regulation of eIF4 and p70S6K Signaling		ent Signaling	n Human Embryonic Stem Cell Pluripotency	naling Cardio	Signaling vascular Sig Role of NF Cardiac Hy		gnaling AT in pertrophy	C al cium-induced Apoptosis control de contr		K/JNK naling IS Receptor g	Biosynthe Pathways of Ribonucleotides	sis Pathways Pathways Pathc John	vytokine Signaling Organismal Growth and Development Virus Entry n gence gence ling