
Author's Response To Reviewer Comments

Close

We would like to kindly thank the reviewers for the time they spent to thoroughly read our manuscript.

We appreciate all their accurate comments, which helped at the improvement of our manuscript. In the

revised version, we have addressed all of the reviewer’s comments and suggestions and have

incorporated changes/amendments to the manuscript (indicated in cyan), where necessary. Below we

cite our detailed answers to the editor and reviewers’ comments and suggestions (reviewer text starts

with a hash #).

Reviewer reports:

The paper is a retrospective on 12 years of running what has become a regional HPC facility in

Greece. It reviews # the gradual evolution of a single-server resource into a Tier-2 facility, gives some

insights into how the facility is

organized and run, highlights some of the research done using the facility, and offers some lessons

learned from # these 12 years. In this, it should be of interest to researchers who use HPC facilities and

those who run them.

The paper is well written and well organized, making it very accessible even to non-specialists. There

are a

number of observations that I would make with a view to improving the relevance of the paper, and a

minor

correction for readability.

Reviewer #1 comment #1:

1. Containerization: This is perhaps one of the more important recent developments in the HPC space

(and

beyond). It is treated in a number of sections where, if I understand correctly, Singularity is the

adopted

platform. #But what is the standard image format used? Singularity for direct compatibility with the

HPC

environment, or #Docker for eventual external compatibility (e.g. with cloud compute)? What

reasoning led to

any decisions here.

We chose Singularity as the standard image format for Zorba, while In terms of locally-developed

containers, we support both technologies. Singularity was preferred because it ensures compatibility

with our job scheduling system (i.e. SLURM). Singularity has been developed to perform complex

applications on HPC environments focusing specifically on the needs of the scientific community and

aiming to support reproducible science in a simple way. Therefore, it has a completely different approach

compared to Docker regarding the namespace (allowing to setup a container without privileged

operations, so that a non-root user can act as root inside a container without being root on the host

outside) and filesystems, and supports Message Passing Interface (MPI). Docker, on the other hand, is

not designed for data processing, but for running microservices (e.g. web-services). Moreover,

Singularity is compatible with Docker containers, allowing to take advantage of all the benefits of

Docker; e.g the large number of already developed containers and its larger community. Thus,

Singularity is commonly used by Academic and Research institutions as the containerization technology

for their HPC-oriented containers [1].

We have clarified that we use Singularity in the corresponding section (lines 157-158). While Singularity

is our container technology of choice regarding running containers in our HPC facility, we also employ

Docker for external compatibility purposes, i.e. the containers we create and share. The newly added

last paragraph of Section “5D. The way forward: Develop locally, share and deploy centrally” and section

“6. Cloud Computing” elaborate on such Docker use and its synergy with Cloud/HPC systems.

Reference

[1] Kurtzer, Gregory M., Vanessa Sochat, and Michael W. Bauer. "Singularity: Scientific containers for

mobility of compute." PloS one 12.5 (2017): e0177459.

It would be very interesting to hear the authors' opinion on what developments they expect, or hope

for, with

regards to containerization.

Containers are an already established technology, some of the largest cloud providers worldwide (e.g.

Google Cloud, Azure, Amazon Web Services) have already adopted them to a great extent. Container

use is also on the rise in research; it is our belief that it will be further accelerated in the future,

especially in the context of FAIRification efforts. Despite “indirect costs” related to these efforts, such as

costs to containerize legacy software, we believe that these technologies will become the norm.

Ongoing, community-driven efforts, such as the BioContainers project (https://biocontainers.pro/) that

provides both the infrastructure and the basic guidelines to build, manage and distribute images and

containers, play a great part towards this direction. Additional contributions in the same direction are

provided by a number of groups, institutes and universities that have already started to containerize and

distribute already-developed and commonly known bioinformatics software tools (e.g the Hurwitz Lab

container repository (https://github.com/hurwitzlab?q=singularity+OR+docker)). We have added a

comment on our view regarding the future of containers at the end of section “5D. The way forward:

Develop locally, share and deploy centrally” (lines 530 - 545).

Reviewer #1 comment #2:

2. Cloud computing: Commercial cloud providers and the potential for hybridization with traditional

"in-house"

HPC, is another topic that is relevant today for research that requires significant computation. This

was touched

on very briefly in the first of the Lessons Learned sub-sections, where budget and containerization

were

mentioned. I suspect that other HPC managers and staff would welcome some more detail here. What

do the

authors consider to be the factors that would lead towards the (increased) use of cloud computing?

What are

the drawbacks? Had any comparison of costs been undertaken? Are there any mismatches between

the HPC

model of containerization, and that of commercial cloud providers? (e.g. Docker vs Singularity) that

would need # to be addressed?

There is a trend for cloud computing services managed by a web interface. This is mainly because they

offer simplicity and high availability to users with less or even no experience in HPC systems. In

addition, the time needed for data manipulation, software installation and user-system interaction is

significantly reduced compared to a local HPC facility. On the other hand, tool experimentation and

benchmarking is more limited in cloud computing compared to local facilities, which are in general more

dedicated to specific research areas. While a cost comparison e.g. among the reported HPC usage and

equivalent solutions in the cloud is possible, a thorough one has not been conducted. Since our facility

still relies on legacy (i.e. not containerized) software and workflows, we are in a preparatory phase

towards an era where cloud resources can be optimally used, and thus an exhaustive cost comparison is

not relevant at this stage for Zorba. The more progress is made, the more such a strategic shift would

make sense in the future. In addition, non-profit, academia-oriented, cloud computing solutions will be

explored first prior to commercial ones. Regarding mismatches between the two systems on

containerization: Although both fully support Singularity containers, Singularity has been specifically

developed to support HPC systems, while Docker is designed to run in isolated environments (i.e. Virtual

machines), as explained in comment 1. As elaborated further in comment 4 and by the means of

comprehensiveness, a paragraph on “6. Cloud computing” has been added in the manuscript.

Reviewer #1 comment #3:

3. Multi-threaded programming: The authors correctly mention the use of software threads as the

general

solution to parallelization in bioinformatics programs. But there is a problem in the way that they

characterize

multi-node parallelization. The authors point out that to distribute parallel tasks over multiple nodes,

threading

is not enough. The typical solution for bioinformatic programmers is to use MPI (across nodes)

alongside

OpenMP (within nodes). The authors point out that this is only used in a small minority of

bioinformatic

applications, and that MPI usage is low in others. As a reviewer, I presume that this is an indication,

from the

authors, that cross-node parallelization (i.e. fully distributed) is not something that happens often on

their

facility, or in any case is considered to be niche enough to influence the choice of node types on the

cluster

(presumably in favour of nodes with large numbers of cores). Firstly, could I ask the authors if I have

correctly

interpreted the message of the subsection entitled "Software optimizations for parallel execution"?

The reviewer has correctly understood that cross-node parallelization does not happen often on our

facility, mainly because there is a limited number of tools that exploit similarly well cores from multiple

nodes (multi-node parallelization). This has indeed partially influenced our strategic choices on the

system architecture.

If so, I would like to offer another perspective on the matter, and would welcome the authors'

thoughts. OpenMP

and MPI programming is difficult. They are both low-level abstractions that force the coder to

concentrate on

implementation details close to the OS and hardware. I believe it is *this* difficulty that leads to this

approach

being used only in niche settings, and that if easier approaches to multi-node distribution were

available,

bioinformaticians would make use of them. Such approaches do exist (actor-based distribution as

exemplified by

the Akka library is one) but they are not generally known to bioinformaticians. They offer high-level

abstractions

that hide the details of both intra-node threading and inter-node Inter Process Communication. If

bioinformaticians were introduced to these techniques, it is possible that they could make more

efficient use of

HPC (and/or cloud) infrastructure.

We agree that MPI and (in some cases when numerous dependencies exist) OpenMP require more in-

depth knowledge and experience in how to capitalize on multi-core systems (mostly MPI, since OpenMP

is less complex). Actor-based parallel model is indeed a more understandable way of producing

concurrency and could become popular among bioinformaticians. We thank the reviewer for the

suggestion; it could be further explored once a pertinent IMBBC HPC use case arises.

I think this is a chicken-and-egg situation, where users of HPC facilities are encouraged to use

MPI/OpenMP,

and HPC facilities operate as if these low-level protocols were the only available approach. The authors

mention

"training as an integral component to the HPC mindset". Do they see an opportunity here to use that

training to

extend the computational reach of bioinformaticians?

The vast majority of Zorba users make use of third-party software tools (not developing their own) for

their workflows, thus the Zorba team’s primary care so far has been to render users more familiar with

how different parallel technologies work, so as to understand how to use these more efficiently in terms

of hardware resources. Once efficient and user-friendly models for parallelization become widely

acceptable in the community, we do foresee adopting them and training Zorba users in these. In

addition, The Zorba team and many researchers in the Institute actively follow related training activities

(e.g. by ELIXIR, EOSC), which are commonly based on user surveys to identify current needs and future

goals in terms of computing.

#Reviewer #1 comment #4:

#4. Network intensive processing: The first Lessons Learned subsection explores the extent to which

processes are

memory, or CPU bound. No mention is made of network intensity. In a way this point extends from

the previous

one about fully-distributed processes, and it also touches on the cloud vs HPC question. It might be

said that the

distinguishing feature of a HPC facility (over say a private or public cloud) is the InfiniBand network

layer. So the

question of making full use of this feature is relevant. I'd welcome some discussion on the general

point of HPC

vs cloud in the paper, and about InfiniBand's role in that comparison, especially in the section that

looks to the

future of the facility.

A large number of bioinformatics tools and housekeeping software running on Zorba are network-

intensive, either due to I/O operations they perform in shared filesystems, or to node

intercommunication. To address this issue we adopted IB, as mentioned in the companion preprint paper

(https://zenodo.org/record/4665308, see section “A2. The Zorba configuration of the IMBBC HPC

facility” therein). The reviewer is right that we did not mention network intensity in the main text. Since

it is indeed important for the discussion, we have added relevant information in the revised manuscript,

lines 132 - 137.

Infiniband (IB) is the key element to efficiently serve intercommunication among structural parts of an

HPC facility (either traditional or cloud-based); therefore, investment in high bandwidth (based on RDMA

technology) is important. In practise, processes using MPI are those that really take advantage of IB,

mainly in traditional HPC systems when running MPI among a large number of nodes. In cloud

infrastructures, IB is also important in cases when resources from different nodes are combined to

provide a unified virtual machine. However, most commercial Cloud providers do not support IB

interconnection. In that case, fast direct memory access between the nodes is needed in order to ensure

a similar or equal result in terms of performance, as if it ran on a single server. However, IB cannot

really accelerate IO operations (e.g. file transfers, data reads and writes) since it is bounded by the

filesystem type, the disks and the concurrent demand at a specific moment. Some of the above points

are mentioned in our revised manuscript, new paragraph “6. Cloud computing”.

#Reviewer #1 comment #5:

5. Minor point - the paper has references to numbered sections (e.g. "Section 2") but there is no

numbering in

the paper format.

Section numbering has been updated.

#Reviewer #2 comment #1:

The manuscript presents a description and importance of High-performance computing (HPC) in

marine

research. The topic is of interest because allows important studies in marine research. The manuscript

describes

the system architecture and capacity of processing of Zorba facility. I think that the important point of

the Zorba

facility is concern a accessible communication between users and administrators. The method is quite

standard

and is appropriate for the study, especially given that the main focus of the paper is to describe the

evolution of

IMBBC HPC facility during the 12 past years. Is notable the progress of the facility in the analysis of a

wide

variety of information. The conclusions are satisfactory. The solutions applied in hardware

(depth/breadth

balanced structure, user quotas and temporary storage), software (modularized bioinformatics

application

maintenance and containerization are very interesting) and training enable that the scientific

community can

deal with a wide # variety of information. The language is clear and does not require a heavy edition

and the

statistical methods are not relevant for the present paper.

We would like to thank the reviewer for the positive comments.

#Reviewer #2 comment #2:

Minor revisions

In the topic "Computational breakdown of the IMBBC HPC supported research", please fix the order of

the

figures. It seems to me that is Figure 4 and not Figure 3. In the phrases "As shown in Fig. 3...", "Long

computational times (Fig 3A)", "... approaches is the significant storage limitations (Fig 3C)..." Figure

4 is not

clearly labeled, please see the text of 4B and 4C.

All mismatched annotations have been fixed in the revised manuscript.

Reviewer #3 comment #1:

The manuscript provides an accessible and informative review of the evolving needs and solutions for

High

Performance Computing at a regional scale serving users in the broad domain of marine science and

biotechnology. For readers without deep expertise in computational science (as is the case for this

reviewer) the

authors are commended in providing a useful insight to the challenges facing such cyberinfrastructure

and how

those challenges have been addressed in the past as well as some future guidance. The use cases

provided were

appropriate and illustrative of the types of study supported by this HPC facility, and the heterogenous

demands

for types of computing resource and how these can be met and balanced among the needs of different

users.

The common challenge of storage was well expounded but solutions appear to be still rather elusive.

We would like to thank the reviewer for the positive comments. We agree that storage is a major

challenge and is not easy to be met. A storage upgrade scheduled within 2021 (see Section “7. Future

Directions”) is expected to alleviate current storage challenges in Zorba. However, given the ever

increasing data production (e.g. as the result of decreasing sequencing costs, and/or of rising imaging

technologies), responsible storage use approaches as described here remain only partial solutions to

anticipated future storage needs. Centralized (Tier-1 or higher) storage solutions represent a longer-

term solution, which is in line with current views on how to handle big data generated by international

research consortia in a long-lasting manner.

We have added the above comments in the revised manuscript, in section 5B “Quota... overloaded” lines

465 - 475.

Close

